首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Nash  J. 《Journal of fish biology》2003,63(S1):238-239
There is strong evidence that environmental exposure to endocrine disrupting chemicals (EDCs) is resulting in significant alterations to the reproductive system of many wildlife populations. Most of these studies measure chemically induced changes to the endocrine system or reproductive morphology and mostly provide simple markers of exposure. The heightened concern over the effects of EDCs is however primarily driven by the hypothesis that this disruption may have serious deleterious consequences on reproductive success. In extensive laboratory studies on breeding populations of zebrafish, I have shown that multigenerational exposure to environmentally relevant levels of endocrine disruptors cause very significant reductions in reproductive success. Lifetime exposure to 5 ng/l of ethynylestradiol, for example, caused complete reproductive failure. These reproductive failures were not caused by exposure proximate to the timing of spawning but by the disruption of development during earlier embryonic and larval sexual differentiation. Histology revealed that male gonads had not differentiated into functional testes. Significantly, these sterile males still initiated spawning in females and resulted in unfertilized eggs. This differential in the sensitivity of behaviour compared to gonadal disruption raises important issues in understanding the implications of endocrine disruption in wild populations. Moreover, the particular mode of reproduction behaviour that is used by a species fundamentally affects the population level impact of endocrine disruptors. This paper will discuss these results and how a greater understanding of the dynamics of group spawning may help in assessing the potential impact of endocrine disruption  相似文献   

2.
Studies in our laboratory have focused on endocrine, neuroendocrine, and behavioral components of reproduction in the Japanese quail. These studies considered various stages in the life cycle, including embryonic development, sexual maturation, adult reproductive function, and aging. A major focus of our research has been the role of neuroendocrine systems that appear to synchronize both endocrine and behavioral responses. These studies provide the basis for our more recent research on the impact of endocrine disrupting chemicals (EDCs) on reproductive function in the Japanese quail. These endocrine active chemicals include pesticides, herbicides, industrial products, and plant phytoestrogens. Many of these chemicals appear to mimic vertebrate steroids, often by interacting with steroid receptors. However, most EDCs have relatively weak biological activity compared to native steroid hormones. Therefore, it becomes important to understand the mode and mechanism of action of classes of these chemicals and sensitive stages in the life history of various species. Precocial birds, such as the Japanese quail, are likely to be sensitive to EDC effects during embryonic development, because sexual differentiation occurs during this period. Accordingly, adult quail may be less impacted by EDC exposure. Because there are a great many data available on normal development and reproductive function in this species, the Japanese quail provides an excellent model for examining the effects of EDCs. Thus, we have begun studies using a Japanese quail model system to study the effects of EDCs on reproductive endocrine and behavioral responses. In this review, we have two goals: first, to provide a summary of reproductive development and sexual differentiation in intact Japanese quail embryos, including ontogenetic patterns in steroid hormones in the embryonic and maturing quail. Second, we discuss some recent data from experiments in our laboratory in which EDCs have been tested in Japanese quail. The Japanese quail provides an excellent avian model for testing EDCs because this species has well-characterized reproductive endocrine and behavioral responses. Considerable research has been conducted in quail in which the effects of embryonic steroid exposure have been studied relative to reproductive behavior. Moreover, developmental processes have been studied extensively and include investigations of the reproductive axis, thyroid system, and stress and immune responses. We have conducted a number of studies, which have considered long-term neuroendocrine consequences as well as behavioral responses to steroids. Some of these studies have specifically tested the effects of embryonic steroid exposure on later reproductive function in a multigenerational context. A multigenerational exposure provides a basis for understanding potential exposure scenarios in the field. In addition, potential routes of exposure to EDCs for avian species are being considered, as well as differential effects due to stage of the life cycle at exposure to an EDC. The studies in our laboratory have used both diet and egg injection as modes of exposure for Japanese quail. In this way, birds were exposed to a specific dose of an EDC at a selected stage in development by injection. Alternatively, dietary exposure appears to be a primary route of exposure; therefore experimental exposure through the diet mimics potential field situations. Thus, experiments should consider a number of aspects of exposure when attempting to replicate field exposures to EDCs.  相似文献   

3.
Endocrine Disrupting Chemicals (EDCs) are molecules able to interfere with the vertebrate hormonal system in different ways, a major one being the modification of the activity of nuclear receptors (NRs). Several NRs are expressed in the vertebrate brain during embryonic development and these NRs are suspected to be responsible for the neurodevelopmental defects induced by exposure to EDCs in fishes or amphibians and to participate in several neurodevelopmental disorders observed in humans. Known EDCs exert toxicity not only on vertebrate forms of marine life but also on marine invertebrates. However, because hormonal systems of invertebrates are poorly understood, it is not clear whether the teratogenic effects of known EDCs are because of endocrine disruption. The most conserved actors of endocrine systems are the NRs which are present in all metazoan genomes but their functions in invertebrate organisms are still insufficiently characterized. EDCs like bisphenol A have recently been shown to affect neurodevelopment in marine invertebrate chordates called ascidians. Because such phenotypes can be mediated by NRs expressed in the ascidian embryo, we review all the information available about NRs expression during ascidian embryogenesis and discuss their possible involvement in the neurodevelopmental phenotypes induced by EDCs.  相似文献   

4.
Concerning temporal trends in human reproductive health has prompted concern about the role of environmentally mediated risk factors. The population is exposed to chemicals present in air, water, food and in a variety of consumer and personal care products, subsequently multiple chemicals are found human populations around the globe. Recent reviews find that endocrine disrupting chemicals (EDCs) can adversely affect reproductive and developmental health. However, there are still many knowledge gaps. This paper reviews some of the key scientific concepts relevant to integrating information from human epidemiologic and model organisms to understand the relationship between EDC exposure and adverse human health effects. Additionally, areas of new insights which influence the interpretation of the science are briefly reviewed, including: enhanced understanding of toxicity pathways; importance of timing of exposure; contribution of multiple chemical exposures; and low dose effects. Two cases are presented, thyroid disrupting chemicals and anti-androgens chemicals, which illustrate how our knowledge of the relationship between EDCs and adverse human health effects is strengthened and data gaps reduced when we integrate findings from animal and human studies.  相似文献   

5.
The production and release of synthetic chemicals into the environment has been a hallmark of the “Second Industrial Revolution” and the “Green Revolution.” Soon after the inception of these chemicals, anecdotal evidence began to emerge linking environmental contamination of rivers and lakes with a variety of developmental and reproductive abnormalities in wildlife species. The accumulation of evidence suggesting that these synthetic chemicals were detrimental to wildlife, and potentially humans, as a result of their hormonal activity, led to the proposal of the endocrine disruptor hypothesis at the 1991 Wingspread Conference. Since that time, experimental and epidemiological data have shown that exposure of the developing fetus or neonate to environmentally-relevant concentrations of certain synthetic chemicals causes morphological, biochemical, physiological and behavioral anomalies in both vertebrate and invertebrate species. The ubiquitous use, and subsequent human exposure, of one particular chemical, the estrogen mimic bisphenol A (BPA), is the subject of this present review. We have highlighted this chemical since it provides an arresting model of how chemical exposure impacts developmental processes involved in the morphogenesis of tissues and organs, including those of the male and female reproductive systems, the mammary glands and the brain.  相似文献   

6.
There is compelling evidence on a global scale for compromised growth and reproduction, altered development, and abnormal behaviour in feral fish that can be correlated or in some cases causally linked with exposure to endocrine disrupting chemicals (EDCs). Attributing cause and effect relationships for EDCs is a specific challenge for studies with feral fish as many factors including food availability, disease, competition and loss of habitat also affect reproduction and development. Even in cases where there are physiological responses of fish exposed to EDCs (e.g., changes in reproductive hormone titres, vitellogenin levels), the utility of these measures in extrapolating to whole animal reproductive or developmental outcomes is often limited. Although fish differ from other vertebrates in certain aspects of their endocrinology, there is little evidence that fish are more sensitive to the effects of EDCs. Therefore, to address why endocrine disruption seems so widespread in fish, it is necessary to consider aspects of fish physiology and their environment that may increase their exposure to EDCs. Dependence on aquatic respiration, strategies for iono-osmotic regulation, and maternal transfer of contaminants to eggs creates additional avenues by which fish are exposed to EDCs. This paper provides an overview of responses observed in feral fish populations that have been attributed to EDCs and illustrates many of the factors that need consideration in evaluating the risks posed by these chemicals.  相似文献   

7.
Environmental chemicals have significant impacts on biological systems. Chemical exposures during early stages of development can disrupt normal patterns of development and thus dramatically alter disease susceptibility later in life. Endocrine disrupting chemicals (EDCs) interfere with the body's endocrine system and produce adverse developmental, reproductive, neurological, cardiovascular, metabolic and immune effects in humans. A wide range of substances, both natural and man-made, are thought to cause endocrine disruption, including pharmaceuticals, dioxin and dioxin-like compounds, polychlorinated biphenyls, DDT and other pesticides, and components of plastics such as bisphenol A (BPA) and phthalates. EDCs are found in many everyday products--including plastic bottles, metal food cans, detergents, flame retardants, food additives, toys, cosmetics, and pesticides. EDCs interfere with the synthesis, secretion, transport, activity, or elimination of natural hormones. This interference can block or mimic hormone action, causing a wide range of effects. This review focuses on the mechanisms and modes of action by which EDCs alter hormone signaling. It also includes brief overviews of select disease endpoints associated with endocrine disruption.  相似文献   

8.
Polychlorinated biphenyls (PCBs) are a family of toxicants that persist in measurable quantities in human and wildlife tissues, despite their ban in production in 1977. Some PCB mixtures can act as endocrine disrupting chemicals (EDCs) by mimicking or antagonizing the actions of hormones in the brain and periphery. When exposure to hormonally active substances such as PCBs occurs during vulnerable developmental periods, particularly prenatally or in early postnatal life, they can disrupt sex-specific patterning of the brain, inducing permanent changes that can later be manifested as improper sexual behaviors. Here, we investigated the effects of prenatal exposure to the PCB mixture Aroclor (A) 1221 on adult female reproductive behaviors in a dose-response model in the Sprague-Dawley rat. Using a paced mating paradigm that permits the female to set the timing of mating and control contact with the male during copulation, we were able to uncover significant differences in female-typical sexual activities in A1221-exposed females. Specifically, A1221 causes significant effects on mating trial pacing, vocalizations, ambulation and the female's likelihood to mate. The results further demonstrate that the intermediate treatment group has the greatest number of disrupted endpoints, suggestive of non-linear dose responses to A1221. These data demonstrate that the behavioral phenotype in adulthood is disrupted by low, ecologically relevant exposures to PCBs, and the results have implications for reproductive success and health in wildlife and women.  相似文献   

9.
There is considerable concern that endocrine disrupting chemicals (EDCs) can affect wildlife and humans. While several studies have reported that acute exposure to EDCs can cause changes in reproductive traits, we are in the early stages of discerning whether such changes have significant deleterious fitness consequences. In this study, chronic exposure of threespined stickleback (Gasterosteus aculeatus) to an environmentally relevant level of an EDC used in the birth control pill and post-menopausal hormone replacement therapy produced changes in growth and behavior that were related to fitness. Exposure to 100 ng/l ethinyl estradiol accelerated growth rate and increased levels of behavior that makes individuals more susceptible to predation (activity and foraging under predation risk). Moreover, the costs of exposure to ethinyl estradiol took their ultimate toll via mortality later in life, and were particularly high for females and for one population. The ecological approach taken in this work revealed heretofore unexamined effects of EDCs and has direct implications for the way we evaluate the impact of EDCs in the environment.  相似文献   

10.
Endocrine-disrupting compounds (EDCs) have the capacity of altering the normal function of the endocrine system. EDCs have shown dramatic effects on the reproductive biology of aquatic wildlife and may affect human reproduction as well. Studies on EDCs in mammalian species have often investigated the effects of short-term, high doses on male and female reproductive physiology. However, it is difficult to predict from such studies the effects of EDC on populations that are exposed to very low doses throughout their life via contaminated food and water. We studied the effects of EDC on mammalian reproduction with an environmental-like protocol where the endpoint is the reproductive success of exposed pairs. We focused on a subclass of EDC, the xenoestrogens, which mimic the action of natural oestrogen hormones. Male and female rats were exposed to low doses of the pure oestrogen, ethynyloestradiol, during development, by oral administration to their mothers during pregnancy and lactation, and to them until puberty. We evaluated the effects of the exposure on development and reproductive physiology of individuals, and on fertility and fecundity of pairs in which both members had been exposed to the same treatment. We found that low doses caused major reproductive deficits in the experimental animals. Very low, environmentally relevant doses did not have evident effects on exposed animals; however, the fecundity of exposed pairs was substantially altered. Environmentally relevant doses of xenoestrogens which have no evident physiological effects can alter the reproductive success of exposed pairs in natural populations.  相似文献   

11.
Endocrine disruptors: present issues, future directions   总被引:12,自引:0,他引:12  
A variety of natural products and synthetic chemicals, known collectively as endocrine-disrupting compounds (EDCs), mimic or interfere with the mechanisms that govern vertebrate reproductive development and function. At present, research has focused on (i) the morphological and functional consequences of EDCs; (ii) identifying and determining the relative potencies of synthetic and steroidal compounds that have endocrine-disrupting effects; (iii) the mechanism of action of EDCs at the molecular level; and (iv) the recognition that in "real life," contamination usually reflects mixtures of EDCs. Future research must examine (i) the interactive nature of EDCs, particularly whether the threshold concept as developed in traditional toxicological research applies to these chemicals; (ii) when and how EDCs act at the physiological level, particularly how they may organize the neural substrates of reproductive physiology and behavior; (iii) the various effects these compounds have on different species, individuals, and even tissues; and (iv) how adaptations may evolve in natural populations with continued exposure to EDCs. Several predictions are offered that reflect these new perspectives. Specifically, (i) the threshold assumption will be found not to apply to EDCs because they mimic the actions of endogenous molecules (e.g., estrogen) critical to development; hence, the threshold is automatically exceeded with exposure. (ii) Behavior can compound and magnify the effects of EDCs over successive generations; that is, bioaccumulated EDCs inherited from the mother not only influence the morphological and physiological development of the offspring but also the offsprings' reproductive behavior as adults. This adult behavior, in turn, can have further consequences on the sexual development of their own young. (iii) The sensitivity of a species or an individual to a compound is related to species (individual)-typical concentrations of circulating gonadal steroid hormones. Related to this is the recent finding that alternate forms of the putative receptors are differentially distributed, thereby contributing to the different effects that have been observed. (iv) Except in extraordinary situations, populations often continue to exist in contaminated sites. One possible explanation for this observation that needs to be considered is that animals can rapidly adapt to the nature and level of contamination in their environment. It is unlikely that successive generations coincidentally become insensitive to gonadal steroid hormones fundamentally important as biological regulators of development and reproduction. Rather, adaptive alterations in the genes that encode steroid receptors may occur with chronic exposure to EDCs, allowing the sex hormone receptor to discriminate natural steroids from EDCs.  相似文献   

12.
Many studies have reported perturbations of mollusc reproduction following exposure to low concentrations (ng/L range) of endocrine disrupting chemicals (EDCs). However, the mechanisms of action of these molecules on molluscs are still poorly understood. Investigation of the modifications of protein expression in organisms exposed to chemicals using proteomic methods can provide a broader and more comprehensive understanding of adverse impacts of pollution on organisms than conventional biochemical biomarkers (e.g., heat-shock proteins, metallothioneins, GST, EROD). In this study we have investigated the impacts of four chemicals, which exhibit different endocrine disrupting properties in vertebrates, on the proteome of the hermaphroditic freshwater pulmonate gastropod Lymnaea stagnalis after 21 days of exposure. Testosterone, tributyltin, chlordecone and cyproterone acetate were chosen as tested compounds as they can induce adverse effects on the reproduction of this snail. The 2D-DIGE method was used to identify proteins whose expression was affected by these compounds. In addition to modifying the expression of proteins involved in the structure and function of the cytoskeleton, chemicals had impacts on the expression of proteins involved in the reproduction of L. stagnalis. Exposure to 19.2 µg/L of chlordecone increased the abundance of ovipostatin, a peptide transmitted during mating through seminal fluid, which reduces oviposition in this species. The expression of yolk ferritin, the vitellogenin equivalent in L. stagnalis, was reduced after exposure to 94.2 ng Sn/L of tributyltin. The identification of yolk ferritin and the modification of its expression in snails exposed to chemicals were refined using western blot analysis. Our results showed that the tested compounds influenced the abundance of yolk ferritin in the reproductive organs. Alteration in proteins involved in reproductive pathways (e.g., ovipostatin and yolk ferritin) could constitute relevant evidence of interaction of EDCs with reproductive pathways that are under the control of the endocrine system of L. stagnalis.  相似文献   

13.
14.
Various synthetic chemicals released to the environment can interfere with the endocrine system of vertebrates. Many of these endocrine disrupting compounds (EDCs) exhibit estrogenic activity and can interfere with sexual development and reproductive physiology. More recently, also chemicals with different modes of action (MOAs), such as antiestrogenic, androgenic and antiandrogenic EDCs, have been shown to be present in the environment. However, to date EDC-research primarily focuses on exposure to EDCs with just one MOA, while studies examining the effects of simultaneous exposure to EDCs with different MOAs are rare, although they would reflect more real, natural exposure situations. In the present study the combined effects of estrogenic and antiestrogenic EDCs were assessed by analyzing the calling behavior of short-term exposed male Xenopus laevis. The estrogenic 17α-ethinylestradiol (EE2), and the antiestrogenic EDCs tamoxifen (TAM) and fulvestrant (ICI) were used as model substances. As previously demonstrated, sole EE2 exposure (10−10 M) resulted in significant alterations of the male calling behavior, including altered temporal and spectral parameters of the advertisement calls. Sole TAM (10−7 M, 10−8 M, 10−10 M) or ICI (10−7 M) exposure, on the other hand, did not affect any of the measured parameters. If frogs were co-exposed to EE2 (10−10 M) and TAM (10−7 M) the effects of EE2 on some parameters were abolished, but co-exposure to EE2 and ICI (10−7 M) neutralized all estrogenic effects. Thus, although EDCs with antiestrogenic MOA might not exhibit any effects per se, they can alter the estrogenic effects of EE2. Our observations demonstrate that there is need to further investigate the combined effects of EDCs with various, not only opposing, MOAs as this would reflect realistic wildlife situations.  相似文献   

15.
Globally, amphibians are undergoing a precipitous decline. At the last estimate in 2004, 32% of the approximately 6000 species were threatened with extinction and 43% were experiencing significant declines. These declines have been linked with a wide range of environmental pressures from habitat loss to climate change, disease and pollution. This review evaluates the evidence that endocrine‐disrupting contaminants (EDCs) – pollutants that affect hormone systems – are impacting on wild amphibians and contributing to population declines. The review is limited to anurans (frogs and toads) as data for effects of EDCs on wild urodeles (salamanders, newts) or caecilians (limbless amphibians) are extremely limited. Evidence from laboratory studies has shown that a wide range of chemicals have the ability to alter hormone systems and affect reproductive development and function in anurans, but for the most part only at concentrations exceeding those normally found in natural environments. Exceptions can be found for exposures to the herbicide atrazine and polychlorinated biphenyls in leopard frogs (Rana pipiens) and perchlorate in African clawed frogs (Xenopus laevis). These contaminants induce feminising effects on the male gonads (including ‘intersex’ – oocytes within testes) at concentrations measured in some aquatic environments. The most extensive data for effects of an EDC in wild amphibian populations are for feminising effects of atrazine on male gonad development in regions across the USA. Even where strong evidence has been provided for feminising effects of EDCs, however, the possible impact of these effects on fertility and breeding outcome has not been established, making inference for effects on populations difficult. Laboratory studies have shown that various chemicals, including perchlorate, polychlorinated biphenyls and bromodiphenylethers, also act as endocrine disrupters through interfering with thyroid‐dependent processes that are fundamental for amphibian metamorphosis. Perchlorate has also been shown to induce these effects in wild anuran populations from perchlorate‐contaminated environments. Overall, the published data available suggest that some health effects observed in wild anuran populations, most notably intersex, likely have a chemical aetiology; however they derive only from very few anuran species and for a few pesticides at field sites in the USA. To understand better the impacts of EDCs on wild anuran populations, as well as other amphibian groups, assessment of fertility in exposed animals are required. Development of non‐destructive biomarkers that are indicative of specific EDC‐effect mechanisms are also needed to allow the study of vulnerable populations. This will help to distinguish the effects of EDCs from other environmental and/or genetic influences on development and reproduction.  相似文献   

16.
Chemical pollution is a pervasive and insidious agent of environmental change. One class of chemical pollutant threatening ecosystems globally is the endocrine disrupting chemicals (EDCs). The capacity of EDCs to disrupt development and reproduction is well established, but their effects on behaviour have received far less attention. Here, we investigate the impact of a widespread androgenic EDC on reproductive behaviour in the guppy, Poecilia reticulata. We found that short-term exposure of male guppies to an environmentally relevant concentration of 17β-trenbolone—a common environmental pollutant associated with livestock production—influenced the amount of male courtship and forced copulatory behaviour (sneaking) performed toward females, as well as the receptivity of females toward exposed males. Exposure to 17β-trenbolone was also associated with greater male mass. However, no effect of female exposure to 17β-trenbolone was detected on female reproductive behaviour, indicating sex-specific vulnerability at this dosage. Our study is the first to show altered male reproductive behaviour following exposure to an environmentally realistic concentration of 17β-trenbolone, demonstrating the possibility of widespread disruption of mating systems of aquatic organisms by common agricultural contaminants.  相似文献   

17.
The topic of endocrine disruption and the broad range of physiologicaleffects caused by endocrine disrupting chemicals (EDCs) canonly be meaningfully framed within an ecological and evolutionarycontext. Environmental pollutants and EDCs operate by disruptingthe "chemical communication" that coordinates signaling withinan organism. Here we discuss how EDCs are also able to disruptthe chemical communication between plants and soil bacterianecessary for initiating nitrogen-fixing symbiosis. We alsoexamine, through examples of pollutant-related impacts on awide range of invertebrates, the need for identifying emergingtargets of EDCs. We suggest broadening the defined field ofendocrine disruption to encompass the effects of synthetic chemicalsthat interfere with signaling and communication, not only withinan organism, but also between organisms and linking ecosystems.The ecological consequences of failing to recognize novel targetsof chemical pollutants and EDCs may be a net loss of biologicaldiversity and a further imbalance of the global nitrogen cycle.  相似文献   

18.
Kryptolebias marmoratus is the only known internally self-fertilizing vertebrate. It shows high susceptibility to many chemical carcinogens and has been proposed as a potential cancer model species alternative to mammals. Since use of this fish species is expected to rise in cancer research, regulation of oncogenes from K. marmoratus needs proper understanding. We cloned and deduced full-length sequence of cDNA of N-ras oncogene from K. marmoratus. Study of expression profile of N-ras by using quantitative real-time RT-PCR revealed that brain had the highest level of expression compared to other tissues. Some embryonic stages showed more N-ras expression than juveniles and adults. Exposure to two environmental endocrine disrupting chemicals (EDCs), bisphenol A (BPA) and 4-nonylphenyl (NP) caused up-regulation of N-ras in gonad, intestine and liver of hermaphrodite K. marmoratus. It is suggested that K. marmoratus may be a suitable model species for oncogene expression studies. The observed EDC-induced expression of N-ras supports the assumption that EDC exposure may predispose the host to the risk of environmental carcinogenesis.  相似文献   

19.
There is a widespread exposure of general population, including pregnant women and developing fetuses, to the endocrine disrupting chemicals (EDCs). These chemicals have been reported to be present in urine, blood serum, breast milk, and amniotic fluid. Endocrine disruptions induced by environmental toxicants have placed a heavy burden on society, since environmental exposures during critical periods of development can permanently reprogram normal physiological responses, thereby increasing susceptibility to disease later in life—a process known as developmental reprogramming. During development, organogenesis and tissue differentiation occur through a continuous series of tightly‐regulated and precisely‐timed molecular, biochemical, and cellular events. Humans may encounter EDCs daily and during all stages of life, from conception and fetal development through adulthood and senescence. Nevertheless, prenatal and early postnatal windows are the most critical for proper development, due to rapid changes in system growth. Although there are still gaps in our knowledge, currently available data support the urgent need for health and environmental policies aimed at protecting the public and, in particular, the developing fetus and women of reproductive age. Birth Defects Research (Part C) 108:224–242, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

20.
Endocrine disruptors are characterized by their influence on animal endocrine systems resulting in reproductive, developmental, neurological, and immune dysfunction. The purpose of this overview is to provide the reader with a sense of the activities within the U.S. Environmental Protection Agency (USEPA), in particular NHEERL, that address the many facets of research on endocrine disrupting chemicals (EDCs) and to highlight the approach being taken at the different organizational levels within the USEPA, including screening, testing and evaluating endocrine disrupting chemicals. As a part of this endeavor, the USEPA continues to evaluate the current research activities in order to better understand and refine the process of risk characterization of EDCs. Thus, the participants in this session were asked to review their research within the framework of a better identification of EDC effects, better characterization of those compounds that have endocrine disrupting activity and how to incorporate this information into the risk assessment paradigm. Specifically, the goals of the ensuing papers were to compare individual vs. population indicators of endocrine disrupting effects, examine comparable and multiple mechanisms of toxicity, and describe the use of effects as indicators to identify toxicants and their sources. Mammalian and fish reproductive endpoints served as models to emphasize commonalities between human and wildlife risks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号