首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Neither pinealectomy nor administration of melatoninvia silastic capsules had any effect on free-running circadian rhythms of locomotor activity in Japanese quail (Coturnix coturnix japonica). The quail, like the chicken, therefore differs from sparrows and starlings in which pinealectomy dramatically disrupts free-running rhythms. Nevertheless, it seems unlikely that there are fundamental differences in circadian organisation within the Class Aves. The effects of lesions within the supraoptic region (SOR) of the hypothalamus were similar to those which follow the ablation of the suprachiasmatic nuclei (SCN) in sparrows, rats and hamsters, causing the breakdown of free-running rhythms of locomotor activity, but not necessarily an arrhythmic state. The SOR and SCN appear then to have homologous functions in birds and mammals. Differences in circadian organisation, such as the degree of influence of the pineal gland and the particular photoreceptors used for entrainment, may therefore be modifications peripheral to the fundamental components of the circadian clock.Abbreviations POR preoptic area - SOR supraoptic region - SCN suprachiasmatic nuclei  相似文献   

2.
3.
The pineal gland and its hormone melatonin are crucial for the generation of circadian rhythms in several species of passerine birds. The sites and mechanisms by which they influence avian behavior are therefore of particular interest. Recent research employing several brain imaging techniques has indicated that the sites of melatonin action within the avian brain are wide-spread within the 4 major visual pathways. In this study, we have investigated whether the avian homologue of the mammalian suprachiasmatic nucleus, the visual suprachiasmatic nucleus (vSCN), and other visually sensitive structures express circadian rhythms of 2-deoxy[14C]glucose (2DG) uptake and 2[125I]iodomelatonin (IMEL) binding in house sparrows,Passer domesticus, under constant environmental conditions in the presence or absence of the pineal gland. The results indicate that 2DG uptake in the vSCN is oscillatory in sham-operated sparrows but damps to arrhythmicity in pinealectomized birds, suggesting this structure contains a damped circadian oscillator independent of pineal input. We have also asked whether IMEL binding is rhythmic under these conditions in the same brains. These results indicate IMEL binding is rhythmic in several structures in the circadian, tectofugal, thalamofugal visual pathways and that pinealectomy increases the level of IMEL binding 2–4 fold suggesting that IMEL binding is down regulated by endogenous melatonin. However, the circadian rhythm of this binding is only gradually abolished, suggesting it too is regulated by a non-pineal circadian clock. These data are discussed in the context of the behavioral neurobiology of avian circadian systems and the neuroendocrine loop model.  相似文献   

4.
In many seasonally breeding rodents, reproduction and metabolism are activated by long summer days (LD) and inhibited by short winter days (SD). After several months of SD, animals become refractory to this inhibitory photoperiod and spontaneously revert to LD-like physiology. The suprachiasmatic nuclei (SCN) house the primary circadian oscillator in mammals. Seasonal changes in photic input to this structure control many annual physiological rhythms via SCN-regulated pineal melatonin secretion, which provides an internal endocrine signal representing photoperiod. We compared LD- and SD-housed animals and show that the waveform of SCN expression for three circadian clock genes (Per1, Per2, and Cry2) is modified by photoperiod. In SD-refractory (SD-R) animals, SCN and melatonin rhythms remain locked to SD, reflecting ambient photoperiod, despite LD-like physiology. In peripheral oscillators, Per1 and Dbp rhythms are also modified by photoperiod but, in contrast to the SCN, revert to LD-like, high-amplitude rhythms in SD-R animals. Our data suggest that circadian oscillators in peripheral organs participate in photoperiodic time measurement in seasonal mammals; however, circadian oscillators operate differently in the SCN. The clear dissociation between SCN and peripheral oscillators in refractory animals implicates intermediate factor(s), not directly driven by the SCN or melatonin, in entrainment of peripheral clocks.  相似文献   

5.
6.
The pineal gland plays a cental role in the circadian organization of birds, although it is clearly only one component in a system with other components that have not yet been positively identified. The relative importance of the pineal and other components may vary from one group of birds to another. In the most thoroughly studied species, the house sparrow, pineal removal abolishes circadian rhythmicity; rhythmicity is restored by transplantation of a donor bird's pineal and the restored rhythm has the phase of the donor. This, and other evidence, argues convincingly that the pineal is a pacemaker in the sparrow circadian system. The pineal of the chicken has circadian rhythms in several biochemical parameters that result in the rhythmic synthesis of melatonin. The activity of one enzyme in this pathway is rhythmic for at least two cycles in organ culture. In view of this result it is interesting that pineal removal does not abolish circadian rhythmicity in chickens. The fact that lesions of the suprachiasmatic nuclei abolish circadian rhythms in sparrows, several mammalian species, and perhaps Japanese quail and reptiles, suggests that vertebrate circadian organization may be based on differentially weighted interactions between the pineal, the suprachiasmatic nuclei, and perhaps other brain regions.  相似文献   

7.
Mammalian circadian organization is believed to derive primarily from circadian oscillators within the hypothalamic suprachiasmatic nuclei (SCN). The SCN drives circadian rhythms of a wide array of functions (e.g., locomotion, body temperature, and several endocrine processes, including the circadian secretion of the pineal hormone melatonin). In contrast to the situation in several species of reptiles and birds, there is an extensive literature reporting little or no effect of pinealectomy on mammalian circadian rhythms. However, recent research has indicated that the SCN and circadian systems of several mammalian species are highly sensitive to exogenous melatonin, raising the possibility that endogenous pineal hormone may provide feedback in the control of overt circadian rhythms. To determine the role of the pineal gland in rat circadian rhythms, the effects of pinealectomy on locomotor rhythms in constant light (LL) and constant darkness (DD) were studied. The results indicated that the circadian rhythms of pinealectomized rats but not sham-operated controls dissociated into multiple ultradian components in LL and recoupled into circadian patterns only after 12-21 days in DD. The data suggest that pineal feedback may modulate sensitivity to light and/or provide coupling among multiple circadian oscillators within the SCN.  相似文献   

8.
The circadian locomotor activity rhythm of the Japanese newt has been thought to be driven by a putative brain oscillator(s) subordinate to the pineal clock. The existence of mutual coupling between the pineal clock and the brain oscillator(s) in vivo was examined. We covered the newt's skull with aluminum foil and simultaneously reversed the light-dark cycle, thereby allowing the pineal organ to be exposed to constant darkness while the rest of the animal was exposed to the reversed light-dark cycle. In control animals, whose heads were covered with transparent plastic, the rhythm of synaptic ribbon number in the pineal photoreceptor cells was entrained to the reversed light-dark cycle. Rhythms from newts whose heads were shielded, however, were similar to those observed in the unoperated newts kept under constant darkness. The locomotor activity rhythms of both head-covered animals and control animals were entrained to the reversed light-dark cycle. These data suggest that extrapineal photoreception can entrain the putative brain oscillator(s), but not the pineal clock. Thus, at least in an aspect of photic entrainment, there seems to be little or no mutual coupling between the pineal clock and the putative brain oscillator(s) in the circadian system of the Japanese newt.Abbreviations LD light-dark - DD constant darkness - SCN suprachiasmatic nucleus - SR synaptic ribbon  相似文献   

9.
Circadian rhythms in mammals are regulated by a system of endogenous circadian oscillators (clock cells) in the brain and in most peripheral organs and tissues. One group of clock cells in the hypothalamic SCN (suprachiasmatic nuclei) functions as a pacemaker for co-ordinating the timing of oscillators elsewhere in the brain and body. This master clock can be reset and entrained by daily LD (light-dark) cycles and thereby also serves to interface internal with external time, ensuring an appropriate alignment of behavioural and physiological rhythms with the solar day. Two features of the mammalian circadian system provide flexibility in circadian programming to exploit temporal regularities of social stimuli or food availability. One feature is the sensitivity of the SCN pacemaker to behavioural arousal stimulated during the usual sleep period, which can reset its phase and modulate its response to LD stimuli. Neural pathways from the brainstem and thalamus mediate these effects by releasing neurochemicals that inhibit retinal inputs to the SCN clock or that alter clock-gene expression in SCN clock cells. A second feature is the sensitivity of circadian oscillators outside of the SCN to stimuli associated with food intake, which enables animals to uncouple rhythms of behaviour and physiology from LD cycles and align these with predictable daily mealtimes. The location of oscillators necessary for food-entrained behavioural rhythms is not yet certain. Persistence of these rhythms in mice with clock-gene mutations that disable the SCN pacemaker suggests diversity in the molecular basis of light- and food-entrainable clocks.  相似文献   

10.
Summary While the avian pineal gland contains circadian oscillators and photoreceptors capable of producing circadian rhythms of the hormone melatonin, it is extensively innervated by post-ganglionic fibers of the superior cervical ganglia which release norepinephrine (NE) rhythmically. Norepinephrine turnover is higher during subjective day than during subjective night. In mammals, this rhythmic input, which is higher in subjective night than subjective day, derives from the hypothalamic suprachiasmatic nuclei (SCN) and is essential for rhythmic melatonin production. The present study was designed to determine whether one of two candidates for the avian homologue of the mammalian SCN is necessary for rhythmic NE turnover in the chick pineal gland. Either electrolytic lesions or sham lesions were delivered to the periventricular preoptic nuclei (PPN) or to the visual suprachiasmatic nucleus (vSCN). After recovery, the rates of decline in [NE] were determined following pretreatment with -methyl-p-tyrosine, a tyrosine hydroxylase inhibitor, at mid-subjective day or at mid-subjective night. Birds receiving sham surgeries in either PPN or vSCN and birds receiving lesions of the PPN exhibited rhythmicity in NE turnover. No rhythm of NE turnover could be determined in birds with ablated vSCN.Abbreviations AMPT -methyl-p-tyrosine - DS supraoptic decussation - EBZ ear bar zero (see Methods) - GLv ventral lateral geniculate body - NE norepinephrine - PPN periventricular preoptic nuclei - RH retinohypothalamic projection - SCN suprachiasmatic nuclei - vSCN visual suprachiasmatic nucleus  相似文献   

11.
12.
Conclusion The circadian rhythm of melatonin synthesis in the pineal glands of various species has been summarized. The night-time elevation of melatonin content is in most if not all cases regulated by the change of N-acetyltransferase activity. In mammals, the N-acetyltransferase rhythm is controlled by the central nervous system, presumably by suprachiasmatic nuclei in hypothalamus through the superior cervical ganglion. In birds, the circadian oscillator that regulates the N-acetyltransferase rhythm is located in the pineal glands. The avian pineal gland may play a biological clock function to control the circadian rhythms in physiological, endocrinological and biochemical processes via pineal hormone melatonin.  相似文献   

13.
14.
15.
The circadian clock in the suprachiasmatic nuclei (SCN) is composed of thousands of oscillator neurons, each of which is dependent on the cell‐autonomous action of a defined set of circadian clock genes. A major question is still how these individual oscillators are organized into a biological clock producing a coherent output that is able to time all the different daily changes in behavior and physiology. We investigated which anatomical connections and neurotransmitters are used by the biological clock to control the daily release pattern of a number of hormones. The picture that emerged shows projections contacting target neurons in the medial hypothalamus surrounding the SCN. The activity of these pre‐autonomic and neuro‐endocrine target neurons is controlled by differentially timed waves of, among others, vasopressin, GABA, and glutamate release from SCN terminals. Together our data indicate that, with regard to the timing of their main release period within the light‐dark (LD) cycle, at least 4 subpopulations of SCN neurons should be discerned. The different subgroups do not necessarily follow the phenotypic differences among SCN neurons. Thus, different subgroups can be found within neuron populations containing the same neurotransmitter. Remarkably, a similar distinction of 4 differentially timed subpopulations of SCN neurons was recently also discovered in experiments determining the temporal patterns of rhythmicity in individual SCN neurons by way of the electrophysiology or clock gene expression. Moreover, the specialization of the SCN may go as far as a single body structure; i.e., the SCN seems to contain neurons that specifically target the liver, pineal, and adrenal.  相似文献   

16.
The circadian clock in the suprachiasmatic nuclei (SCN) is composed of thousands of oscillator neurons, each of which is dependent on the cell-autonomous action of a defined set of circadian clock genes. A major question is still how these individual oscillators are organized into a biological clock producing a coherent output that is able to time all the different daily changes in behavior and physiology. We investigated which anatomical connections and neurotransmitters are used by the biological clock to control the daily release pattern of a number of hormones. The picture that emerged shows projections contacting target neurons in the medial hypothalamus surrounding the SCN. The activity of these pre-autonomic and neuro-endocrine target neurons is controlled by differentially timed waves of, among others, vasopressin, GABA, and glutamate release from SCN terminals. Together our data indicate that, with regard to the timing of their main release period within the light-dark (LD) cycle, at least 4 subpopulations of SCN neurons should be discerned. The different subgroups do not necessarily follow the phenotypic differences among SCN neurons. Thus, different subgroups can be found within neuron populations containing the same neurotransmitter. Remarkably, a similar distinction of 4 differentially timed subpopulations of SCN neurons was recently also discovered in experiments determining the temporal patterns of rhythmicity in individual SCN neurons by way of the electrophysiology or clock gene expression. Moreover, the specialization of the SCN may go as far as a single body structure; i.e., the SCN seems to contain neurons that specifically target the liver, pineal, and adrenal.  相似文献   

17.
Mammalian circadian rhythms are generated by a hypothalamic suprachiasmatic nuclei (SCN) clock. Light pulses synchronize body rhythms by inducing phase delays during the early night and phase advances during the late night. Phosphorylation events are known to be involved in circadian phase shifting, both for delays and advances. Pharmacological inhibition of the cGMP-dependent kinase (cGK) or Ca2+/calmodulin-dependent kinase (CaMK), or of neuronal nitric oxide synthase (nNOS) blocks the circadian responses to light in vivo. Light pulses administered during the subjective night, but not during the day, induce rapid phosphorylation of both p-CAMKII and p-nNOS (specifically phosphorylated by CaMKII). CaMKII inhibitors block light-induced nNOS activity and phosphorylation, suggesting a direct pathway between both enzymes. Furthermore, SCN cGMP exhibits diurnal and circadian rhythms with maximal values during the day or subjective day. This variation of cGMP levels appears to be related to temporal changes in phosphodiesterase (PDE) activity and not to guanylyl cyclase (GC) activity. Light pulses increase SCN cGMP levels at circadian time (CT) 18 (when light causes phase advances of rhythms) but not at CT 14 (the time for light-induced phase delays). cGK II is expressed in the hamster SCN and also exhibits circadian changes in its levels, peaking during the day. Light pulses increase cGK activity at CT 18 but not at CT 14. In addition, cGK and GC inhibition by KT-5823 and ODQ significantly attenuated light-induced phase shifts at CT 18. This inhibition did not change c-Fos expression SCN but affected the expression of the clock gene per in the SCN. These results suggest a signal transduction pathway responsible for light-induced phase advances of the circadian clock which could be summarized as follows: Glu-Ca2+-CaMKII-nNOS-GC-cGMP-cGK-->-->clock genes. This pathway offers a signaling window that allows peering into the circadian clock machinery in order to decipher its temporal cogs and wheels.  相似文献   

18.
The aim of the present study was to examine arylalkylamine N-acetyltransferase (AANAT) activity and melatonin content in the pineal gland and retina as well as the melatonin concentration in plasma of the turkey (Meleagris gallopavo), an avian species in which several physiological processes, including reproduction, are controlled by day length. In order to investigate whether the analyzed parameters display diurnal or circadian rhythmicity, we measured these variables in tissues isolated at regular time intervals from birds kept either under a regular light-dark (LD) cycle or under constant darkness (DD). The pineal gland and retina of the turkey rhythmically produced melatonin. In birds kept under a daily LD cycle, melatonin levels in the pineal gland and retina were high during the dark phase and low during the light phase. Rhythmic oscillations in melatonin, with high night-time concentrations, were also found in the plasma. The pineal and retinal melatonin rhythms mirrored oscillations in the activity of AANAT, the penultimate enzyme in the melatonin biosynthetic pathway. Rhythmic oscillations in AANAT activity in the turkey pineal gland and retina were circadian in nature, as they persisted under conditions of constant darkness (DD). Transferring birds from LD into DD, however, resulted in a potent decline in the amplitude of the AANAT rhythm from the first day of DD. On the sixth day of DD, pineal AANAT activity was still markedly higher during the subjective dark than during the subjective light phase; whereas, AANAT activity in the retina did not exhibit significant oscillations. The results indicate that melatonin rhythmicity in the turkey pineal gland and retina is regulated both by light and the endogenous circadian clock. The findings suggest that environmental light may be of primary importance in the maintenance of the high-amplitude melatonin rhythms in the turkey.  相似文献   

19.
Recent progress at the molecular level has revealed that nuclear receptors play an important role in the generation of mammalian circadian rhythms. To examine whether peroxisome proliferator-activated receptor alpha (PPARalpha) is involved in the regulation of circadian behavioral rhythms in mammals, we evaluated the locomotor activity of mice administered with the hypolipidemic PPARalpha ligand, bezafibrate. Circadian locomotor activity was phase-advanced about 3h in mice given bezafibrate under light-dark (LD) conditions. Transfer from LD to constant darkness did not change the onset of activity in these mice, suggesting that bezafibrate advanced the phase of the endogenous clock. Surprisingly, bezafibrate also advanced the phase in mice with lesions of the suprachiasmatic nucleus (SCN; the central clock in mammals). The circadian expression of clock genes such as period2, BMAL1, and Rev-erbalpha was also phase-advanced in various tissues (cortex, liver, and fat) without affecting the SCN. Bezafibrate also phase-advanced the activity phase that is delayed in model mice with delayed sleep phase syndrome (DSPS) due to a Clock gene mutation. Our results indicated that PPARalpha is involved in circadian clock control independently of the SCN and that PPARalpha could be a potent target of drugs to treat circadian rhythm sleep disorders including DSPS.  相似文献   

20.
Japanese quail exhibit a robust circadian rhythm in body temperature. This rhythm is readily entrainable by 24 h light-dark (LD) cycles and persists under constant conditions. Because both the pineal organ and the eyes have been implicated as major components of the circadian system of birds, the role of these organs in generating the rhythm of body temperature was investigated. Pinealectomy, when performed alone, had little effect on the body temperature rhythm of quail either under LD or under constant darkness (DD). Most birds subjected to optic nerve section alone remained rhythmic in DD although the robustness of the rhythm was decreased, and 25% became arrhythmic. Birds subjected to both pinealectomy and optic nerve section behaved similarly to birds subjected to optic nerve section alone. However, complete eye removal, when performed alone or in combination with pinealectomy, caused all birds to become arrhythmic in DD. The data support the hypothesis that the eyes are the loci of circadian pacemakers in quail that act, via both neural and hormonal outputs, to preserve the integrity of (self-sustaining or damped) circadian oscillators located elsewhere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号