首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究在红壤中施用生物质炭后硝态氮的垂直运移规律,采用室内土柱模拟的方法,分别按照炭土比为0、2.22%(5 t·hm-2)、4.45%(10 t·hm-2)、8.95%(20 t·hm-2)、13.37%(30 t·hm-2)和17.80%(40 t·hm-2)设置混合土壤,并采用CXTFIT 2.0模型对试验结果进行拟合.结果表明: 在饱和条件下,不同生物质炭添加比例下,硝态氮运移的穿透曲线发生明显变化.不同处理的硝态氮相对浓度(C/Co)峰值、淋溶速率和累积淋失量随生物质炭添加量的增加而显著降低.各穿透曲线尾部均存在一定的拖尾现象,且随生物质炭添加量的增加拖尾现象越显著.对硝态氮穿透曲线的影响因素分析可知,生物质炭影响了土壤的容重、有机碳、孔隙度、阳离子交换量(CEC)等物理性质,进而导致各处理硝态氮穿透曲线发生了变化.采用CXTFIT 2.0数学模型模拟硝态氮在土壤中的运移,硝态氮的穿透曲线拟合值与实测值呈显著正相关,相关系数均>0.850,能够很好地对土壤硝态氮运移和运移参数进行预测,试验结果可为预测生物质炭施用对地下水体环境硝态氮的影响提供科学依据.  相似文献   

2.
冬小麦生长条件下土壤硝态氮淋洗的传递函数模拟和预报   总被引:6,自引:0,他引:6  
任理  袁福生  张福锁 《生态学报》2004,24(10):2281-2288
观测了地中渗透计的土壤在 3种不同施肥量下冬小麦自播种至返青期硝态氮的淋洗动态 ,由试验资料获得了硝态氮在土壤中迁移时间的概率密度函数 ,进而运用传递函数模型对土壤排水出流液中的硝态氮浓度和淋洗量动态进行了数学模拟和预报。  相似文献   

3.
华北地区夏玉米土壤硝态氮的时空动态与残留   总被引:40,自引:3,他引:40  
为了进一步明确华北地区冬小麦-夏玉米种植体系周年氮肥利用效率及其影响因素与机制,在试验区夏玉米生育期年均降雨量400mm左右,轻壤质底粘潮土中等土壤肥力条件下,通过设计不同施氮量(0、90、180、270kgN/hm2)处理,重点研究了夏玉米大田土壤硝态氮动态与残留积累情况。试验结果表明,夏玉米根系生物量最大值出现在吐丝期,最大根系分布深度约为1.2m。根干重密度(g/m3)随土壤深度增加而明显降低。根群主要分布在表土层,0~80cm土体根重比例达95%以上,1m以下根重比例不足1%。土壤硝态氮测定表明,从播种前到收获期,各施氮量处理(0、90、180、270kgN/hm2)2m土体土壤硝态氮平均含量均表现出“N”型曲线变化趋势。在玉米收获期,施氮处理(90~270kgN/hm2)2m土体均有明显的硝态氮残留积累,并且残留积累量随着施氮量增加而增大,施氮处理下层土壤(120~200cm)硝态氮残留积累量比不施氮处理高出50.4~95.4kgNO3-N/hm2。这说明,在玉米生育期降水影响下氮肥发生了淋溶,有部分氮肥已经向下移出玉米根区以外,积累在下层土壤中。这些残留积累在下层土壤中的硝态氮对于玉米来说很难被吸收利用,不仅降低了氮肥的利用率,也成为污染地下水的潜在隐患。分析表明,各施氮处理籽粒产量和植株吸氮量都显著大于不施氮处理,但施氮处理之间比较,籽粒产量和植株吸氮量并无显著差异。90kgN/hm2、180kgN/hm2和270kgN/hm2施氮处理下,氮肥表观利用率分别为11.52%、13.37%、9.93%。根据本研究结果,从小麦-玉米种植体系考虑,玉米根区以下残留积累氮素的回收利用是提高周年氮肥利用率的一个重要方面,值得进一步研究。  相似文献   

4.
土壤硝态氮时空变异与土壤氮素表观盈亏研究Ⅰ.冬小麦   总被引:26,自引:9,他引:26  
周顺利  张福锁  王兴仁 《生态学报》2001,21(11):1782-1789
不同氮肥用量下对冬小麦生育期间土壤硝态氮时空变化特征及土壤氮素表观盈亏量的研究结果表明,氮肥用量不同,硝态氮分布特征有差异,并且随着冬小麦的生长,其变化也不同。在冬小麦快速生长阶段,作物吸收可在一定深度的土层出现硝态氮亏缺区。由于灌溉的影响,土壤表层硝态氮向深层淋洗严重,即使在低氮肥水平,土壤深层仍可观察到硝态氮含量升高现象,存在淋出2m土体的可能性。并且氮肥用量越高,土壤硝态氮含量越高,硝酸盐向深层淋洗也越严重,淋出2m土体的可能性和也相应增大;在冬小麦生长前期(播种-拔节),即使在不施氮肥处理也有土壤氮素的表观盈余,随着施肥量的增加,在拔节-扬花也出现了土壤氮素表观盈余,而扬花后各个氮肥处理均出现土壤氮素的表观亏缺,氮肥用量越高,小麦一生中土壤表观氮盈余量越大,1m土体内平均最大盈余量达199.8kgN/hm^2。研究表明,土壤氮损失是盈余氮素的一个主要去向,而硝态氮淋洗是冬小麦生育期间土壤氮素损失的一个重要的途径。  相似文献   

5.
赵俊晔  于振文 《生态学报》2006,26(3):815-822
在土壤肥力不同的两块高产田上,利用15N示踪技术,研究了高产条件下施氮量对冬小麦氮肥吸收利用、籽粒产量和品质的影响,及小麦生育期间土壤硝态氮含量的变化.结果表明:1.成熟期小麦植株积累的氮素73.32%~87.27%来自土壤,4.51%~9.40%来自基施氮肥,8.22%~17.28%来自追施氮肥;随施氮量增加,植株吸收的土壤氮量减少,吸收的肥料氮量和氮肥在土壤中的残留量显著增加,小麦对肥料氮的吸收率显著降低;小麦对基施氮肥的吸收量、吸收率和基施氮肥在土壤中的残留量、残留率均显著小于追施氮肥,基施氮肥的损失量和损失率显著大于追施氮肥;较高土壤肥力条件下,植株吸收更多的土壤氮素,吸收的肥料氮量较少,土壤中残留的肥料氮量和肥料氮的损失量较高,不同地块肥料氮吸收、残留和损失的差异主要表现在基施氮肥上.2.当施氮量为105 kg/hm2时,收获后0~100cm土体内未发现硝态氮大量累积,随施氮量增加,0~100cm土体内硝态氮含量显著增加;施氮量大于195 kg/hm^2时,小麦生育期间硝态氮呈明显的下移趋势,土壤肥力较高地块,硝态氮下移较早,下移层次深.3.随施氮量增加,小麦氮素吸收效率和氮素利用效率降低,适量施氮有利于提高成熟期小麦植株氮素积累量、籽粒产量和蛋白质含量;施氮量过高籽粒产量和蛋白质含量不再显著增加,甚至降低;较高土壤肥力条件下,获得最高籽粒产量和蛋白质含量所需施氮量较低.  相似文献   

6.
测定了不同生长期在不同施氮水平下3个菠菜品种各器官的硝态氮含量、叶片的硝酸还原酶活性、叶片细胞硝态氮的贮存库和代谢库大小.结果表明:叶柄中硝态氮含量远高于其它器官,其含量与叶片内源/外源硝酸还原酶活性的比值呈负相关;叶片细胞中硝态氮代谢库的大小与叶柄中硝态氮含量之间没有确定的关系.  相似文献   

7.
施氮水平对高产麦田土壤硝态氮时空变化及氨挥发的影响   总被引:12,自引:1,他引:12  
研究了不同施氮水平对高产麦田土壤硝态氮时空变化和氨挥发的影响.结果表明,高产麦田土壤硝态氮在播种至冬前阶段不断向深层移动,并在140cm以下土层积累.施纯氮96~168 kg·hm-2处理,增加了60 cm以上土层土壤硝态氮含量,降低了土壤氮素表观损失量占施氮量的比例,提高了小麦籽粒蛋白质含量和籽粒产量,且土壤氨挥发损失较低,基施氮氨挥发损失占基施氮量的4.23%~5.51%;施氮量超过240 kg N·hm-2,促进了土壤硝态氮向深层的移动和积累,基施氮氨挥发损失、土壤氮素表观损失量及其占施氮量的比例均显著升高,对小麦籽粒蛋白质含量无显著影响,但籽粒产量降低.高产麦田适宜的氮素用量为132~204 kg N·hm-2.  相似文献   

8.
施氮时期对玉米土壤硝态氮含量变化及氮盈亏的影响   总被引:23,自引:3,他引:23  
在“郑单 95 8”(9株 / m2 )组成的土 -植系统 ,研究了不施氮、基施氮 10叶展追氮、基施氮 吐丝期追氮和基施氮 乳熟期追氮共 4个处理下 0~ 2 0 0 cm的土壤 NO- 3- N含量在夏玉米生长期间的变化和土壤氮素的表观盈亏量 ,结果表明 :2 0 cm以上的土壤 NO- 3- N含量以大口期为界、2 0 cm以下的土壤 NO- 3- N含量以吐丝期为界前降后升。在 0~ 2 0 cm土层 ,与不施氮相比 ,施氮能增加土壤 NO- 3- N含量 ,而且吐丝期和乳熟至成熟阶段的 NO- 3- N含量在 10叶展期和吐丝期各自追氮后均显著增加。在 2 0~4 0 cm土层 ,乳熟期的 NO- 3- N含量施氮后明显比不施氮高。在 80 cm以下土层 ,施氮后的土壤 NO- 3- N含量明显比不施氮高 ;追氮期相比 ,后一追氮处理在乳熟期和成熟期的 NO- 3- N含量均比前一追氮处理明显增加 ,其中成熟期基施氮 乳熟期追氮处理在 16 0~ 2 0 0 cm土层的 NO- 3- N含量比基施氮 吐丝期追氮处理 (为 2 5 .3m g N/ kg(干土 ) )高 16 %。土壤氮素的表观盈余发生在吐丝期之前且 80 %以上盈余量出现在大口期前 ,表观亏损出现在吐丝期以后且其亏损量在乳熟期前后各占一半。经玉米季后 ,本试验中不施氮处理出现表观盈余 (为 5 6 .3kg N/ hm2 ) ;施氮后表观盈余量增加 ,主要是施氮减少了吐丝以后  相似文献   

9.
根据土壤氮素解吸模型,通过盆栽试验研究解吸特征参数对土壤渗漏水硝态氮浓度的影响.结果表明:土壤氮素可解吸量Q、土壤溶液氮初始浓度Cli和C1/比值与土壤渗漏水硝态氮浓度呈非线性关系,在较低氮解吸特征值时则呈线性关系,由此提出“双速率转折点”概念评价土壤硝态氮流失潜能.当耕层土壤氮素解吸特征值超过“双速率转折点”X0时,硝态氮浓度的增加速率将以非线性形式迅速提高,反之将稳定在较低水平.  相似文献   

10.
土壤硝态氮时空变异与土壤氮素表观盈亏Ⅱ.夏玉米   总被引:33,自引:5,他引:33  
在不同氮肥用量下研究了夏玉米生育期间土壤硝态氮的时空变化特征 ,同时对不同生育阶段土壤氮素的盈余与亏缺进行了表观估算 ,结果表明 :0~ 1 0 0 cm土体内 ,夏玉米一生中土壤硝态氮均表现为在中间土层含量低 ,上层和下层含量高 ,一般以表层最高 ,但受降雨的影响在高氮肥处理会出现下层高于表层的现象。施氮肥提高了土壤硝态氮含量 ,而且提高程度与用量成正相关。降雨时土壤硝态氮可随水下移 ,在干旱条件下也可随水上移。土壤硝态氮的运移不仅受土壤水分状况的影响 ,还取决于硝态氮含量 ,含量越高 ,向下移动的越深 ,淋失的可能性越大 ;在本试验条件下 ,土壤氮素盈余主要出现在夏玉米播种~ 9叶展和 9叶展~吐丝两个生育阶段 ,吐丝~收获则出现土壤氮素的亏缺。随着氮肥用量的增加 ,玉米一生中土壤氮素的表观盈余量明显增大 ,最高平均可达 2 74 .1 kg N/hm2。研究结果表明 ,土壤氮损失是盈余氮素的一个主要去向 ,而硝态氮淋洗是夏玉米生育期间土壤氮素损失的一个重要途径。  相似文献   

11.
肖成斌  何凯 《西北植物学报》2020,40(7):1259-1266
作为植物体内一类关键的信号分子,硝态氮调控了植物生长发育过程中的一系列生物学过程。硝态氮及其信号直接影响着农作物的氮素利用率、产量和品质。因此,深入研究硝态氮信号转导是农业可持续发展的关键。近年来,随着植物分子遗传学、生物化学等学科的迅猛发展,科学家们已经在硝态氮信号的感知、传递以及长距离信号转导等方面取得了许多突破性进展,这将有助于深入了解硝态氮信号如何调控植物生长发育过程中的各个方面。该文综述了近年来国内外有关拟南芥硝态氮信号转导方面的最新研究进展,以期为构建高效利用氮肥的新型农作物提供理论依据。  相似文献   

12.
二月兰-春玉米轮作生产体系是近年来为解决华北地区出现的大面积冬闲田而提出的冬绿肥-春玉米生产新模式.本文依托定位试验,研究了该体系从二月兰翻压到玉米收获期间的土壤硝态氮时空变化特征.结果表明:土壤硝态氮含量呈玉米生育前期高后期低的时间变化特征和硝态氮含量峰值随着生育期的推移逐渐下移的空间变化特征,且土壤硝态氮含量随施肥量的增加而显著增加.翻压二月兰对土壤硝态氮含量的时空变化有一定影响,冬春季种植二月兰可降低0~180 cm土壤硝态氮累积量;二月兰翻压后,春玉米苗期与喇叭口期土壤硝态氮规律基本一致,主要集中在0~20 cm土层,0~100 cm土壤剖面为有二月兰处理高于无二月兰处理,100~180 cm土壤剖面则为有二月兰处理低于无二月兰处理;抽雄期以后,土壤硝态氮含量普遍较低,100~180 cm土层土壤硝态氮含量为有二月兰处理略高于无二月兰处理.总体上,翻压二月兰可以增加0~180 cm土层土壤硝态氮保蓄量.  相似文献   

13.
运用15N稳定性同位素技术,对15N标记的硝酸盐和铵盐在输入小嵩草(KobresiapygaeaC.B.Clarke)草甸11~13个月后的运移规律进行了研究。在经历11~13个月后,进入无机氮库中的15N很少,一般不超过所输入氮素的1%,而较多的15N为土壤有机质、土壤微生物和植物所固持。NO3--15N和NH4 -15N在小嵩草草甸中的运移规律差异很大。在11、12和13个月后,NO3--15N的总恢复率分别为92.83%、92.64%和79.96%;而NH4 -15N的则分别为49.6%、63.33%和66.22%。两者的差异在土壤有机质、土壤微生物和植物等库之间的分配中更加明显。输入NO3--15N时在11、12个月后植物所固持的15N最多,而土壤微生物和土壤有机质所固持的15N比较接近,而在13个月后,土壤有机质和植物所固持的15N接近,而土壤微生物所固持的15N下降许多;当输入NH4 -15N,土壤有机质所固持的15N比植物和土壤微生物所固持的都多,而且植物所固持的15N比较稳定,而土壤微生物所固持的15N则有较大变化。这表明在较长的时间内嵩草草甸对NO3-和NH4 的固持能力是不一样的。  相似文献   

14.
在冬小麦-夏玉米一年两熟模式下,玉米品种“郑单958”(植株密度9株/m^2)和小麦品种“93-9”(基本苗704株/m^2),冬小麦基施144kg N/hm^2,研究了玉米5个施N量(0、90、180、270和360kg/hm^2)对后茬小麦期间土壤剖面硝态氮含量、无机氮总量,以及小麦氮素吸收利用和产量的影响.结果表明:(1)与不施氮相比,玉米施氮显著增加小麦季0~200cm土壤硝态氮含量;自拔节起,0~40cm、0~130cm和0~200cm硝态氮含量均随施氮量增加而递增,在硝态氮含量较高的小区增幅也大.(2)轮作一周期后,不施氮和施氮360kg/hm^2显著影响0~130cm和0~200cm无机氮总量,但在90~270 kg/hm^2之间,施氮量的影响不明显.(3)施氮小于180kg/hm^2时,成熟期小麦植株氮素和籽粒氮素积累量、氮肥利用率均随施氮量增加而递增,但不明显.(4)与不施氮相比,施氮90kg/hm^2的小麦产量和麦玉轮作总产均增加但不明显,施氮180 kg/hm^2均显著增加,施氮270kg/hm^2与180kg/hm^2无明显差异.本试验条件下,夏玉米施氮90~180 kg/hm^2是适宜的.  相似文献   

15.
以小麦品种‘石麦15’和‘衡观35’为材料进行营养液水培试验,研究不同浓度硝态氮供应对小麦苗期根系形态、钙离子流特征及钙调蛋白(CaM)含量的影响。结果表明,与适宜浓度硝态氮处理(2.5mmol/L)相比,无外源硝态氮供应时小麦地上部鲜重、硝态氮含量均降低,侧根数量显著减少;高浓度硝态氮处理(50mmol/L)下两个小麦品种地上部硝态氮含量升高,根系总长度降低,‘石麦15’侧根数量减少。无硝态氮和高浓度硝态氮处理下,根系中钙调蛋白含量降低,且‘衡观35’的降低幅度大于‘石麦15’。无外源硝态氮供应时小麦根尖表现出较为明显的钙离子外流特征;与适宜浓度硝态氮处理相比,高硝态氮处理下小麦根尖Ca2+的内流速度显著下降。说明硝态氮供应不足和高浓度硝态氮供应会影响小麦根系生长,根系Ca2+外流或Ca2+内流速度下降,CaM含量减少,Ca2+/CaM可能介导硝态氮调控小麦根系生长发育。  相似文献   

16.
水氮供应对夏棉产量、水氮利用及土壤硝态氮累积的影响   总被引:6,自引:0,他引:6  
通过田间试验,研究了黄淮地区水氮供应对夏棉生长、产量及水氮利用效率的影响,探索在保证产量的同时提高水氮利用效率、减少农田水氮排放的管理模式.试验设置5个氮素水平(0、60、120、180、240 kg·hm-2,分别记为N0、N1、N2、N3、N4)和3个灌水水平(滴灌,灌水定额30、22.5、15 mm,分别记为I1、I2、I3),使用裂区设计,主区为氮用量,裂区为灌水水平,共15个处理,3次重复.结果表明: 氮素和水分施用对夏棉生长和产量都有明显促进作用,但氮素影响更显著,是该地区调控夏棉生长和籽棉产量的主要因素.随着施氮量和灌水量的增加,花铃期生殖器官积累量、地上部干物质积累量和籽棉产量在开始阶段都逐步增加,当施氮量超过180 kg·hm-2时,进一步增施氮肥会导致生殖器官积累量、地上部干物质积累量和籽棉产量减小.籽棉产量在N3I1处理达到最大,为4016 kg·hm-2.增加施氮量能显著提高地上部总吸氮量和茎叶含氮量,但会降低氮肥偏生产力.灌溉水利用效率和田间水分利用效率分别在N3I3和N3I1处理最大,分别为5.40和1.24 kg·m-3.随着施氮量的增加,土壤硝态氮含量明显增加,且硝态氮累积区域有下移趋势.综合考虑对地上部干物质积累、产量、水氮吸收利用及土壤硝态氮累积等的影响,N3I1处理可作为试验区夏季棉花生产的最优水氮管理方案.  相似文献   

17.
土壤硝态氮时空变异与土教育界氮素表观盈亏Ⅱ.夏玉米   总被引:3,自引:0,他引:3  
在不同氮肥用量下研究了夏玉米生育期间土壤硝态氮的时空变化特征,同时对不同生育阶段土壤氮素的盈余与亏缺进行了表观估算,结果表明:0-100cm土体内,夏玉米生中土壤硝态氮均表现为在中国土层含量低,上层和下层含量高,一般以表层最高,但受降雨的影响在高氮肥处理会出现下层高于表层的现象,施氮肥提高了土壤硝态氮含量,而且提高程度与用量成正相关,降雨时土壤硝态氮可随水下移,在干旱条件下也可随水上移,土壤硝态氮的运移不仅受土壤水分状况的影响,还取决于硝态氮含量,含量越高,向下移动的越深,淋失的可能性越大;在本试验条件下,土壤氮素盈余主要出现在夏玉米播种9叶展和9叶展-吐丝两个生育阶段,吐丝-收获则出现土壤氮素的亏缺,随着氮肥用量的增加,玉米一生中土壤氮素的表观盈余量明显增大,最高平均可达274.12kgN/hm^2。研究结果表明,土壤氮损失是盈余氮素的一个主要去向,而硝态氮淋洗是夏玉米生育期间土壤氮素损失的一个重要途径。  相似文献   

18.
介绍两种简易测定硝态氮的比色法   总被引:1,自引:0,他引:1  
  相似文献   

19.
灌溉量和施氮量对冬小麦产量和土壤硝态氮含量的影响   总被引:2,自引:1,他引:2  
Jiang DY  Yu ZW  Xu ZZ 《应用生态学报》2011,22(2):364-368
研究了大田条件下灌溉量和施氮量对小麦产量和土壤硝态氮含量的影响.结果表明:增加灌溉量,0~200 cm土层硝态氮含量呈先降后升又降的趋势.0~80 cm土层硝态氮含量显著低于对照,而80~200 cm土层硝态氮含量显著高于对照.随灌溉量的增加,土壤硝态氮向深层运移加剧,在成熟期,0~80 cm土层硝态氮含量降低,120~200 cm土层硝态氮含量升高,并在120~140 cm土层硝态氮含量出现高峰.灌溉量不变,施氮量由210 kg·hm-2增加到300 kg·hm-2,开花期、灌浆期、成熟期0~200 cm各土层土壤硝态氮含量显著升高.随灌溉量的增加,小麦籽粒产量先增加后降低,以全生育期灌溉量为60 mm的处理籽粒产量最高.增加施氮量,籽粒产量、蛋白质含量和蛋白质产量显著提高.本试验中,施氮量为210 kg.hm-2、两次灌溉总量为60 mm的处理籽粒产量、蛋白质含量、蛋白质产量和收获指数均较高,且土壤硝态氮损失少,是较合理的水氮运筹模式.  相似文献   

20.
在大田试验条件下,研究了施肥方式(滴灌施肥和沟施)和施氮量(单次每株25、50、75 g)对欧美108杨人工林土壤氮素垂向运移动态的影响.结果表明:不同施肥方式和施氮量下,土壤中铵态氮和硝态氮含量均随土层深度的增加而降低;滴灌施肥下铵态氮和硝态氮主要集中在0~40 cm土层,随时间变化呈先升后降的变化趋势,分别于施肥后第5天和第10 天达到最大值(211.1和128.8 mg·kg-1).沟施下铵态氮和硝态氮主要集中在0~20 cm土层,硝态氮含量随时间呈逐渐增加的变化趋势,于施肥后第20天达到最大值(175.7 mg·kg-1),但铵态氮随时间无显著变化;滴灌施肥下氮素在土壤中的有效时长约为20 d,而沟施下氮素在土壤中有效时长超过20 d.滴灌施肥下,土壤中铵态氮和硝态氮的含量和运移距离均随施氮量的增加而增加;沟施下,施氮量越高土壤中硝态氮含量越高,但对铵态氮含量无显著影响.滴灌施肥下林地土壤中尿素的水解、硝化速率和运移深度均高于沟施,且施氮量越大,氮素在深层土壤的积累量越高.结合欧美108杨根系和土壤氮素分布特征,滴灌施肥能够为更大的细根分布区提供氮素,更适用于人工林培育.当单次施氮量为每株50 g时,既可保证细根主要分布区内有较高含量的氮分布又不会造成淋溶,肥料利用效率可能更高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号