首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uterine artery endothelial production of the potent vasodilator, prostacyclin, is greater in pregnant versus nonpregnant sheep and in whole uterine artery from intact versus ovariectomized ewes. We hypothesized that uterine artery cyclooxygenase (COX)-1 and/or COX-2 expression would be elevated during pregnancy (high estrogen and progesterone) and the follicular phase of the ovarian cycle (high estrogen/low progesterone) as compared to that in luteal phase (low estrogen/high progesterone) or in ovariectomized (low estrogen and progesterone) ewes. Uterine and systemic (omental) arteries were obtained from nonpregnant luteal-phase (LUT; n = 10), follicular-phase (FOL; n = 11), and ovariectomized (OVEX; n = 10) sheep, as well as from pregnant sheep (110-130 days gestation; term = 145 +/- 3 days; n = 12). Endothelial and vascular smooth muscle (VSM) COX-1 protein levels and uterine artery endothelial cell COX-1 mRNA levels were compared. Using immunohistochemistry and Western analysis, the primary location of COX-1 protein was the endothelium; that is, we observed 2.2-fold higher COX-1 protein levels in intact versus endothelium-denuded uterine artery and a 6.1-fold higher expression in the endothelium versus VSM (P < 0.05). COX-2 protein expression was not detectable in either uterine artery endothelium or VSM. COX-1 protein levels were observed to be higher (1.5-fold those of LUT) in uterine artery endothelium from FOL versus either OVEX or LUT nonpregnant ewes (P < 0.05), with substantially higher COX-1 levels seen in pregnancy (4.8-fold those of LUT). Increases in uterine artery endothelial COX-1 protein were highly correlated to increases in the level of COX-1 mRNA (r(2) = 0.66; P < 0.01) for all treatment groups (n = 6-8 per group), suggesting that increased COX-1 protein levels are regulated at the level of increased COX-1 mRNA. No change in COX-1 expression was observed between groups in a systemic (omental) artery. In conclusion, COX-1 expression is specifically up-regulated in the uterine artery endothelium during high uterine blood flow states such as the follicular phase and, in particular, pregnancy.  相似文献   

2.
The present study tested the hypothesis that nitric oxide (NO) contributes to impaired baroreflex gain of pregnancy and that this action is enhanced by angiotensin II. To test these hypotheses, we quantified baroreflex control of heart rate in nonpregnant and pregnant conscious rabbits before and after: 1) blockade of NO synthase (NOS) with Nomega-nitro-L-arginine (20 mg/kg iv); 2) blockade of the angiotensin II AT1 receptor with L-158,809 (5 microg x kg(-1) x min(-1) iv); 3) infusion of angiotensin II (1 ng x kg(-1) x min(-1) nonpregnant, 1.6-4 ng x kg(-1) x min(-1) pregnant iv); 4) combined blockade of angiotensin II AT(1) receptors and NOS; and 5) combined infusion of angiotensin II and blockade of NOS. To determine the potential role of brain neuronal NOS (nNOS), mRNA and protein levels were measured in the paraventricular nucleus, nucleus of the solitary tract, caudal ventrolateral medulla, and rostral ventrolateral medulla in pregnant and nonpregnant rabbits. The decrease in baroreflex gain observed in pregnant rabbits (from 23.3 +/- 3.6 to 7.1 +/- 0.9 beats x min(-1) x mmHg(-1), P < 0.05) was not reversed by NOS blockade (to 8.3 +/- 2.5 beats x min(-1) x mmHg(-1)), angiotensin II blockade (to 5.0 +/- 1.1 beats x min(-1) x mmHg(-1)), or combined blockade (to 12.3 +/- 4.8 beats x min(-1) x mmHg(-1)). Angiotensin II infusion with (to 5.7 +/- 1.0 beats x min(-1) x mmHg(-1)) or without (to 8.4 +/- 2.4 beats x min(-1) x mmHg(-1)) NOS blockade also failed to improve baroreflex gain in pregnant or nonpregnant rabbits. In addition, nNOS mRNA and protein levels in cardiovascular brain regions were not different between nonpregnant and pregnant rabbits. Therefore, we conclude that NO, either alone or via an interaction with angiotensin II, is not responsible for decrease in baroreflex gain during pregnancy.  相似文献   

3.
Uterine blood flow (UBF) and uterine artery endothelial nitric oxide synthase (eNOS) expression are greatest during the follicular vs. luteal phase. 17 beta-Estradiol (E(2)beta) increases UBF and elevates eNOS in ovine uterine but not systemic arteries; progesterone (P(4)) effects on E(2)beta changes of eNOS remain unclear. Nonpregnant ovariectomized sheep received either vehicle (n = 10), P(4) (0.9 g Controlled Internal Drug Release vaginal implants; n = 13), E(2)beta (5 microg/kg bolus + 6 microg x kg(-1) x day(-1); n = 10), or P(4) + E(2)beta (n = 12). Reproductive (uterine/mammary) and nonreproductive (omental/renal) artery endothelial proteins were procured on day 10, and eNOS was measured by Western analysis. P(4) and E(2)beta alone and in combination increased (P < 0.05) eNOS expression in uterine artery endothelium (vehicle = 100 +/- 16%, P(4) = 251 +/- 59%, E(2)beta = 566 +/- 147%, P(4) + E(2)beta = 772 +/- 211% of vehicle). Neither omental, renal, nor mammary artery eNOS was altered, demonstrating the local nature of steroid-induced maintenance of uterine arterial eNOS. In the myometrial microvasculature, eNOS was increased slightly (P = 0.06) with E(2)beta and significantly with P(4) + E(2)beta. Systemic NO(x) was increased with P(4) and P(4) + E(2)beta, but not E(2)beta, suggesting differential regulation of eNOS expression and activity, since P(4) increased eNOS in uterine artery endothelium while E(2)beta and the combination further increased eNOS protein.  相似文献   

4.
Statin drugs can upregulate endothelial nitric oxide (NO) synthase (eNOS) in isolated endothelial cells independent of lipid-lowering effects. We investigated the effect of short-term simvastatin administration on coronary vascular eNOS and NO production in conscious dogs and canine tissues. Mongrel dogs were instrumented under general anesthesia to measure coronary blood flow (CBF). Simvastatin (20 mg. kg(-1). day(-1)) was administered orally for 2 wk; afterward, resting CBF was found to be higher compared with control (P < 0.05) and veratrine- (activator of reflex cholinergic NO-dependent coronary vasodilation) and ACh-mediated coronary vasodilation were enhanced (P < 0.05). Response to endothelium-independent vasodilators, adenosine and nitroglycerin, was not potentiated. After simvastatin administration, plasma nitrate and nitrite (NO(x)) levels increased from 5.22 +/- 1.2 to 7. 79 +/- 1.3 microM (P < 0.05); baseline and agonist-stimulated NO production in isolated coronary microvessels were augmented (P < 0.05); resting in vivo myocardial oxygen consumption (MVO(2)) decreased from 6.8 +/- 0.6 to 5.9 +/- 0.4 ml/min (P < 0.05); NO-dependent regulation of MVO(2) in response to NO agonists was augmented in isolated myocardial segments (P < 0.05); and eNOS protein increased 29% and eNOS mRNA decreased 50% in aortas and coronary vascular endothelium. Short-term administration of simvastatin in dogs increases coronary endothelial NO production to enhance NO-dependent coronary vasodilation and NO-mediated regulation of MVO(2).  相似文献   

5.
During pregnancy, maternal plasma cortisol concentrations approximately double. Given that cortisol plays an important role in the regulation of vascular reactivity, the present study investigated the potential role of cortisol in potentiation of uterine artery (UA) contractility and tested the hypothesis that pregnancy downregulated the cortisol-mediated potentiation. In vitro cortisol treatment (3, 10, or 30 ng/ml for 24 h) produced a dose-dependent increase in norepinephrine (NE)-induced contractions in both nonpregnant and pregnant (138-143 days gestation) sheep UA. However, this cortisol-mediated response was significantly attenuated by approximately 50% in pregnant UA. The 11 beta-hydroxysteroid dehydrogenase (11-beta HSD) inhibitor carbenoxolone did not change the effect of cortisol in nonpregnant UA but abolished its effect in pregnant UA by increasing the NE pD(2) in control tissues from 6.20 +/- 0.05 to 6.59 +/- 0.11. The apparent dissociation constant value of NE alpha(1)-adrenoceptors was not changed by cortisol in pregnant UA but was decreased in nonpregnant UA. There was no difference in glucocorticoid receptor density between nonpregnant and pregnant UA. Cortisol significantly decreased endothelial nitric oxide (NO) synthase protein levels and NO release in both nonpregnant and pregnant UA, but the effect of cortisol was attenuated in pregnant UA by approximately 50%. Carbenoxolone alone had no effects on NO release in nonpregnant UA but was decreased in pregnant UA. These results suggest that cortisol potentiates NE-mediated contractions by decreasing NO release and increasing NE-binding affinity to alpha(1)-adrenoceptors in nonpregnant UA. Pregnancy attenuates UA sensitivity to cortisol, which may be mediated by increasing type-2 11-beta HSD activity in UA.  相似文献   

6.
Placental blood flow, endothelial nitric oxide (NO) production, and endothelial cell nitric oxide synthase (eNOS) expression increase during pregnancy. Shear stress, the frictional force exerted on endothelial cells by blood flow, stimulates vessel dilation, endothelial NO production, and eNOS expression. In order to study the effects of pulsatile flow/shear stress, we adapted Cellco CELLMAX artificial capillary modules to study ovine fetoplacental artery endothelial (OFPAE) cells for NO production and eNOS expression. OFPAE cells were grown in the artificial capillary modules at 3 dynes/cm2. Confluent cells were then exposed to 10, 15, or 25 dynes/cm2 for up to 24 h. NO production by OFPAE cells exposed to pulsatile shear stress was inhibited to nondetectable levels by the NOS inhibitor l-NMMA and reversed by excess NOS substrate l-arginine. NO production and expression of eNOS mRNA and protein by OFPAE cells were elevated by shear stress in a graded fashion (P < 0.05). The rise in NO production with 25 dynes/cm2 shear stress (8-fold) was greater (P < 0.05) than that observed for eNOS protein (3.6-fold) or eNOS mRNA (1.5-fold). The acute shear stress-induced rise in NO production by OFPAE cells was via eNOS activation, whereas the prolonged NO rise occurred by elevations in both eNOS expression and enzyme activation. Thus, elevations of placental blood flow and physiologic shear stress may be partly responsible for the increases in placental arterial endothelial eNOS expression and NO production during pregnancy.  相似文献   

7.
During the third trimester, fetoplacental and uterine blood flows increase dramatically to meet the high metabolic demands of the growing fetus. We hypothesized that the expression of endothelial nitric oxide synthase (eNOS) in fetoplacental artery endothelium and the concentrations of nitric oxide (NO) and cyclic GMP (cGMP) in amniotic fluid (AF) are increased during the third trimester of ovine gestation. Placental arteries and AF were collected from ewes at 110, 120, 130, and 142 days of gestation (n = 24; mean +/- SEM term = 145 +/- 3 days). Expression of eNOS protein was measured in intact and denuded placental arteries and in endothelium-derived protein by Western analysis and confirmed by immunohistochemistry. Concentrations of NO (nitrates plus nitrites) and cGMP were determined in AF. Placental artery eNOS protein expression was localized to the endothelium, where it was markedly greater than in vascular smooth muscle. Placental artery endothelium-derived eNOS expression and AF cGMP concentrations were similar at 110 and 120 days of gestation; however, both peaked at 130 days at levels two- to threefold above baseline (P < 0.05) before returning to baseline at 142 days of pregnancy. The AF NO (nitrates plus nitrites) levels, however, increased progressively between 120 days of gestation and term (P < 0.05). We concluded that endothelium-derived placental artery eNOS levels, AF NO (nitrates plus nitrites), and AF cGMP were markedly increased during the third trimester, thus supporting a role for NO-mediated elevations in cGMP in the control of fetoplacental blood flow.  相似文献   

8.
The role of estrogen in the maternal systemic cardiovascular adaptations during pregnancy is still controversial. Female Sprague-Dawley rats were implanted at day 14 of pregnancy with either a 50-mg tamoxifen pellet (estrogen receptor blocker, n = 10) or placebo pellet (n = 10). Virgin female rats were a nonpregnant control (n = 7). At days 20-22 of pregnancy, resistance-sized mesenteric arteries were mounted onto a dual-chamber arteriograph system. Pregnancy significantly blunted the pressor response to phenylephrine [measurement of the effective concentration that yielded 50% maximum response (EC(50)) values were 1.5 +/- 0.22 vs. 0.69 +/- 0.16 microM (P < 0.05)] and enhanced vasodilation to ACh [EC(50) = 1.13 +/- 2.53 vs. 3.13 +/- 6.04 nM (P < 0.05)] compared with nonpregnant rats. However, tamoxifen treatment during pregnancy reversed these effects. Inhibition of nitric oxide (NO) synthase with N(G)-monomethyl-L-arginine (250 microM) shifted only the responses of the placebo-treated pregnant group to both phenylephrine and ACh. Arterial distensibility in the placebo-treated pregnant group was also significantly increased (P < 0.05) compared with nonpregnant and tamoxifen-treated pregnant animals. In summary, endogenous estrogen during pregnancy increases NO-dependent modulation of vessel tone and arterial distensibility.  相似文献   

9.
Congestive heart failure (CHF) after myocardial infarction is associated with diminished endothelial nitric oxide (NO)-mediated vasorelaxation. The 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors have been shown to modulate vascular tone independent of the effects on lipid lowering. We hypothesized that simvastatin restores NO-dependent vasorelaxation with CHF. We found that incubation of the normal rat aorta with 0.1 mM simvastatin for 24 h enhanced ACh-mediated vasorelaxation (P < 0.05). Moreover, simvastatin increased (P < 0.05) endothelial NO synthase (eNOS) protein content by >200% (82.0 +/- 14.0 vs. 21.6 +/- 7.9% II/microg). In cultured endothelial cells, simvastatin (10 and 20 microM) increased eNOS levels by 114.7 +/- 39.9 and 212.0 +/- 75.0% II/microg protein, respectively (both P < 0.05; n = 8). In the rat coronary artery ligation model, oral gavage with 20 mg. kg(-1). day(-1) simvastatin for 3 wk decreased (P < 0.05) mean arterial pressure (121 +/- 20 vs. 96.5 +/- 10.8 mmHg) and left ventricular change in pressure with time (4,500 +/- 700 vs. 4,091 +/- 1,064 mmHg/s, n = 6). Simvastatin reduced (P < 0.05) basal vasoconstriction and improved ACh-mediated vasorelaxation in CHF arterial rings. Inhibition of NO generation by N(G)-nitro-L-arginine methyl ester (100 microM) abolished the ACh-induced vasorelaxation in all rats. In conclusion, chronic treatment of CHF with simvastatin restores endothelial NO-dependent dysfunction and upregulates eNOS protein content in arterial tissue.  相似文献   

10.
The present study tests the hypothesis that age-dependent increases in endothelial vasodilator capacity are due to maturational increases in endothelial nitric oxide (NO) synthesis and release. Intact 4-cm carotid artery segments taken from term fetal lambs and nonpregnant adult sheep were perfused by using a closed system that enabled independent control of flow and inflow pressure and facilitated complete recovery of all NO released. Fluid shear stress induced a graded release of NO (in nmol NO x min x cm(-2) of luminal surface area) that was significantly greater in adult (890 +/- 140) than in fetal (300 +/- 40) carotid arteries at corresponding values of shear stress (5.9 +/- 0.3 dyn/cm2) but was independent of inflow pressure in both age groups. These age-related differences in NO release were not attributable to corresponding differences in endothelial NO synthase (eNOS) abundance, as eNOS protein levels (in ng of eNOS/cm2 of luminal surface area) were similar in adult (14 +/- 2) and fetal (12 +/- 1) arteries. Adult (80 +/- 15) and fetal (89 +/- 32) levels of eNOS mRNA (in 10(6) copies/cm2 of luminal surface area) were also similar. However, when NO release was normalized relative to the associated mass of eNOS protein to estimate eNOS-specific activity in situ, this value (in nmol NO x microg of eNOS(-1) x min(-1)) was significantly greater in adult (177 +/- 44) than in fetal (97 +/- 36) arteries when the endothelium was maximally activated by A-23187. Similarly, the slope of the relation between fluid shear stress and estimated eNOS-specific activity (in nmol NO x microg of eNOS(-1) x min(-1) per dyn/cm2) was also significantly greater in adult (6.8 +/- 0.1) than in fetal (2.9 +/- 0.1) arteries, which suggests that eNOS may be more sensitive to or more efficiently coupled to activating stimuli in adult compared with fetal arteries. We conclude that maturational increases in endothelial vasodilator capacity are attributable to age-dependent increases in NO release secondary to elevated eNOS-specific activity and involve more efficient coupling between endothelial activation and enhancement of eNOS activity in adult compared with fetal arteries.  相似文献   

11.
Pregnancy is a time of greatly increased uterine blood flow to meet the needs of the growing fetus. Increased uterine blood flow is also observed in the follicular phase of the ovarian cycle. Simultaneous fura-2 and 4,5-diaminofluoresceine (DAF-2) imaging reveals that cells of the uterine artery endothelium (UA Endo) from follicular phase ewes produce marginally more nitric oxide (NO) in response to ATP than those from luteal phase. However, this is paralleled by changes in NO in response to ionomycin, suggesting this is solely due to higher levels of endothelial nitric oxide synthase (eNOS) protein in the follicular phase. In contrast, UA Endo from pregnant ewes (P-UA Endo) produces substantially more NO (4.62-fold initial maximum rate, 2.56-fold overall NO production) in response to ATP, beyond that attributed to eNOS levels alone (2.07-fold initial maximum rate, 1.93-fold overall with ionomycin). The ATP-stimulated intracellular free calcium concentration ([Ca(2+)](i)) response in individual cells of P-UA Endo comprises an initial peak followed by transient [Ca(2+)](i) bursts that are limited in the luteal phase, not altered in the follicular phase, but are sustained in pregnancy and observed in more cells. Thus pregnancy adaptation of UA Endo NO output occurs beyond the level of eNOS expression and likely through associated [Ca(2+)](i) cell signaling changes. Preeclampsia is a condition of a lack of UA Endo adaptation and poor NO production/vasodilation and is associated with elevated placental VEGF(165). While treatment of luteal NP-UA Endo and P-UA Endo with VEGF(165) acutely stimulates a very modest [Ca(2+)](i) and NO response, subsequent stimulation of the same vessel with ATP results in a blunted [Ca(2+)](i) and an associated NO response, with P-UA Endo reverting to the response of luteal NP-UA Endo. This demonstrates the importance of adaptation of cell signaling over eNOS expression in pregnancy adaptation of uterine endothelial function and further implicates VEGF in the pathophysiology of preeclampsia.  相似文献   

12.
R Xu  J R Sowers  D F Skafar  J L Ram 《Life sciences》2001,69(23):2811-2817
The interaction between hydrocortisone and estradiol on the regulation of endothelial nitric oxide synthase (eNOS) expression was investigated in human umbilical vein endothelial cells (HUVECs). Following incubation in medium containing dextran-coated-charcoal-stripped serum (DCC-stripped medium) for 4 days, incubation of HUVECs with 0.1 nM estradiol for 24 hr in the absence of hydrocortisone increased levels of eNOS mRNA measured by ribonuclease protection assay above control (0 nM estradiol). 2 microM hydrocortisone applied for 24 hr preceding and during estradiol application inhibited the estradiol-elicited increase in eNOS mRNA levels, reducing mRNA levels from 134% +/- 14% of control to 85% +/- 5% of control. Significant (ANOVA, p<0.01) reductions of estradiol-mediated increases of mRNA levels occurred over a range of hydrocortisone concentrations (10 nM, p<0.05; 2 microM, p<0.05; n=3-12). In the presence of 2 microM hydrocortisone, 10 nM estradiol significantly reduced eNOS mRNA levels to 59% +/- 3% of control. The ability of hydrocortisone to block or reverse the estradiol-mediated increase in eNOS mRNA levels may provide a link between elevated hydrocortisone levels and decreased NO production, potentially contributing to the development of hypertension and cardiovascular disease in vivo and antagonizing cardioprotective effects of estrogens.  相似文献   

13.
During normal pregnancy, uterine blood flow (UBF) is increased in association with elevations of endothelial nitric oxide (NO) production and endothelial nitric oxide synthase (eNOS) expression. Shear stress increases endothelial-derived NO production to reduce vasomotor tone. We hypothesized that decreasing in vivo UBF, and thus shear stress, will decrease NO and/or eNOS levels. In this experiment, one of the main uterine arteries of chronically instrumented late pregnant sheep (125 +/- 1 days' gestation [mean +/- SEM]; n = 15) was occluded for 24 h. Cardiovascular parameters (systemic and uterine arterial pressure, heart rate [HR], and ipsilateral and contralateral UBF) and NO(2)/NO(3) (NO(x)) levels were evaluated. Although UBF measured using Transonic flow probes was reduced unilaterally 41.5% +/- 2.1%, uterine perfusion pressure only fell 12.2% +/- 4.5%. Systemic arterial blood pressure and HR were unaltered. Using radioactive microspheres, ipsilateral UBF was reduced approximately 28% during occlusion. The redistribution of UBF to other reproductive tissues suggests that collateral circulation develops in response to occlusion. Systemic arterial and uterine venous NO(x) levels were reduced 22.1% +/- 6.7% and 22.6% +/- 7.6%, respectively, during occlusion. Treatment with microspheres produced an unexpected initial ( approximately 2.5 h) increase in systemic arterial and uterine venous NO(x) levels by 116% +/- 30% and 97% +/- 49%, respectively. Despite a decline in NO(x) levels after 6 h, no significant differences versus preocclusion NO(x) levels were detected by 24 h of occlusion in this experimental group. In contrast, NO(x), UBF, and uterine perfusion pressure levels unexpectedly failed to return to baseline values following release of occlusion. No differences in uterine artery eNOS expression were demonstrated by Western analysis from occlusion. Thus, our data suggest that shear stress may mediate in vivo vasomotor tone via production of NO(x).  相似文献   

14.
Vasodilation that occurs during normal pregnancy is associated with enhanced relaxation and decreased contractile response to agonists, which are in part due to increased stimulated and basal nitric oxide (NO). In preeclampsia and/or pregnancies carried at high altitude (HA), this normal vascular adjustment is reversed or diminished. We previously reported that HA exposure did not inhibit the pregnancy-associated decrease in contractile response to agonist or basal NO in guinea pig uterine arteries (UA). We therefore sought to determine whether altitude interfered with effects of pregnancy on endothelium-dependent relaxation through a reduction in stimulated NO. We examined the relaxation response to ACh in UA and bradykinin in thoracic arteries (TA) and effects of NO inhibition with 200 microM N(G)-nitro-L-arginine (L-NNA) in arterial rings isolated from nonpregnant and pregnant guinea pigs exposed throughout gestation to low altitude (LA, 1,600 m, n = 26) or HA (3,962 m, n = 22). In pregnant UA, relaxation to ACh was enhanced (P < 0.05) at both altitudes and NO inhibition diminished, but did not reverse, ACh relaxation. The effect of L-NNA on the relaxation response to ACh was less in HA than in LA animals (P = 0.0021). In nonpregnant UA, relaxation to ACh was similar in LA and HA animals. L-NNA reversed the relaxation response to ACh at HA but not at LA. In TA, relaxation to bradykinin was unaltered by pregnancy or altitude and was completely reversed by NO inhibition. These data suggest that effects of NO inhibition are diminished in UA during pregnancy at HA. Additional studies are needed to confirm whether these effects are mediated through inhibition of stimulated NO. HA exposure did not inhibit relaxation to ACh, perhaps because of stimulation of other vasodilators.  相似文献   

15.
16.
Molecular signaling pathways that regulate peripartum cardiac remodeling are not well understood. Our objectives were to study the role of mitogen-activated protein kinases (MAPKs), protein kinase B (Akt), and endothelial nitric oxide synthase (eNOS) in mediating pregnancy and postpartum (PP) cardiac remodeling. Methods: Adult female Sprague-Dawley rats were divided into nonpregnant (n = 5), 18 days pregnant (n = 5), 0 days PP (n = 7), and 14 days PP (n = 8). Rats underwent echocardiography under sedation to measure left ventricle (LV) size and function, and Western blots were performed to measure myocardial protein expression of MAPKs (p38, JNK, ERK), Akt, and eNOS. Results: 1) During pregnancy, there was an increase in LV mass (0.62 +/- 0.03 to 1.1 +/- 0.04 g, P < 0.001), mass/volume ratio (0.7 +/- 0.02 to 1.28 +/- 0.02 g/ml, P < 0.0001), and ejection fraction (EF) (64 +/- 3 to 74 +/- 2%). Whereas LV mass and mass/volume ratio returned to prepregnancy values in the PP period, EF remained below normal range (53 +/- 3%, P < 0.05). 2) The expression of anti-hypertrophic factors (p38, JNK, Akt) decreased during pregnancy and normalized PP, except JNK, which increased to higher than normal levels. eNOS also increased to higher than baseline levels PP. 3) Activation of p38 and JNK was directly correlated with lower LV mass/volume ratio (r = -0.81 and -0.71, respectively; P < 0.05). Conclusion: Pregnancy is associated with physiological cardiac hypertrophy. There is rapid reversal of hypertrophy in the PP period while recovery of cardiac function is delayed, possibly related to PP upregulation of JNK. A dysregulation of MAPK signaling may be an important determinant of PP cardiac dysfunction.  相似文献   

17.
Nitric oxide (NO) bioavailability is important in vascular health, but unsuitable as a clinical measure due to biological oxidation. Total nitrogen oxides (NO(x)) are stable but background nitrate levels make it difficult to detect disease-based variation. We investigated the clinical discriminatory value of NO(x) as it relates to exercise capability (VO(2peak)) and brachial artery reactivity (BAR, an NO-dependent measure of endothelial health), in healthy (H), increased risk (RF), and known cardiovascular disease (CVD) subjects. BAR was measured using forearm occlusion/hyperemia stimulus. Subjects performed a maximal graded exercise test (GXT). Blood at rest, exercise termination, and 10 min into recovery was mixed equally with 0.1 M NaOH at 4 degrees C, filtered, and stored at -70 degrees C. NO(x) was measured by chemiluminescence. Seven of the RF group then exercise-trained for 6 months prior to retesting. The H group (n = 12) was younger, had higher VO(2peak), HDL levels, and baseline NO(x) values than the RF (n = 15) and CVD (n = 10) groups. NO(x) increased from baseline to recovery in the H group only (75.85 +/- 19.04 microM vs 97.76 +/- 31.93 microM; P 相似文献   

18.
Increased nitric oxide synthase expression in aorta of cirrhotic rats.   总被引:2,自引:0,他引:2  
H Liu  D Song  S S Lee 《Life sciences》1999,64(19):1753-1759
  相似文献   

19.
Reactive oxygen species may contribute to apoptosis in lymphoid tissues observed after exercise. Thymic and splenic tissues excised from control mice (C) or mice immediately after (t0) or 24 h after (t24) a run to exhaustion (RTE) were assayed for biochemical indexes of oxidative stress [thymic and splenic membrane lipid peroxides, superoxide dismutase, catalase, plasma uric acid (UA), and ascorbic acid (AA)]. There were significant increases in membrane lipid peroxides in thymus (P < 0.001) and spleen (P < 0.001) in acutely exercised mice relative to controls (thymus: C = 2.74 +/- 0.80 microM; t0 = 7.45 +/- 0.48 microM; t24 = 9.44 +/-1.41 microM; spleen: C = 0.48 +/- 0.22 microM; t0 = 1.78 +/- 0.28 microM; t24 = 2. 81 +/- 0.34 microM). The thymic and splenic tissue antioxidant enzymes concentrations of superoxide dismutase and catalase were significantly lower in samples collected at t0 relative to C and t24 mice (P < 0.001). Plasma UA and AA levels were used to assess the impact of the RTE on the peripheral antioxidant pool. There was no significant change in UA levels and a significant reduction in plasma AA concentrations (P < 0.001); the reduction in plasma AA occurred at t24 (6.53 +/- 1.64 microM) relative to t0 (13.11 +/- 0. 71 microM) and C (13.26 +/- 1.2 microM). These results suggest that oxidative damage occurs in lymphoid tissues after RTE exercise and that such damage may contribute to lymphocyte damage observed after acute exercise.  相似文献   

20.
Normal pregnancy is associated with high angiotensin II (ANG II) concentrations in the maternal and fetal circulation. These high levels of ANG II may promote production vasodilators such as nitric oxide (NO). ANG II receptors are expressed in ovine fetoplacental artery endothelial (OFPAE) cells and mediate ANG II-stimulated OFPAE cell proliferation. Herein, we tested whether ANG II stimulated NO synthase 3 (NOS3, also known as eNOS) expression and total NO (NO(x)) production via activation of mitogen-activated protein kinase 3/1 (MAPK3/1, also known as ERK1/2) in OFPAE cells. ANG II elevated (P < 0.05) eNOS protein, but not mRNA levels with a maximum effect at 10 nM. ANG II also dose dependently increased (P < 0.05) NO(x) production with a maximal effect at doses of 1-100 nM. Activation of ERK1/2 by ANG II was determined by immunocytochemistry and Western blot analysis. ANG II rapidly induced positive staining for phosphorylated ERK1/2, appearing in cytosol after 1-5 min of ANG II treatment, accumulating in nuclei after 10 min, and disappearing at 15 min. ANG II increased (P < 0.05) phosphorylated ERK1/2 protein levels. Activation of ERK1/2 was confirmed by an immunocomplex kinase assay using ELK1 as a substrate. PD98059 significantly inhibited ANG II-induced ERK1/2 activation, and the ANG II-elevated eNOS protein levels but only partially reduced ANG II-increased NO(x) production. Thus, in OFPAE cells, the ANG II increased NO(x) production is associated with elevated eNOS protein expression, which is mediated at least in part via activation of the mitogen-activated protein kinase kinase1 and kinase2 (MAP2K1 and MAP2K2, known also as MEK1/2)/ERK1/2 cascade. Together with our previous observation that ANG II stimulates OFPAE cell proliferation, these data suggest that ANG II is a key regulator for both vasodilation and angiogenesis in the ovine fetoplacenta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号