首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ischemic heart disease is more apparent in the subendocardial than in subepicardial layers. We investigated coronary pressure-flow relations in layers of the isolated rat left ventricle, using 15 microm microspheres during diastolic and systolic arrest in the vasodilated coronary circulation. A special cannula allowed for selective determination of left main stem pressure-flow relations. Arterio-venous shunt flow was derived from microspheres in the venous effluent. We quantitatively investigated the pressure-flow relations in diastolic arrest (n=8), systolic arrest at normal contractility (n=8) and low contractility (n=6). In all three groups normal and large ventricular volume was studied. In diastolic arrest, at a perfusion pressure of 90 mmHg, subendocardial flow is larger than subepicardial flow, i.e., the endo/epi ratio is approximately 1.2. In systolic arrest the endo/epi ratio is approximately 0.3, and subendocardial flow and subepicardial flow are approximately 12% and approximately 55% of their values during diastolic arrest. The endo/epi ratio in diastolic arrest decreases with increasing perfusion pressure, while in systole the ratio increases. The slope of the pressure-flow relations, i.e., inverse of resistance, changes by a factor of approximately 5.3 in the subendocardium and by a factor approximately 2.2 in the subepicardium from diastole to systole. Lowering contractility affects subendocardial flow more than subepicardial flow, but both contractility and ventricular volume changes have only a limited effect on both subendocardial and subepicardial flow. The resistance (inverse of slope) of the total left main stem pressure-flow relation changes by a factor of approximately 3.4 from diastolic to systolic arrest. The zero-flow pressure increases from diastole to systole. Thus, coronary perfusion flow in diastolic arrest is larger than systolic arrest, with the largest difference in the subendocardium, as a result of layer dependent increases in vascular resistance and intercept pressure. Shunt flow is larger in diastolic than in systolic arrest, and increases with perfusion pressure. We conclude that changes in contractility and ventricular volume have a smaller effect on pressure-flow relations than diastolic-systolic differences. A synthesis of models accounting for the effect of cardiac contraction on perfusion is suggested.  相似文献   

2.
The subendocardium is the most vulnerable area of the left ventricle to the effects of hypoperfusion and ischemia. Despite this well-acknowledged observation, the mechanisms underlying this susceptibility are not elucidated, although numerous explanations including differences in transmural distribution of hemodynamics, metabolism, and wall stresses have been proposed. Our goal was to make dynamic measurements of endocardial and epicardial flow velocities, which reflect hemodynamic and wall stresses, to approach this problem. We measured blood flow velocities in subendocardial and subepicardial coronary arterioles of in vivo beating canine hearts using a high-speed, charge-coupled device, intravital videomicroscope with a rod-probe lens. Subendocardial flow was characterized by remarkable systolic flow-velocity reversal (systolic slosh ratio, 84%; measurable velocity of retrograde flow, faster than -40 mm/s), which contrasted to predominant forward-flow velocity during systole in the subepicardial arterioles (systolic slosh ratio, 25%; maximum velocity, approximately -20 mm/s; P < 0.0005 and 0.05 vs. subendocardial arterioles, respectively). We speculate that this retrograde flow is "wasteful," because this volume must be refilled during the subsequent diastole, which thereby detracts from the net perfusion as well as the time for perfusion. Accordingly, we also believe that the retrograde systolic blood flow contributes to the vulnerability of the subendocardium to ischemia.  相似文献   

3.
To determine whether coronary sinus outflow pressure (Pcs) or intramyocardial tissue pressure (IMP) is the effective back pressure in the different layers of the left ventricular (LV) myocardium, we increased Pcs in 14 open-chest dogs under maximal coronary artery vasodilation. Circumflex arterial (flowmeter), LV total, and subendocardial and subepicardial (15-microns radioactive spheres) pressure-flow relationships (PFR) and IMP (needle-tip pressure transducers) were recorded during graded constriction of the artery at two diastolic Pcs levels (7 +/- 3 vs. 23 +/- 4 mmHg). At high Pcs, LV, aortic and diastolic circumflex arterial pressure, heart rate, myocardial oxygen consumption, and lactate extraction were unchanged; IMP in the subendocardium did not change (130/19 mmHg), whereas IMP in the subepicardium increased by 17 mmHg during systole and 10 mmHg during diastole (P < or = 0.001), independently of circumflex arterial pressure. Increasing Pcs did not change the slope of the PFR; however, coronary pressure at zero flow increased in the subepicardium (P < or = 0.008), whereas in the subendocardium it remained unchanged at 24 +/- 3 mmHg. Thus Pcs can regulate IMP independently of circumflex arterial pressure and consequently influence myocardial perfusion, especially in the subepicardial tissue layer of the LV.  相似文献   

4.
The objective of this study was to determine the effect of systemic MgSO4 infusion on subendocardial and subepicardial perfusion. Seventeen spontaneously breathing piglets were examined. Myocardial perfusion was measured using radiolabeled microspheres at baseline, 30 and 60 min after either MgSO4 (80 mg/kg) or saline infusion. Blood pressure, heart rate, and cardiac output were also measured at these time intervals. Comparison of the magnesiuminduced changes in systemic blood pressure and on subendocardial and subepicardial perfusion at 30 and 60 min with values obtained with saline solution at 30 and 60 min, yielded no statistically significant difference (Tables 1–3). The ratio of subendocardial/subepicardial blood flow and subendocardial and subepicardial coronary vascular resistance at 30 and 60 min revealed no statistically significant differences between the magnesium and the control group (Table 3). There were no statistically significant difference in cardiac output and heart rate during any of the measured periods (Table 2). Our results suggest that the administration of MgSO4 does not alter the ratio of subendocardial/subepicardial blood flow and the ratio of subendocardial/subepicardial coronary vascular resistance.  相似文献   

5.
Coronary blood flow in the subendocardium is preferentially increased by adenosine but is redistributed to the subepicardium during ischemia in association with coronary pressure reduction. The mechanism for this flow redistribution remains unclear. Since adenosine is released during ischemia, it is possible that the coronary microcirculation exhibits a transmural difference in vasomotor responsiveness to adenosine at various intraluminal pressures. Although the ATP-sensitive K(+) (K(ATP)) channel has been shown to be involved in coronary arteriolar dilation to adenosine, its role in the transmural adenosine response remains elusive. To address these issues, pig subepicardial and subendocardial arterioles (60-120 micrometer) were isolated, cannulated, and pressurized to 20, 40, 60, or 80 cmH(2)O without flow for in vitro study. At each of these pressures, vessels developed basal tone and dilated concentration dependently to adenosine and the K(ATP) channel opener pinacidil. Subepicardial and subendocardial arterioles dilated equally to adenosine and pinacidil at 60 and 80 cmH(2)O luminal pressure. At lower luminal pressures (i.e., 20 and 40 cmH(2)O), vasodilation in both vessel types was enhanced. Enhanced vasodilatory responses were not affected by removal of endothelium but were abolished by the K(ATP) channel inhibitor glibenclamide. In a manner similar to reducing pressure, a subthreshold dose of pinacidil potentiated vasodilation to adenosine. In contrast to adenosine, dilation of coronary arterioles to sodium nitroprusside was independent of pressure changes. These results indicate that coronary microvascular dilation to adenosine is enhanced at lower intraluminal pressures by selective activation of smooth muscle K(ATP) channels. Since microvascular pressure has been shown to be consistently lower in the subendocardium than in the subepicardium, it is likely that the inherent pressure gradient in the coronary microcirculation across the ventricular wall may be an important determinant of transmural flow in vivo during resting conditions or under metabolic stress with adenosine release.  相似文献   

6.
Intramyocardial pressure is an indicator of coronary extravascular resistance. During systole, pressure in the subendocardium exceeds left ventricular intracavitary pressure; whereas pressure in the subepicardium is lower than left ventricular intracavitary pressure. Conversely, during diastole, subepicardial pressure exceeds both subendocardial pressure and left ventricular pressure. These observations suggest that coronary flow during systole is possible only in the subepicardial layers. During diastolic, however, a greater driving pressure is available for perfusion of the subendocardial layers relative to the subepicardial layers. On this basis, measurements of intramyocardial pressure contribute to an understanding of the mechanisms of regulation of the phasic and transmural distribution of coronary blow flow.  相似文献   

7.
The capacity for myocardial perfusion depends on the structure of the coronary microvascular bed. Coronary microvessels may adapt their structure to various stimuli. We tested whether the local pressure profile affects tone and remodeling of porcine coronary microvessels. Subendocardial vessels (approximately 160 microm, n=53) were cannulated and kept in organoid culture for 3 days under different transvascular pressure profiles: Osc 80: mean 80 mmHg, 60 mmHg peak-peak sine wave pulsation amplitude at 1.5 Hz; St 80: steady 80 mmHg; Osc 40: mean 40 mmHg, 30 mmHg amplitude; St 40: steady 40 mmHg. Under the Osc 80 profile, modest tone developed, reducing the diameter to 81+/-14% (mean+/-SE, n=6) of the maximal, passive diameter. No inward remodeling was found here, as determined from the passive pressure-diameter relation after 3 days of culture. Under all other profiles, much more tone developed (e.g., Osc 40: to 26+/-3%, n=7). In addition, these vessels showed eutrophic (i.e., without a change in wall cross-sectional area) inward remodeling (e.g., Osc 40: passive diameter reduction by 24+/-3%). The calcium blocker amlodipine induced maintained dilation in St 40 vessels and reversed the 22+/-3% (n=6) inward remodeling to 15+/-3% (n=8) outward remodeling toward day 3. Vessels required a functional endothelium to maintain structural integrity in culture. Our data indicate that reduction of either mean pressure or pulse pressure leads to microvascular constriction followed by inward remodeling. These effects could be reversed by amlodipine. Although microvascular pressure profiles distal to stenoses are poorly defined, these data suggest that vasodilator therapy could improve subendocardial microvascular function and structure in coronary artery disease.  相似文献   

8.
Coronary sinus pressure (Pcs) elevation shifts the diastolic coronary pressure-flow relation (PFR) of the entire left ventricular myocardium to a higher pressure intercept. This finding suggests that Pcs is one determinant of zero-flow pressure (Pzf) and challenges the existence of a vascular waterfall mechanism in the coronary circulation. To determine whether coronary sinus or tissue pressure is the effective coronary back pressure in different layers of the left ventricular myocardium, the effect of increasing Pcs was studied while left ventricular preload was low. PFRs were determined experimentally by graded constriction of the circumflex coronary artery while measuring flow using a flowmeter. Transmural myocardial blood flow distribution was studied (15-micron radioactive spheres) at steady state, during maximal coronary artery vasodilatation at three points on the linear portion of the circumflex PFR both at low and high diastolic Pcs (7 +/- 3 vs. 22 +/- 5 mmHg; p less than 0.0001) (1 mmHg = 133.322 Pa). In the uninstrumented anterior wall the blood flow measurements were obtained in triplicate at the two Pcs levels. From low to high Pcs, mean aortic (98 +/- 23 mmHg) and left atrial (5 +/- 3 mmHg) pressure, percent diastolic time (49 +/- 7%), percent left ventricular wall thickening (32 +/- 4%), and percent myocardial lactate extraction (15 +/- 12%) were not significantly changed. Increasing Pcs did not alter the slope of the PFR; however, the Pzf increased in the subepicardial layer (p less than 0.0001), whereas in the subendocardial layer Pzf did not change significantly. Similar slopes and Pzf were observed for the PFR of both total myocardial mass and subepicardial region at low and high Pcs. Subendocardial:subepicardial blood flow ratios increased for each set of measurements when Pcs was elevated (p less than 0.0001), owing to a reduction of subepicardial blood flow; however, subendocardial blood flow remained unchanged, while starting in the subepicardium toward midmyocardium blood flow decreased at high Pcs. This pattern was similar for the uninstrumented anterior wall as well as in the posterior wall. Thus as Pcs increases it becomes the effective coronary back pressure with decreasing magnitude from the subepicardium toward the subendocardium of the left ventricle. Assuming that elevating Pcs results in transmural elevation in coronary venous pressure, these findings support the hypothesis of a differential intramyocardial waterfall mechanism with greater subendo- than subepi-cardial tissue pressure.  相似文献   

9.
Pressure-based fractional flow reserve (FFR) is used clinically to evaluate the functional severity of a coronary stenosis, by predicting relative maximal coronary flow (Q(s)/Q(n)). It is considered to be independent of hemodynamic conditions, which seems unlikely because stenosis resistance is flow dependent. Using a resistive model of an epicardial stenosis (0-80% diameter reduction) in series with the coronary microcirculation at maximal vasodilation, we evaluated FFR for changes in coronary microvascular resistance (R(cor) = 0.2-0.6 mmHg. ml(-1). min), aortic pressure (P(a) = 70-130 mmHg), and coronary outflow pressure (P(b) = 0-15 mmHg). For a given stenosis, FFR increased with decreasing P(a) or increasing R(cor). The sensitivity of FFR to these hemodynamic changes was highest for stenoses of intermediate severity. For P(b) > 0, FFR progressively exceeded Q(s)/Q(n) with increasing stenosis severity unless P(b) was included in the calculation of FFR. Although the P(b)-corrected FFR equaled Q(s)/Q(n) for a given stenosis, both parameters remained equally dependent on hemodynamic conditions, through their direct relationship to both stenosis and coronary resistance.  相似文献   

10.
Distension of the urinary bladder causes an increase in efferent sympathetic activity, which can precipitate myocardial ischemia. Smoking has been shown to modulate activities of afferent nerves from the distended urinary bladder and to impair endothelial function in response to sympathetic activation. To assess the effect of bladder distension on coronary dynamics in smokers, we measured epicardial and microvascular responses in 24 patients with early atherosclerosis (< 50% diameter stenosis). Patients were classified into habitual smokers (group 1, n = 14) and nonsmokers (group 2, n = 10). Habitual smokers were randomized into two subgroups on the basis of the use of doxazosin, as follows: subgroup 1A (n = 7), without administration of doxazosin before catheterization; subgroup 1B (n = 7), with dosing doxazosin. In response to bladder distension (mean intravesical pressure 21.5 mmHg), bladder distension significantly decreased coronary diameter at the stenotic segments, coronary blood flow, and increased coronary resistance compared with baseline values, in subgroup 1A patients. In subgroup 1B patients during bladder distension, coronary diameter, coronary blood flow, and coronary resistance did not show significant changes compared with baseline values. There were significant differences of coronary diameter at the stenotic segments, coronary blood flow, and of changes of coronary vascular resistance between subgroup 1A and group 2 during bladder distension, despite similar changes in rate-pressure product. The present study showed that urinary bladder distension caused an abnormal vasomotor response of epicardial vasoconstriction and a concomitant increased coronary resistance, which leads to reduction in coronary blood flow in patients with early atherosclerosis. Smoking may further impair the response, implying that smoking has exaggerated response to sympathetic stimulation of conduit and resistance vessels. The abnormal response was abolished by pretreated administration of doxazosin, suggesting that the involved mechanisms are related to alpha(1)-adrenoceptors.  相似文献   

11.
The influence of left ventricle pressure and volume changes on coronary blood flow was investigated in eight anesthetized dogs. Coronary artery pressure-flow relationships were determined at two levels of left ventricular pressure and volume. The distribution of blood flow within the myocardium was also determined when these relationships varied. Reducing left ventricle pressures and volumes increased heart rate. Rate-pressure product, diastolic coronary pressure, myocardial O2 consumption, total, subendocardial and subepicardial flow decreased. Hematocrit and blood gas data were unchanged. The pressure-flow relationships were shifted leftward (p = 0.001) but the range of autoregulation was not altered. At low left ventricle pressures and volumes, the lower coronary artery pressure limit was shifted leftward (from 75 to 45 mm Hg (1 mm Hg = 133.3 Pa)), while total, subendocardial, and subepicardial blood flow did not change compared with the control. Below the lower coronary artery pressure limit, subendocardial but not subepicardial flow decreased, resulting in maldistribution of flow across the left ventricular wall. When coronary pressure was reset between control and the lower coronary artery pressure limit, subendocardial flow was restored. These results show that the lower coronary artery pressure limit can be shifted leftward while the distribution of blood flow across the left ventricular wall is preserved.  相似文献   

12.
Our previous studies have demonstrated that a decrease in arteriolar diameter that causes endothelial deformation elicits the release of nitric oxide (NO). Thus we hypothesized that cardiac contraction, via deformation of coronary vessels, elicits the release of NO and increases in coronary flow. Coronary flow was measured at a constant perfusion pressure of 80 mmHg in Langendorff preparations of rat hearts. Hearts were placed in a sealed chamber surrounded with perfusion solution. The chamber pressure could be increased from 0 to 80 mmHg to generate extracardiac compression. To minimize the impact of metabolic vasodilatation and rhythmic changes in shear stress, nonbeating hearts, by perfusing the hearts with a solution containing 20 mM KCl, were used. After extracardiac compression for 10 or 20 s, coronary flow increased significantly, concurrent with an increased release of nitrite into the coronary effluent and increased phosphorylation of endothelial NO synthase in the hearts. Inhibition of NO synthesis eliminated the compression-induced increases in coronary flow. Shear stress-induced dilation could not account for this increased coronary flow. Furthermore, in isolated coronary arterioles, without intraluminal flow, the release of vascular compression elicited a NO-dependent dilation. Thus this study reveals a new mechanism that, via coronary vascular deformation, elicited by cardiac contraction, stimulates the endothelium to release NO, leading to increased coronary perfusion.  相似文献   

13.
Hemorrhagic shock alters heterogeneity of regional myocardial perfusion (RMP) in the presence of critical coronary stenosis in pigs. Conventional resuscitation has failed to reverse these effects. We hypothesized that improvement of the resuscitation regime would lead to restoration of RMP heterogeneity. Diaspirin-cross-linked hemoglobin (10 g/dl; DCLHb) and human serum albumin (8.0 g/dl; HSA) were used. After baseline, a branch of the left coronary artery was stenosed; thereafter, hemorrhagic shock was induced. Resuscitation was performed with either DCLHb or HSA. At baseline, the fractcal dimension (D) of subendocardial myocardium was 1.31 +/- 0.083 (HSA) and 1.35 +/- 0.106 (DCLHb) (mean +/- SD). Coronary stenosis increased subendocardial D slightly but consistently only in the DCLHb group (1.39 +/- 0.104; P < 0.05). Shock reduced subendocardial D: 1.21 +/- 0.093 (HSA; P = 0.10), 1.25 +/- 0.092 (DCLHb; P < 0.05). Administration of DCLHb increased subendocardial D in 7 of 10 animals (1.31 +/- 0.097; P = 0.066). HSA was ineffective in this respect. DCLHb infusion restored arterial pressure and increased cardiac index (CI) to 80% of baseline values. Administration of HSA left animals hypotensive (69 mmHg) and increased CI to 122% of the average baseline value. Shock-induced disturbances of the distribution of RMP were improved by administration of DCLHb but not by HSA.  相似文献   

14.
Myocardial ischemia is transmurally heterogeneous where the subendocardium is at higher risk. Stenosis induces reduced perfusion pressure, blood flow redistribution away from the subendocardium, and consequent subendocardial vulnerability. We propose that the flow redistribution stems from the higher compliance of the subendocardial vasculature. This new paradigm was tested using network flow simulation based on measured coronary anatomy, vessel flow and mechanics, and myocardium-vessel interactions. Flow redistribution was quantified by the relative change in the subendocardial-to-subepicardial perfusion ratio under a 60-mmHg perfusion pressure reduction. Myocardial contraction was found to induce the following: 1) more compressive loading and subsequent lower transvascular pressure in deeper vessels, 2) consequent higher compliance of the subendocardial vasculature, and 3) substantial flow redistribution, i.e., a 20% drop in the subendocardial-to-subepicardial flow ratio under the prescribed reduction in perfusion pressure. This flow redistribution was found to occur primarily because the vessel compliance is nonlinear (pressure dependent). The observed thinner subendocardial vessel walls were predicted to induce a higher compliance of the subendocardial vasculature and greater flow redistribution. Subendocardial perfusion was predicted to improve with a reduction of either heart rate or left ventricular pressure under low perfusion pressure. In conclusion, subendocardial vulnerability to a acute reduction in perfusion pressure stems primarily from differences in vascular compliance induced by transmural differences in both extravascular loading and vessel wall thickness. Subendocardial ischemia can be improved by a reduction of heart rate and left ventricular pressure.  相似文献   

15.
Qi XY  Shi WB  Wang HH  Zhang ZX  Xu YQ 《生理学报》2000,52(5):360-364
实验用全细胞膜片箝技术,观察正常及缺血条件下,兔心内膜下心室肌细胞与心外膜下心室肌细胞的动作电位和稳态外向钾流及其变化。结果显示:(1)正常条件下,心外膜下心室肌细胞与心内膜下心室肌细胞动作电位形态有差异,心外膜下心室肌细胞动作电位时程(APD)较短,复极1期后有明显的初迹,动作电位形态是“锋和圆顶”,而心内膜下心室肌细胞APD较长,并且没有上述动作电位形态特征。这两类细胞静息电位无差异。(2)在  相似文献   

16.
The tissue components of the subendocardial, intramural and subepicardial layers of the myocardium of rats were examined by morphometry on the 10 day after 50% subphrenic coarctation of the abdominal aorta. The decrease of the relative volume of cardiomyocytes in the subendocardial layer and the increase of this index in the other layers of myocardium were discovered. The decrease of the surface of cardiomyocytes was maximal in the intramural layer and in the other examined layers the decrease was less. Some increase of the average diameters of cardiomyocytes in subepicardial and intramural layers was shown. The cardiomyocytes diameter practically did not change in the subendocardial layer. The increase of the relative volume and surface of the capillaries was revealed in the subendocardial layer. These indexes were decreased in a different degree in the subepicardial and intramural layers.  相似文献   

17.
The heterogeneity across the left ventricular wall is characterized by higher rates of oxygen consumption, systolic thickening fraction, myocardial perfusion, and lower energetic state in the subendocardial layers (ENDO). During dobutamine stimulation-induced demand ischemia, the transmural distribution of energy demand and metabolic markers of ischemia are not known. In this study, hemodynamics, transmural high-energy phosphate (HEP), 2-deoxyglucose-6-phosphate (2-DGP) levels, and myocardial blood flow (MBF) were determined under basal conditions, during dobutamine infusion (DOB: 20 microg x kg(-1) x min(-1) iv), and during coronary stenosis + DOB + 2-deoxyglucose (2-DG) infusion. DOB increased rate pressure products (RPP) and MBF significantly without affecting the subendocardial-to-subepicardial blood flow ratio (ENDO/EPI) or HEP levels. During coronary stenosis + DOB + 2-DG infusion, RPP, ischemic zone (IZ) MBF, and ENDO/EPI decreased significantly. The IZ ratio of creatine phosphate-to-ATP decreased significantly [2.30 +/- 0.14, 2.06 +/- 0.13, and 2.04 +/- 0.11 to 1.77 +/- 0.12, 1.70 +/- 0.11, and 1.72 +/- 0.12 for EPI, midmyocardial (MID), and ENDO, respectively], and 2-DGP accumulated in all layers, as evidenced by the 2-DGP/PCr (0.55 +/- 0.12, 0.52 +/- 0.10, and 0.37 +/- 0.08 for EPI, MID, and ENDO, respectively; P < 0.05, EPI > ENDO). In the IZ the wet weight-to-dry weight ratio was significantly increased compared with the normal zone (5.9 +/- 0.5 vs. 4.4 +/- 0.4; P < 0.05). Thus, in the stenotic perfused bed, during dobutamine-induced high cardiac work state, despite higher blood flow, the subepicardial layers showed the greater metabolic changes characterized by a shift toward higher carbohydrate metabolism, suggesting that a homeostatic response to high-cardiac work state is characterized by more glucose utilization in energy metabolism.  相似文献   

18.
Increasing pressures to 30 mmHg in right (RV) and left (LV) ventricles and surrounding heart (SH) in isolated, arrested, maximally vasodilated, blood-perfused dog hearts shifted pressure-flow (PF) curves rightward and increased zero flow pressure (P(zf)) by an amount equal to the RV applied pressure, SH applied pressure, or two-thirds of the LV applied pressure. There were comparable increases in coronary venous pressures. Increasing LV or SH pressures decreased coronary blood flows, especially in the subendocardium. Decreases in driving pressure decreased flows in all layers, but even with driving pressure of 5 mmHg, a few subepicardial pieces had flow. We conclude with the following: 1) raising pressures inside or outside the heart shifts PF curves and raises P(zf) by increasing coronary venous pressure; 2) the effects are most prominent in the subendocardial muscle layer; and 3) as driving pressures are decreased, there is a range of P(zf) in the heart with the final P(zf) recorded due to the last little piece of muscle to be perfused.  相似文献   

19.
In the rat, the spleen is a major site of fluid efflux out of the blood. By contrast, the mesenteric vasculature serves as a blood reservoir. We proposed that the compliance and myogenic responses of these vascular beds would reflect their different functional demands. Mesenteric and splenic arterioles ( approximately 150-200 microm) and venules (<250 microm) from rats anesthetized with pentobarbital sodium were mounted in a pressurized myograph. Mesenteric arterial diameter decreased from 146 +/- 6 to 133 +/- 6 microm on raising intraluminal pressures from 80 to 120 mmHg. This response was enhanced in the presence of N(omega)-nitro-l-arginine methyl ester (l-NAME; 139 +/- 6 to 112 +/- 7 microm). There was no such myogenic response in the splenic arterioles, except in the presence of l-NAME (194 +/- 4 to 164 +/- 4.2 microm). We propose that, whereas mesenteric arterioles exhibit myogenic responses, this is normally masked by NO-mediated dilation in the splenic vessels. The mesenteric venules were highly distensible (active, 184 +/- 15 to 320 +/- 30.9 microm; passive in Ca(2+)-free media, 209 +/- 31 to 344 +/- 27 microm; 4-8 mmHg) compared with the splenic vessels (active, 169 +/- 11 to 184 +/- 16 microm; passive, 187 +/- 12 to 207 +/- 17 microm). We conclude that, in response to an increase in perfusion pressure, mesenteric arterial diameter would decrease to limit the changes in flow and microvascular pressure. In addition, mesenteric venous capacitance would increase. By contrast, splenic arterial diameter would increase, while there would be little change in venous diameter. This would enhance the increase in intrasplenic microvascular pressure and increase fluid extravasation.  相似文献   

20.
Using a fine-tip oxygen microelectrodes the longitudinal gradients of oxygen tension (pO2) have been studied in small arterioles (with lumen diameter in control of 5 +/- 20 microm) and in capillaries of the rat brain cortex during stepwise decrease of the blood haemoglobin concentration [Hb] from control [Hb]--14.4 +/- 0.3 g/dl to 10.1 +/- 0.2 g/dl (step 1), 7.0 +/- 0.2 g/dl (step 2) and 3.7 +/- 0.2 g/dl (step 3). All data are presented as "mean +/- standard error". Oxygen tension was measured in arteriolar segments in two locations distanced deltaL = 265 +/- 34 microm, n = 30. Mean diameter of studied arterioles was 10.7 +/- 0.5 microm, n = 71. Length of studied capillary segments was about deltaL = 201 +/- 45 Mm, n = 18. The measured longitudinal pO2 gradient (deltapO2/deltaL) in arterioles amounted 0.03 +/- 0.01 mmHg/microm, n = 15 in control; 0.06 +/- 0.01 mmHg/microm, n = 16 (step 1); 0.07 +/- +/- 0.01 mmHg/microm, n = 14 (step 2); 0.1 +/- 0.01 mmHg/microm, n = 30 (step 3). In the capillaries, the deltapO2/deltaL amounted to: 0.07 +/- 0.01 mmHg/microm, n = 17 (control); 0.09 +/- 0.02 mmHg/microm, n = 16 (step 1); 0.08 +/- 0.01 mmHg/microm, n = 15 (step 2); 0.1 +/- 0.02 mmHg/microm, n = 18 (step 3). An over threefold decrease in the system blood oxygen capacity did not result in significant changes (p > 0.05) of the deltapO2/deltaL in capillaries that might result in relatively homogeneous oxygen flux from blood to tissue in acute anaemia. The longitudinal gradients of blood O2 saturation (deltaSO2/deltaL) in studied arterioles and capillaries were obtained using oxygen dissociation curve (ODC) of haemoglobin in the system blood. The gradients deltaSO2/deltaL in capillaries was shown to be threefold higher than the corresponding gradients in arterioles. The data show that anatomic capillaries are the main source of oxygen to brain tissue as in control and in hypoxic conditions. Sufficient oxygen delivery to brain tissue in acute anaemia is maintained by compensatory mechanisms of cardiovascular and respiratory systems. The data presented are the first measurements of the longitudinal pO, gradients in capillaries and minute cortical arterioles at acute anaemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号