首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relation between blood pressure level and extracellular fluid volume and its distribution was studied in rats subjected to the following hypertensive stimuli--1K1C and 2K1C renal artery constriction, subtotal nephrectomy-salt and DOCA-salt. In all experimental groups the blood pressure increase was accompanied by increased extracellular fluid volume which was not always distributed proportionally between intravascular (PV) and interstitial (IFV) compartments. The blood pressure rise was further potentiated by plasma volume expansion so that the increased PV/IFV ratio was associated with a more pronounced hypertensive response (1K1C vs 2K1C, DOCA-salt vs subtotal nephrectomy-salt). However, adequate expansion of interstitial fluid is a necessary prerequisite for the hypertensive response. In DOCA-salt treated DI Brattleboro rats (lacking antidiuretic vasopressin action) plasma volume expansion per se was not accompanied by severe DOCA-salt hypertension. It is concluded that the expansion of both compartments of extracellular space, i.e. plasma volume and interstitial fluid volume, was necessary for a full development of severe hypertension. The expansion of only one of these compartments was accompanied by a mild blood pressure increase or blood pressure did not change significantly.  相似文献   

2.
Tumor blood-flow is inhomogeneous because of heterogeneity in tumor vasculature, vessel-wall leakiness, and compliance. Experimental studies have shown that normalization of tumor vasculature by antiangiogenic therapy can improve tumor microcirculation and enhance the delivery of therapeutic agents to tumors. To elucidate the quantitative relationship between the vessel-wall compliance and permeability and the blood-flow rate in the microvessels of the tumor tissue, the tumor tissue with the normalized vasculature, and the normal tissue, we developed a transport model to simultaneously predict the interstitial fluid pressure (IFP), interstitial fluid velocity (IFV) and the blood-flow rate in a counter-current microvessel loop, which occurs from anastomosis in tumor-induced angiogenesis during tumor growth. Our model predicts that although the vessel-wall leakiness greatly affects the IFP and IFV, it has a negligible effect on the intravascular driving force (pressure gradient) for both rigid and compliant vessels, and thus a negligible effect on the blood-flow rate if the vessel wall is rigid. In contrast, the wall compliance contributes moderately to the IFP and IFV, but significantly to the vessel radius and to the blood-flow rate. However, the combined effects of vessel leakiness and compliance can increase IFP, which leads to a partial collapse in the blood vessels and an increase in the flow resistance. Furthermore, our model predictions speculate a new approach for enhancing drug delivery to tumor by modulating the vessel-wall compliance in addition to reducing the vessel-wall leakiness and normalizing the vessel density.  相似文献   

3.
The composition and characteristics of the bone marrow extracellular fluid supposedly modify the transport of cytokines, drugs, and other signaling molecules involved in the regulation of bone marrow function. Direct access to the bone marrow extracellular fluid surrounding hematopoietic cells is complicated by the virtually noncompliant surrounding bone tissue. We examined the applicability of a centrifugation method to obtain representative samples of bone marrow extracellular fluid from rats and humans. Perforated rat bones or human bone marrow biopsies were wrapped in nylon mesh baskets before being centrifuged at 180-239 g. In the rats, we found an only minor contribution of fluid from other sources than the bone marrow extracellular fluid as indicated by the average ratio of centrifugate-to-plasma activity of the extracellular tracer fluid 51Cr-labeled EDTA of 0.85. The colloid osmotic pressure in the centrifugate was consistently lower than that in the corresponding plasma in both species. In rats and humans, high-performance liquid chromatography showed a protein elution pattern from the bone marrow fluid similar to that of plasma, except for a peak eluting in the approximately 40-kDa molecular mass range. Western blotting of the cytokines erythropoietin and granulocyte colony-stimulating factor revealed generally higher amounts in the centrifugate than in the plasma. This difference was augmented during increased hematopoietic activity induced by inflammation or bleeding in rats. We conclude that the centrifugation method provides representative samples of bone marrow extracellular fluid and that extracellular signaling responses to altered hematopoiesis are more clearly reflected locally in the bone marrow interstitium than in plasma.  相似文献   

4.
The effects of ethane dimethyl sulfonate (EDS) on total testicular blood flow, microcirculation, and the testicular interstitial fluid volume (IFV) in rats were studied. In agreement with previous studies, treatment of control rats with human chorionic gonadotropin (hCG) induced an increase in IFV and total testicular blood flow as measured with radioactive microspheres. These effects of hCG were completely abolished in rats pretreated with EDS; in EDS-treated rats not receiving any hCG, there were decreases in IFV when compared with untreated control rats. Furthermore, the pulsatile pattern of testicular microcirculation registered with laser-Doppler flowmetry was abolished after EDS treatment, and this effect was not influenced by hCG treatment. The hCG-induced increase in IFV is associated with an increased accumulation of polymorphonuclear leukocytes locally in the testis, but this accumulation of leukocytes was not observed in rats pretreated with EDS. It was concluded from the present study that hCG-induced changes in total testicular blood flow and testicular microcirculation require functionally intact Leydig cells.  相似文献   

5.
Iron has been shown to be the limiting factor for erythropoiesis. The anemia and polycythemia effect on iron supplied to the bone marrow has been studied in a group of rabbits, by modifying the hematocrit without altering of the blood volume. The cardiac output and the percentage of blood flow to the skeleton was measured using 57Co and 113Sn radiolabelled microspheres, before and after the exchange of blood by plasma or red blood cells concentrates. In addition, ferrokinetic measurements were performed with 55Fe and 59Fe. The production of an acute anemia induced an increase in the cardiac output from 156 +/- 35 to 239 +/- 89 ml/min/kg and a decrease in the percentage of the total blood flow to the skeleton from 7.58 +/- 2.51 to 4.63 +/- 1.8. The production of an acute polycythemia induced a decrease in the cardiac output (97 +/- 28 ml/min/kg) and an increase in the percentage of the total blood flow to the bone marrow (11.69 +/- 4.03). However, in both cases, the absolute amount of blood flow and iron flow to the bone marrow were similar to the controls. These studies demonstrate that anemia or polycythemia per se do not determine the iron supply to the bone marrow.  相似文献   

6.
We determined the effect of breathing 9% CO2/10% O2/81% N2 (asphyxia) on cardiac output distribution (microspheres) in 4-5 day old unanesthetized, chronically instrumented piglets prior to and following intravenous indomethacin administration. Thirty minutes of asphyxia caused PaCO2 to increase from 35 +/- 2 mmHg to 66 +/- 2 mmHg, PaO2 to decrease from 73 +/- 4 mmHg to 41 +/- 1 mmHg, and pH to decrease from 7.52 +/- 0.05 to 7.21 +/- 0.07. Arterial pressure was increased slightly but cardiac output was not changed significantly. Asphyxia caused blood flow to the brain, diaphragm, liver, heart, and adrenal glands to increase while causing decreases in blood flow to the skin, small intestine, and colon. Blood flows to the stomach and kidneys tended to decrease, but the changes were not significant. Treatment with indomethacin during asphyxia did not alter arterial pressure or cardiac output but decreased cerebral blood flow to the preasphyxiated level and decreased adrenal blood flow about 20%. Indomethacin did not alter blood flow to any other systemic organ. At this time the piglet was allowed to breathe air for 2.5 hr undisturbed. Two and a half hours after indomethacin administration, blood flows to all organs returned to the preasphyxia control levels with the exception of cerebral blood flow which was reduced (93 +/- 13 to 65 +/- 7 ml/100 g X min). Three hours after indomethacin administration, the cerebral hyperemia caused by asphyxia was less (134 +/- 17 ml/100 g X min) than prior to indomethacin (221 +/- 15 ml/100 g X min). Indomethacin did not alter the asphyxia-induced changes to any other systemic organ.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
We have investigated the recycling of apoE in livers of apoE(-)/- mice transplanted with wild type bone marrow (apoE(+/+) --> apoE(-)/-), a model in which circulating apoE is derived exclusively from macrophages. Nascent Golgi lipoproteins were recovered from livers of apoE(+/+) --> apoE(-)/- mice 8 weeks after transplantation. ApoE was identified with nascent d < 1.006 and with d 1.006-1.210 g/ml lipoproteins at a level approximately 6% that of nascent lipoproteins from C57BL/6 mice. Hepatocytes from apoE(+/+) --> apoE(-)/- mice were isolated and cultured in media free of exogenous apoE. ApoE was found in the media primarily on the d < 1.006 g/ml fraction, indicating a resecretion of internalized apoprotein. Secretion of apoE from C57BL/6 hepatocytes was consistent with constitutive production, whereas the majority of apoE secreted from apoE(+/+) --> apoE(-)/- hepatocytes was recovered in the last 24 h of culture. This suggests that release may be triggered by accumulation of an acceptor, such as very low density lipoproteins, in the media. In agreement with the in vivo data, total recovery of apoE from apoE(+/+) --> apoE(-)/- hepatocytes was approximately 6% that of the apoE recovered from C57BL/6 hepatocytes. Since plasma apoE levels in the transplanted mice are approximately 10% of control levels, the findings indicate that up to 60% of the internalized apoE may be reutilized under physiologic conditions. These studies provide definitive evidence for the sparing of apoE and its routing through the secretory pathway and demonstrate that internalized apoE can be resecreted in a quantitatively significant fashion.  相似文献   

8.
Fibroblast-mediated collagen gel contraction depends on collagen-binding beta1 integrins. Perturbation of these integrins reveals an alternative contraction process that is integrin alphaVbeta3-dependent and platelet-derived growth factor (PDGF) BB-stimulated. Connective tissue cells actively control interstitial fluid pressure (IFP), and inflammation-induced lowering of IFP provides a driving force for edema formation. PDGF-BB normalizes a lowered IFP by an alphaVbeta3-dependent process. A potential modulation of IFP by extracellular matrix-binding bacterial proteins has previously not been addressed. The fibronectin (FN)-binding protein FNE is specifically secreted by the highly virulent Streptococcus equi subspecies equi. FNE bound FN and native collagen type I with K(d) values of approximately 20 and approximately 50 nm determined by solid-phase binding assays. Rotary shadowing revealed a single FNE binding site located at on average 122 nm from the C terminus of procollagen type I. FNE induced alphaVbeta3-mediated contraction by C2C12 cells in a concentration-dependent manner having a maximal effect at approximately 100 nm. This activity of FNE required cellular FN, and FNE acted synergistically to added plasma FN or PDGF-BB. FNE enhanced binding of soluble FN to immobilized collagen, and conversely the binding of collagen to immobilized FN. Marked bell-shaped concentration dependences for these interactions suggest that FNE forms a bridge between FN and collagen. Finally, FNE normalized dermal IFP lowered by anaphylaxis. Our data suggest that secreted FNE normalized lowering of IFP by stimulating connective tissue cell contraction.  相似文献   

9.
There is clinical and experimental evidence that lack of thyroid hormones may affect the composition and structure of the interstitium. This can influence the relationship between volume and pressure during changes in hydration. Hypothyrosis was induced in rats by thyroidectomy 8 wk before the experiments. Overhydration was induced by infusion of acetated Ringer, 5, 10, and 20% of the body weight, while fluid was withdrawn by peritoneal dialysis with hypertonic glucose. Interstitial fluid pressure (P(i)) in euvolemia (euvolemic control situation) and experimental situation was measured with micropipettes connected to a servocontrolled counterpressure system. The corresponding interstitial fluid volume (V(i)) was found as the difference between extracellular fluid volume measured as the distribution volume of (51)Cr-labeled EDTA and plasma volume measured using (125)I-labeled human serum albumin. In euvolemia, V(i) was similar or lower in the skin and higher in skeletal muscle of hypothyroid than in euthyroid control rats, whereas the corresponding P(i) was higher in all tissues. During overhydration, P(i) rose to the same absolute level in both types of rats, whereas during peritoneal dialysis there was a linear relationship between volume and pressure in all tissues and types of rats. Interstitial compliance (C(i)), calculated as the inverse value of the slope of the curve relating changes in volume and pressure in dehydration, did not differ significantly in the hindlimb skin of hypothyroid and euthyroid rats. However, in skeletal muscle, C(i) was 1.3 and 2.0 ml. 100 g(-1). mmHg(-1) in hypothyroid and euthyroid rats (P < 0.01), with corresponding numbers for the back skin of 2.7 and 5.0 ml. 100 g(-1). mmHg(-1) (P < 0.01). These experiments suggest that lack of thyroid hormones in rats changes the interstitial matrix, again leading to reduced C(i) and reduced ability to mobilize fluid from the interstitium.  相似文献   

10.
In frogs with an average body mass 56 g, the minute volume of the heart is equal to 4.5 ml/min X 100 g, which is approximately an order lower than in mammals with the same body mass. Pulmonary fraction constitutes 52% of the minute volume of the heart. The main bulk of systemic fraction of the minute volume of the heart (78%) passes to locomotor system and skin, whereas 19% of this volume are adressed to vegetative organs. This pattern of distribution significantly differs from that in mammals with a similar body mass, in which the vegetative and locomotor fractions are approximately equal. Differentiation in muscular blood supply was noted--there is a threefold difference in the volume of blood flow between gastrocnemius and submandibular muscles.  相似文献   

11.
We designed the present study to see whether, during acute moderate isocapnic hypoxemia, changes in cerebral vascular resistance (CVR) and brain extracellular fluid (ECF) [H+] can or cannot be dissociated from each other. In seven anesthetized and paralyzed dogs we measured brain ECF pH with surface electrodes (n = 4) or double-barreled microelectrodes (n = 3) with tip diameters of less than 30 micron inserted 5 mm below the surface. Cerebral blood flow (CBF) was measured by radioactive microspheres during normoxemia and moderate hypoxemia, whereas brain ECF pH was measured continuously. In six of the seven dogs brain pH did not change during moderate hypoxemia of 4-20 min duration. In these six animals the mean arterial O2 partial pressure decreased from 84.8 +/- 12.9 (SD) to 46.7 +/- 10.2 Torr during hypoxic gas breathing, resulting in a significant drop in CVR from 3.88 +/- 1.88 to 3.27 +/- 1.97 Torr X ml-1 X min X 100 g and a rise in CBF from 31.7 +/- 12.7 to 47.8 +/- 31.5 ml X min-1 X 100 g-1. The mean brain ECF [H+] was 57.4 +/- 8.2 nmol/l (pH = 7.24) during normoxemia and did not change significantly during hypoxic gas breathing [56.6 +/- 7.7 nmol/l (pH = 7.25)]. Furthermore, arterial and sagittal venous blood and cisternal cerebrospinal fluid (CSF) pH did not change significantly during hypoxic gas breathing. We conclude that during acute moderate hypoxemia reduction in CVR can occur independently from increases in brain ECF, cisternal CSF, and arterial and sagittal venous blood [H+] and PCO2.  相似文献   

12.
The serum amyloid protein (apo-SAA) is a unique high density lipoprotein apoprotein exhibiting dramatic increases in plasma concentration following host injury. The events involved in the secretion of apo-SAA and assembly of apo-SAA-rich lipoprotein particles were studied in primary, serum-free culture of adult BALB/c mouse hepatocytes harvested 3 h following administration of the potent apo-SAA inducer, bacterial endotoxin (50 micrograms of intraperitoneally administered Salmonella typhosa lipopolysaccharide). An approximately 3.5-fold increase in the initial rate of apo-SAA secretion was observed over that of hepatocytes isolated from control mice, whereas the rate of apo-A-I secretion was unchanged by endotoxin administration. Sodium dodecyl sulfate-gel electrophoresis and autoradiography of [35S]methionine-labeled cell products indicated the synthesis of both major mouse apo-SAA isotypes by hepatocytes. Essentially all of the secreted apo-SAA chromatographed in Sephadex G-150 with an elution volume corresponding to a molecular weight of approximately 12,000. Approximately 90% of the secreted apo-SAA was recovered in fractions (d greater than 1.21 g/ml) following ultracentrifugal fractionation. In media supplemented with human lipoproteins (100 micrograms/ml), approximately 50% of the secreted apo-SAA was recovered in the high density lipoprotein fraction. These results suggest that mouse apo-SAA is secreted in monomeric form and becomes associated with lipoproteins in the intravascular compartment.  相似文献   

13.
Animal experiments have shown that the coronary circulation is pressure distensible, i.e., myocardial blood volume (MBV) increases with perfusion pressure. In humans, however, corresponding measurements are lacking so far. We sought to quantify parameters reflecting coronary distensibility such as MBV and coronary resistance (CR) during and after coronary angioplasty. Thirty patients with stable coronary artery disease underwent simultaneous coronary perfusion pressure assessment and myocardial contrast echocardiography (MCE) of 37 coronary arteries and their territories during and after angioplasty. MCE yielded MBV and myocardial blood flow (MBF; in ml · min(-1) · g(-1)). Complete data sets were obtained in 32 coronary arteries and their territories from 26 patients. During angioplasty, perfusion pressure, i.e., coronary occlusive pressure, and MBV varied between 9 and 57 mmHg (26.9 ± 11.9 mmHg) and between 1.2 and 14.5 ml/100 g (6.7 ± 3.7 ml/100 g), respectively. After successful angioplasty, perfusion pressure and MBV increased significantly (P < 0.001 for both) and varied between 64 and 118 mmHg (93.5 ± 12.8 mmHg) and between 3.7 and 17.3 ml/100 g (9.8 ± 3.4 ml/100 g), respectively. Mean MBF increased from 31 ± 20 ml · min(-1) · g(-1) during coronary occlusion, reflecting collateral flow, to 121 ± 33 ml · min(-1) · g(-1) (P < 0.01), whereas mean CR, i.e., the ratio of perfusion pressure and MBF, decreased by 20% (P < 0.001). In conclusion, the human coronary circulation is pressure distensible. MCE allows for the quantification of CR and MBV in humans.  相似文献   

14.
Seven Standardbred horses were exercised on a treadmill at speeds (approximately 12 m/s) producing maximal heart rate, hypoxemia, and a mean pulmonary arterial pressure of approximately 75 mmHg. Extravascular lung water was measured by using transients in temperature and electrical impedance of the blood caused by a bolus injection of cold saline solution. Lung water was approximately 3 ml/kg body wt when standing but did not increase significantly with exertion. We conclude that any increase in fluid extravasation from the pulmonary hypertension accumulates in the lung at a level that is less than that detectable by this method. At maximal exertion, the volume of blood measured between the jugular vein and the carotid artery increased by approximately 8 ml/kg, and the actively circulating component of the systemic blood volume increased by approximately 17 ml/kg with respect to corresponding values obtained when walking before exertion. These volume increases, reflecting recruitment and dilatation of capillaries, increase the area for respiratory gas exchange and offset the reduced transit times that would otherwise be imposed by the approximately eightfold increase in cardiac output at maximal exertion.  相似文献   

15.
The assembly of very low density lipoproteins (VLDL) by hepatocytes is believed to occur via a two-step process. The first step is the formation of a dense phospholipid and protein-rich particle that is believed to be converted to VLDL by the addition of bulk triglyceride in a second step. Previous studies in our laboratory led us to hypothesize a third assembly step that occurs in route to or in the Golgi apparatus. To investigate this hypothesis, nascent lipoproteins were recovered from Golgi apparatus-rich fractions isolated from mouse liver. The Golgi fractions were enriched 125-fold in galactosyltransferase and contained lipoprotein particles averaging approximately 35 nm in diameter. These lipoproteins were separated by ultracentrifugation into two fractions: d < 1.006 g/ml and d1.006;-1.210 g/ml. The d < 1.006 g/ml fraction contained apolipoprotein B-100 (apoB-100), apoB-48, and apoE, while the d1.006;-1.210 g/ml fraction contained these three apoproteins as well as apoA-I and apoA-IV. Both fractions contained a 21-kDa protein that was isolated and sequenced and identified as major urinary protein. Approximately 50% of the apoB was recovered with the denser fraction. To determine if these small, dense lipoproteins were secreted without further addition of lipid, mice were injected with Triton WR1339 and [(3)H]leucine, and the secretion of apoB-100 and apoB-48 into serum VLDL (d < 1.006 g/ml) and d1.006;-1.210 g/ml fractions was monitored over a 2-h period. More than 80% of the newly synthesized apoB-48 and nearly 100% of the apoB-100 were secreted with VLDL. These studies provide the first characterization of nascent lipoproteins recovered from the Golgi apparatus of mouse liver. We conclude that these nascent hepatic Golgi lipoproteins represent a heterogeneous population of particles including VLDL as well as a population of small, dense lipoproteins. The finding of the latter particles, coupled with the demonstration that the primary secretory product of mouse liver is VLDL, suggests that lipid may be added to nascent lipoproteins within the Golgi apparatus.  相似文献   

16.
We have recently evaluated the in vivo role of the liver in lipoprotein homeostasis in the preruminant calf (Bauchart, D., D. Durand, P. M. Laplaud, P. Forgez, S. Goulinet, and M. J. Chapman, 1989. J. Lipid Res. 30: 1499-1514). We now present the partial characterization of lipoprotein particles in postprandial intestinal lymph at peak lipid absorption (i.e., 10 h after a meal) in the preruminant calf fed a curdled milk replacer. Intestinal lymph from four male preruminant calves was analyzed for its content of lipids and fractionated by sequential and density gradient ultracentrifugation into chylomicrons (Sf greater than 400), very low density lipoproteins (VLDL) (Sf less than 400; d less than 1.006 g/ml), and a series of lipoprotein subfractions with d greater than 1.006 g/ml. Postprandial lymph contained predominantly triglycerides (1099 +/- 611 mg/100 ml), with lesser amounts of phospholipids (197 +/- 107 mg/100 ml) and cholesterol (52 +/- 30 mg/100 ml). The most abundant particles were triglyceride-rich chylomicrons and VLDL which accounted for approximately 76% and approximately 19%, respectively, of total d less than 1.21 g/ml lipoproteins. As judged by negative stain electron microscopy, chylomicron particle diameters ranged from 650 to 2400 A, while VLDL were smaller and distributed over a distinct size range (340-860 A). These two lipoprotein classes each presented protein components with Mr comparable to those of human apoB-48, apoA-I, and C apoproteins, together with an Mr 52,000 protein resembling human beta 2-glycoprotein-I. In addition, VLDL exhibited a polypeptide with Mr approximately 61,000. Lymph lipoproteins with d greater than 1.006 g/ml consisted primarily (approximately 81% of total) of particles distributed over the 1.053-1.119 g/ml density range. Electrophoretic analysis of the latter lipoprotein fraction showed it to be heterogeneous, including particles with the migration characteristics of low and of high density lipoproteins, respectively. Subfractions in the d 1.053-1.076 g/ml range were dominated by particles with Stokes diameters typical of high density lipoproteins (HDL), but also contained three different populations of low density lipoprotein-like particles. The high molecular weight apolipoproteins in these same cholesteryl ester-rich (greater than 30% of lipoprotein mass) subfractions comprised components with Mr resembling those of human apoB-100 and apoB-48, respectively, and with the latter protein predominating to a varying degree. A counterpart to human apoA-I was the major protein component over the entire density range from d 1.053 to 1.119 g/ml.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Studies have been conducted to evaluate intra- and extravascular volume changes and blood flow in the exercising human forearm by means of (1) combining plethysmographic and scintigraphic methods, (2) an indirect procedure using the relationship of blood flow and volume change from reactive hyperemia. A static hand grip exercise of 60% maximal voluntary contraction and 30 s duration increased the forearm volume by 3.03 +/- 0.65 ml/100 ml soft tissue, involving both the intra- and extravascular volume components. There is a quantitative and qualitative difference in the time course of change in these components, showing an extravascular part of about 50% for the 2-min post-exercise value and a substantially slower rate of recovery. Experiments involving muscle work at intervals (50% maximal voluntary contraction, 30 s duration, 2-min intervals) caused a further increase in extravascular volume. Furthermore, the study suggests that the flow-volume relationship from reactive hyperemia may be considered to be available for the determination of local blood volume changes in exercise hyperemia. The results are discussed in connection with the influence of anaerobic muscle metabolism and conclusions referring to this are drawn about the use of plethysmographic methods.  相似文献   

18.
Iron stores, ferrokinetics and total bone marrow cellularity were determined in 35 hemodialysis patients. Some of the patients received hemotransfusions (group I), the others (group II) androgens and iron supplements. In group I the blood losses amounted to 23.9 +/- 2.4 ml/d, in group II to 7.7 +/- 0.5 ml/d. Serum iron and ferritin levels exceeded the normal values. Iron stores were 0.31 +/- 0.07 mg/100 mg (group I) and 0.25 +/- 0.05 mg/100 mg /100 mg (group II), whereas the normal values are 0.18 +/- 0.02 mg/100 mg desferrioxamine. Total bone marrow cellularity in patients of group I amounted to 8.3 +/- 2.3 . 10(9) cells/kg, and in group II to 27.4 +/- 3.2 . 10(9) cells/kg, while the normal values are 14.1 +/- 1.4 . 10(9) cells/kg. Hemotransfusions suppress considerably ferrokinetic indexes in dialysis patients. In massive blood losses hemotransfusions are the therapy of choice for the anemia, but they suppress blood formation. to correct iatrogenic blood losses, iron and androgens may be administered thus stimulating blood formation.  相似文献   

19.
The objectives of this study were to assess the time course of enlargement and gene expression of a collateral vessel that enlarges following occlusion of the femoral artery and to relate these responses to the increases in collateral-dependent blood flow to the calf muscles in vivo. We employed exercise training to stimulate collateral vessel development. Rats were exercise trained or kept sedentary for various times of up to 25 days postbilateral occlusion (n=approximately 9/time point). Collateral blood flow to the calf muscles, determined with microspheres, increased modestly over the first few days to approximately 40 ml.min(-1).100 g(-1) in sedentary animals; the increase continued over time to approximately 80 ml.min(-1).100 g(-1) in the trained animals. Diameters of the isolated collateral vessels increased progressively over time, whereas an increased vessel compliance observed at low pressures was similar across time. These responses were greater in the trained animals. The time course of upregulation of vascular endothelial growth factor and placental growth factor, and particularly endothelial nitric oxide synthase and fms-like tyrosine kinase 1, mRNAs in the isolated collateral vessel implicates these factors as integral to the arteriogenic process. Collateral vessel enlargement and increased compliance at low pressures contribute to the enlarged circuit available for collateral blood flow. However, modulation of the functioning collateral vessel diameter, by smooth muscle tone, must occur to account for the observed increases in collateral blood flow measured in vivo.  相似文献   

20.
Stroma properties affect carcinoma physiology and direct malignant cell development. Here we present data showing that α(V)β(3) expressed by stromal cells is involved in the control of interstitial fluid pressure (IFP), extracellular volume (ECV) and collagen scaffold architecture in experimental murine carcinoma. IFP was elevated and ECV lowered in syngeneic CT26 colon and LM3 mammary carcinomas grown in integrin β(3)-deficient compared to wild-type BALB/c mice. Integrin β(3)-deficiency had no effect on carcinoma growth rate or on vascular morphology and function. Analyses by electron microscopy of carcinomas from integrin β(3)-deficient mice revealed a coarser and denser collagen network compared to carcinomas in wild-type littermates. Collagen fibers were built from heterogeneous and thicker collagen fibrils in carcinomas from integrin β(3)-deficient mice. The fibrotic extracellular matrix (ECM) did not correlate with increased macrophage infiltration in integrin β(3)-deficient mice bearing CT26 tumors, indicating that the fibrotic phenotype was not mediated by increased inflammation. In conclusion, we report that integrin β(3)-deficiency in tumor stroma led to an elevated IFP and lowered ECV that correlated with a more fibrotic ECM, underlining the role of the collagen network for carcinoma physiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号