首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hexose metabolism in pancreatic islets. Inhibition of hexokinase.   总被引:4,自引:0,他引:4       下载免费PDF全文
In islet homogenates, hexokinase-like activity (Km 0.05 mM; Vmax. 1.5 pmol/min per islet) accounts for the major fraction of glucose phosphorylation. Yet the rate of glycolysis in intact islets incubated at low glucose concentrations (e.g. 1.7 mM) sufficient to saturate hexokinase only represents a minor fraction of the glycolytic rate observed at higher glucose concentrations. This apparent discrepancy between enzymic and metabolic data may be attributable, in part at least, to inhibition of hexokinase in intact islets. Hexokinase, which is present in both islet and purified B-cell homogenates, is indeed inhibited by glucose 6-phosphate (Ki 0.13 mM) and glucose 1,6-bisphosphate (Ki approx. 0.2 mM), but not by fructose 2,6-bisphosphate. In intact islets, the steady-state content of glucose 6-phosphate (0.26-0.79 pmol/islet) and glucose 1,6-bisphosphate (5-48 fmol/islet) increases, in a biphasic manner, at increasing concentrations of extracellular glucose (up to 27.8 mM). From these measurements and the intracellular space of the islets, it was estimated that the rate of glucose phosphorylation as catalysed by hexokinase represents, in intact islets, no more than 12-24% of its value in islet homogenates.  相似文献   

2.
When rat pancreatic islets were incubated in the presence of unlabelled D-glucose (16.7 mM) and 3HOH, the production of 3H-labelled material susceptible to be phosphorylated by yeast hexokinase and then detritiated by yeast phosphoglucoisomerase did not exceed 2.66 +/- 0.21 pmol/islet per 180 min, i.e. about 1% of the rate of exogenous D-[5-3H]glucose utilization. Such a material accounted for 43 +/- 4% of the total radioactivity, associated with tritiated hexose(s). It is proposed, therefore, that the futile cycling of D-glucose in the reactions catalyzed in the islet cells by the hexokinase isoenzymes and glucose-6-phosphatase represents a negligible fraction of the total rate of D-glucose phosphorylation.  相似文献   

3.
Tacrolimus is widely used for immunosuppressant therapy, including various organ transplantations. One of its main side effects is hyperglycemia due to reduced insulin secretion, but the mechanism remains unknown. We have investigated the metabolic effects of tacrolimus on insulin secretion at a concentration that does not influence insulin content. Twenty-four-hour exposure to 3 nM tacrolimus reduced high glucose (16.7 mM)-induced insulin secretion (control 2.14 +/- 0.08 vs. tacrolimus 1.75 +/- 0.02 ng.islet(-1).30 min(-1), P < 0.01) without affecting insulin content. In dynamic experiments, insulin secretion and NAD(P)H fluorescence during a 20-min period after 10 min of high-glucose exposure were reduced in tacrolimus-treated islets. ATP content and glucose utilization of tacrolimus-treated islets in the presence of 16.7 mM glucose were less than in control (ATP content: control 9.69 +/- 0.99 vs. tacrolimus 6.52 +/- 0.40 pmol/islet, P < 0.01; glucose utilization: control 103.8 +/- 6.9 vs. tacrolimus 74.4 +/- 5.1 pmol.islet(-1).90 min(-1), P < 0.01). However, insulin release from tacrolimus-treated islets was similar to that from control islets in the presence of 16.7 mM alpha-ketoisocaproate, a mitochondrial fuel. Glucokinase activity, which determines glycolytic velocity, was reduced by tacrolimus treatment (control 65.3 +/- 3.4 vs. tacrolimus 49.9 +/- 2.8 pmol.islet(-1).60 min(-1), P < 0.01), whereas hexokinase activity was not affected. These results indicate that glucose-stimulated insulin release is decreased by chronic exposure to tacrolimus due to reduced ATP production and glycolysis derived from reduced glucokinase activity.  相似文献   

4.
5.
The purpose of this study was to document the effect of age on alpha-glycerophosphate activity and pyridine nucleotide concentration in pancreatic islets isolated from rats. In order to do this, islets were isolated from pancreases of 2 and 12 month-old rats, and measurements made of alpha-glycerophosphate activity and of NAD+ and NADH, determinations were made following incubation at both basal (5.6 mM) and elevated glucose concentrations (28 mM). The results indicated that islet alpha-glycerophosphate dehydrogenase activity was decreased (P less than 0.001) by approximately 50% in the older rats. This was associated with an increase in mean (+/- SEM) basal NADH content (pmol/microgram DNA) in 12 month-old (4.48 +/- 0.31) as compared to 2 month-old rats (2.73 +/- 0.49). Although mean (+/- SEM) basal NAD+ levels (pmol/microgram DNA) were the same in 2 and 12 month-old rats (29.4 +/- 2.5 and 30.8 +/- 2.8, respectively), NAD+ content following incubation at elevated levels of glucose declined (absolutely and relatively) to a significantly greater degree in the younger rats. The incremental rise in islet NADH concentration following incubation at the elevated glucose concentration was similar in the two groups, but the relative increase was only approximately half as great in islets from 12 month-old rats. These data indicate that the age-related decline in the activity of alpha-glycerophosphate dehydrogenase, the enzyme regulating the glycerophosphate shuttle system in 12 month-old rats, is associated with alterations in islet pyridine nucleotide composition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Fructose, like glucose, rapidly equilibrates across the plasma membrane of pancreatic islet cells, but is poorly metabolized and is a weak insulin secretagogue in rat pancreatic islets. A possible explanation for such a situation was sought by investigating the modality of fructose phosphorylation in islet homogenates. Several findings indicated that the phosphorylation of fructose is catalyzed by hexokinase, but not fructokinase. First, at variance with the situation found in liver homogenates, the phosphorylation of fructose in the islet homogenate was unaffected by K+ and inhibited by glucose, mannose, glucose 6-phosphate or glucose 1,6-bisphosphate. Second, the Km for fructose was much higher in islets than in liver. Third, in islet homogenates the Km and Vmax for fructose were much higher than those for glucose or mannose phosphorylation, at low aldohexose concentrations, in good agreement with the properties of purified hexokinase. In intact islets fructose augmented the islet content in glucose 6-phosphate sufficiently to cause marked inhibition of its own rate of phosphorylation. These findings may account, in part at least, for the low rate of fructose utilization by rat pancreatic islets.  相似文献   

7.
The scarcity of available islets is an obstacle for clinically successful islet transplantation. One solution might be to increase the efficacy of the limited islets. Isolated islets are exposed to a variety of cellular stressors, and disruption of the cell-matrix connections damages islets. We examined the effect of fibronectin, a major component of the extracellular matrix, on islet viability, mass and function, and also examined whether fibronectin-treated islets improved the results of islet transplantation. Islets cultured with fibronectin for 48 hours maintained higher cell viability (0.146 +/- 0.010 vs. 0.173 +/- 0.007 by MTT assay), and also had a greater insulin and DNA content (86.8 +/- 3.6 vs. 72.8 +/- 3.2 ng/islet and 35.2 +/- 1.4 vs. 30.0 +/- 1.5 ng/islet, respectively) than islets cultured without fibronectin (control). Absolute values of insulin secretion were higher in fibronectin-treated islets than in controls; however, the ratio of stimulated insulin secretion to basal secretion was not significantly different (206.9 +/- 23.3 vs. 191.7 +/- 20.2% when the insulin response to 16.7 mmol/l glucose was compared to that of 3.3 mmol/l glucose); the higher insulin secretion was thus mainly due to larger islet cell mass. The rats transplanted with fibronectin-treated islets had lower plasma glucose and higher plasma insulin levels within 2 weeks after transplantation, and had more favorable glucose tolerance 9 weeks after transplantation. These results indicate that cultivation with fibronectin might preserve islet cell viability, mass and insulin secretory function, which could improve glucose tolerance following islet transplantation.  相似文献   

8.
The catalytic subunit of glutamylcysteine ligase (GCLC) primarily regulates de novo synthesis of glutathione (GSH) in mammalian cells and is central to the antioxidant capacity of the cell. However, GCLC expression in pancreatic islets has not been previously examined. We designed experiments to ascertain whether GCLC is normally expressed in islets and whether it is up-regulated by interleukin-1 beta (IL-1 beta). GCLC expression levels were intermediate compared with other metabolic tissues (kidney, liver, muscle, fat, and lung). IL-1 beta up-regulated GCLC expression (10 ng/ml IL-1 beta, 3.76 +/- 0.86; 100 ng/ml IL-1 beta, 4.22 +/- 0.68-fold control) via the p38 form of mitogen-activated protein kinase and NF kappa B and also increased reactive oxygen species levels (10 ng/ml IL-1 beta, 5.41 +/- 1.8-fold control). This was accompanied by an increase in intraislet GSH/GSSG ratio (control, 7.1 +/- 0.1; 10 ng/ml IL-1 beta, 8.0 +/- 0.5; 100 ng/ml IL-1 beta, 8.2 +/- 0.5-fold control; p < 0.05). To determine whether overexpression of GCLC increases the antioxidant capacity of the islet and prevents the adverse effects of IL-1 beta on glucose-induced insulin secretion, islets were infected with an adenovirus encoding GCLC. IL-1 beta significantly decreased glucose-stimulated insulin secretion (control, 123.8 +/- 17.7; IL-1 beta, 40.2 +/- 3.9 microunits/ml insulin/islet). GCLC overexpression increased intraislet GSH levels and partially prevented the decrease in glucose-stimulated insulin secretion caused by IL-1 beta. These data provide the first report of GCLC expression in the islet and demonstrate that adenoviral overexpression of GCLC increases intracellular GSH levels and protects the beta cell from the adverse effects of IL-1 beta.  相似文献   

9.
Functional heterogeneity of pancreatic islets was systematically analyzed for the first time using freshly isolated single rat pancreatic islets. First, 60 islets were sequentially exposed to 3, 9.4, 15.6, and 24.1 mM glucose for 30 min each in incubation experiments: 36 (60%) responded in a concentration-dependent and 19 (32%) in an all-or-none manner, and 5 (8%) islets did not respond to high glucose. As a group, the larger the islet, the higher the beta cell glucose sensitivity. However, glucose-stimulated elevation of [Ca2+]i in the beta cell. insulin/glucagon ratio in the islet, and expression of glucose transporter 2, glucokinase, and pancreatic duodenal homeobox factor-1 in the beta cell were not significantly related to islet size. Second, 50 islets were stimulated with 16.7 mM glucose in perifusion. A biphasic insulin release was found in 39 (78%), and no or little first phase response in 11 (22%) islets, irrespective of the islet size. Nevertheless, when the response was plotted as a group, it was clearly biphasic. Islet size, insulin content and the amount of insulin release were positively correlated with each other. In conclusion, there are size-related and size-unrelated functional diversity among pancreatic islets. The reason for such heterogeneity remained to be determined.  相似文献   

10.
Glucose metabolism and insulin secretion were studied in isolated rat pancreatic islets of different sizes and the amount of tissue was quantitated by the measurement of DNA. It was found that larger islets (140-210 ng DNA/islet) utilized more glucose (based on the conversion of 3H-5-glucose to [3H]20) per ng of DNA than islets containing less DNA (60-120 ng/islet). However, the insulin secreted per ng of DNA in response to a given glucose concentration was the same in islets of all sizes. Also, the islet insulin and glucagon content when expressed in terms of DNA did not depend upon islet size. Thus, although glucose utilization rates expressed as a function of islet DNA content were greater in larger islets, no such relationship was found for glucose-induced insulin release or insulin and glucagon content.  相似文献   

11.
Hexokinase activity was found in both soluble (cytosolic) and particulate subcellular fractions prepared from rat pancreatic islet homogenates. The bound enzyme was associated with mitochondria rather than secretory granules. Relative to the total hexokinase activity, the amount of bound enzyme was higher in islet homogenates prepared at pH 6.0 (72 +/- 7%) than in islets homogenized at pH 7.4 (38 +/- 1%). The affinity of hexokinase for equilibrated D-glucose was not different in the cytosolic and mitochondrial fractions. In both fractions, hexokinase displayed a greater affinity for alpha- than beta-D-glucose, but a higher maximal velocity with the beta- than alpha-anomer. Glucose 6-phosphate inhibited to a greater extent cytosolic than mitochondrial hexokinase. A high Km glucokinase-like enzymic activity was also present in both subcellular fractions. It is proposed that the ambiguity of hexokinase plays a propitious role in the glucose-sensing function of pancreatic islet cells.  相似文献   

12.
We used transgenesis to explore the requirement for downregulation of hepatocyte nuclear factor 6 (HNF6) expression in the assembly, differentiation, and function of pancreatic islets. In vivo, HNF6 expression becomes downregulated in pancreatic endocrine cells at 18. 5 days post coitum (d.p.c.), when definitive islets first begin to organize. We used an islet-specific regulatory element (pdx1(PB)) from pancreatic/duodenal homeobox (pdx1) gene to maintain HNF6 expression in endocrine cells beyond 18.5 d.p.c. Transgenic animals were diabetic. HNF6-overexpressing islets were hyperplastic and remained very close to the pancreatic ducts. Strikingly, alpha, delta, and PP cells were increased in number and abnormally intermingled with islet beta cells. Although several mature beta cell markers were expressed in beta cells of transgenic islets, the glucose transporter GLUT2 was absent or severely reduced. As glucose uptake/metabolism is essential for insulin secretion, decreased GLUT2 may contribute to the etiology of diabetes in pdx1(PB)-HNF6 transgenics. Concordantly, blood insulin was not raised by glucose challenge, suggesting profound beta cell dysfunction. Thus, we have shown that HNF6 downregulation during islet ontogeny is critical to normal pancreas formation and function: continued expression impairs the clustering of endocrine cells and their separation from the ductal epithelium, disrupts the spatial organization of endocrine cell types within the islet, and severely compromises beta cell physiology, leading to overt diabetes.  相似文献   

13.
The adipocyte-derived hormone leptin has been reported to inhibit, have no effect, or potentiate insulin secretion in-vitro; these effects mainly depend on the species considered, the concentrations used, and the length of exposure. We investigated the direct effects of recombinant human leptin (HL) on human pancreatic beta cell function by studying insulin secretion (IS), hexokinase and glucokinase activity and Km, and potassium channel permeability in purified human islets (HI). In acute experiments, no effect of 1, 5, 20, or 50 ng/ml HL on glucose or arginine stimulated insulin release was found, whereas 500 ng/ml HL caused a significant decrease of glucose induced IS. After 24h pre-culture with either 20 or 500 ng/ml HL, a significant reduction of glucose (but not arginine) stimulated IS was observed. Exposure to leptin caused a significant increase of potassium channel permeability, whereas hexokinase and glucokinase activity and Km remained unchanged. These results suggest that physiological human leptin concentration is able to importantly affect glucose (but not arginine) stimulated insulin release from human islets only after prolonged exposure. This effect is probably mediated by changes of potassium channel permeability, and is not accompanied by modifications of glucose phosphorylating enzymes properties.  相似文献   

14.
The present study aimed at comparing the effects of glucose on ionic and secretory events in freshly isolated and 5-7 day cultured rat pancreatic islets. The capacity of glucose to provoke insulin release was severely reduced in islets maintained in culture. Whether in freshly isolated or cultured islets, glucose provoked a marked and sustained decrease in 45Ca2+ outflow from islets deprived of extracellular Ca2+. In the presence of extracellular Ca2+ throughout, the magnitude of the glucose-induced secondary rise in 45Ca2+ outflow was reduced in cultured islets. Glucose provoked a weaker increase in [Ca2+]i in islet cells obtained from cultured islets than in islet cells dissociated from freshly isolated pancreatic islets. On the other hand, the stimulatory effect of carbamylcholine on 45Ca2+ outflow was unaffected by tissue culture. Lastly, in islet cells obtained from cultured islets, the increase in [Ca2+]i evoked by K+ depolarization averaged half of that observed in control experiments. These results indicate that the reduced secretory potential of glucose in cultured pancreatic islets can be ascribed to the inability of the nutrient secretagogue to provoke a suitable increase in Ca2+ influx.  相似文献   

15.
Nicotinamide phosphoribosyltransferase (Nampt) is a rate-limiting enzyme in the mammalian NAD+ biosynthesis of a salvage pathway and exists in 2 known forms, intracellular Nampt (iNampt) and a secreted form, extracellular Nampt (eNampt). eNampt can generate an intermediate product, nicotinamide mononucleotide (NMN), which has been reported to support insulin secretion in pancreatic islets. Nampt has been reported to be expressed in the pancreas but islet specific expression has not been adequately defined. The aim of this study was to characterize Nampt expression, secretion and regulation by glucose in human islets. Gene and protein expression of Nampt was assessed in human pancreatic tissue and isolated islets by qRT-PCR and immunofluorescence/confocal imaging respectively. Variable amounts of Nampt mRNA were detected in pancreatic tissue and isolated islets. Immunofluorescence staining for Nampt was found in the exocrine and endocrine tissue of fetal pancreas. However, in adulthood, Nampt expression was localized predominantly in beta cells. Isolated human islets secreted increasing amounts of eNampt in response to high glucose (20 mM) in a static glucose-stimulated insulin secretion assay (GSIS). In addition to an increase in eNampt secretion, exposure to 20 mM glucose also increased Nampt mRNA levels but not protein content. The secretion of eNampt was attenuated by the addition of membrane depolarization inhibitors, diazoxide and nifedipine. Islet-secreted eNampt showed enzymatic activity in a reaction with increasing production of NAD+/NADH over time. In summary, we show that Nampt is expressed in both exocrine and endocrine tissue early in life but in adulthood expression is localized to endocrine tissue. Enzymatically active eNampt is secreted by human islets, is regulated by glucose and requires membrane depolarization.  相似文献   

16.
BACKGROUND: Tyrosine hydroxylase (TH) activity and its possible participation in the control of insulin secretion were studied in pancreatic islets of adult Wistar rats fed a standard commercial diet (SD) or carbohydrates alone (CHD) for one week. TH activity, norepinephrine (NE) content, and glucose-induced insulin secretion were assessed. Blood glucose and insulin levels were measured at the time of sacrifice. RESULTS: CHD rats had significantly higher blood glucose and lower insulin levels than SD rats (114.5 PlusMinus; 6.7 vs 80.7 PlusMinus; 7.25 mg/dl, p < 0.001; 20.25 PlusMinus; 2.45 vs 42.5 PlusMinus; 4.99 &mgr;U/ml, p < 0.01, respectively). Whereas TH activity was significantly higher in CHD isolated islets (600 PlusMinus; 60 vs 330 PlusMinus; 40 pmol/mg protein/h; p < 0.001), NE content was significantly lower (18 PlusMinus; 1 vs 31 PlusMinus; 5 pmol/mg protein), suggesting that TH activity would be inhibited by the end-products of catecholamines (CAs) biosynthetic pathway. A similar TH activity was found in control and solarectomized rats (330 PlusMinus; 40 vs 300 PlusMinus; 80 pmol/mg protein/h), suggesting an endogenous rather than a neural origin of TH activity. CHD islets released significantly less insulin in response to glucose than SD islets (7.4 PlusMinus; 0.9 vs 11.4 PlusMinus; 1.1 ng/islet/h; p < 0.02). CONCLUSIONS: TH activity is present in islet cells; dietary manipulation simultaneously induces an increase in this activity together with a decrease in glucose-induced insulin secretion in rat islets. TH activity - and the consequent endogenous CAs turnover - would participate in the paracrine control of insulin secretion.  相似文献   

17.
Pancreatic acini and islets are believed to differentiate from common ductal precursors through a process requiring various growth factors. Epidermal growth factor receptor (EGF-R) is expressed throughout the developing pancreas. We have analyzed here the pancreatic phenotype of EGF-R deficient (-/-) mice, which generally die from epithelial immaturity within the first postnatal week. The pancreata appeared macroscopically normal. The most striking feature of the EGF-R (-/-) islets was that instead of forming circular clusters, the islet cells were mainly located in streak-like structures directly associated with pancreatic ducts. Based on BrdU-labelling, proliferation of the neonatal EGF-R (-/-) beta-cells was significantly reduced (2.6+/-0.4 versus 5.8+/-0.9%, P<0.01) and the difference persisted even at 7-11 days of age. Analysis of embryonic pancreata revealed impaired branching morphogenesis and delayed islet cell differentiation in the EGF-R (-/-) mice. Islet development was analyzed further in organ cultures of E12.5 pancreata. The proportion of insulin-positive cells was significantly lower in the EGF-R (-/-) explants (27+/-6 versus 48+/-8%, P<0.01), indicating delayed differentiation of the beta cells. Branching of the epithelium into ducts was also impaired. Matrix metalloproteinase (MMP-2 and MMP-9) activity was reduced 20% in EGF-R (-/-) late-gestation pancreata, as measured by gelatinase assays. Furthermore, the levels of secreted plasminogen activator inhibitor-1 (PAI-1) were markedly higher, while no apparent differences were seen in the levels of active uPA and tPa between EGF-R (-/-) and wild-type pancreata. Our findings suggest that the perturbation of EGF-R-mediated signalling can lead to a generalized proliferation defect of the pancreatic epithelia associated with a delay in beta cell development and disturbed migration of the developing islet cells as they differentiate from their precursors. Upregulated PAI-1 production and decreased gelatinolytic activity correlated to this migration defect. An intact EGF-R pathway appears to be a prerequisite for normal pancreatic development.  相似文献   

18.
Islet cell analysis and purification by light scatter and autofluorescence   总被引:1,自引:0,他引:1  
Rat pancreatic A- and B-cells differ in light scatter and flavin-adenine-dinucleotide (FAD)-related fluorescence and are thus represented by two easily distinguishable populations in a fluorescence-activated cell sorter (FACS). Sorting of dissociated islet cells yields highly purified single A- and B-cell preparations. FACS-analysis of islet cells also indicated that FAD-fluorescence in 3-cells is reduced within a 5 minute exposure to 20 mM glucose, whereas no variations were observed in A-cell fluorescence nor with 3-0-methylglucose or fructose. FACS-analysis of blood cells and of dissociated liver, parotid, pituitary and pancreatic exocrine cells demonstrated a wide variation in the respective FAD-fluorescence intensities, which could be used for their purification as viable single cells as well as in studying their metabolic redox state.  相似文献   

19.
Amylin, an islet amyloid peptide secreted by the pancreatic beta cell, has been proposed as a humoral regulator of islet insulin secretion. Four separate preparations of amylin were tested for effects on hormone secretion in both freshly isolated and cultured rat islets and in HIT-T15, hamster insulinoma cells. With all three experimental models, exposure to human amylin acid and human and rat amylin at concentrations as high as 100 nM had no significant effect on rates of insulin or glucagon secretion. These observations suggest that amylin, even at concentrations appreciably higher than those measured in peripheral plasma, is not a significant humoral regulator of islet hormone secretion.  相似文献   

20.
Clinical islet transplantation is a promising treatment for patients with type 1 diabetes. However, pancreatic islets vary in size and shape affecting their survival and function after transplantation because of mass transport limitations. To reduce diffusion restrictions and improve islet cell survival, the generation of islets with optimal dimensions by dispersion followed by reassembly of islet cells, can help limit the length of diffusion pathways. This study describes a microwell platform that supports the controlled and reproducible production of three‐dimensional pancreatic cell clusters of human donor islets. We observed that primary human islet cell aggregates with a diameter of 100–150 μm consisting of about 1000 cells best resembled intact pancreatic islets as they showed low apoptotic cell death (<2%), comparable glucose‐responsiveness and increasing PDX1, MAFA and INSULIN gene expression with increasing aggregate size. The re‐associated human islet cells showed an a‐typical core shell configuration with beta cells predominantly on the outside unlike human islets, which became more randomized after implantation similar to native human islets. After transplantation of these islet cell aggregates under the kidney capsule of immunodeficient mice, human C‐peptide was detected in the serum indicating that beta cells retained their endocrine function similar to human islets. The agarose microwell platform was shown to be an easy and very reproducible method to aggregate pancreatic islet cells with high accuracy providing a reliable tool to study cell–cell interactions between insuloma and/or primary islet cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号