首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在大田试验条件下,研究了施肥方式(滴灌施肥和沟施)和施氮量(单次每株25、50、75 g)对欧美108杨人工林土壤氮素垂向运移动态的影响.结果表明:不同施肥方式和施氮量下,土壤中铵态氮和硝态氮含量均随土层深度的增加而降低;滴灌施肥下铵态氮和硝态氮主要集中在0~40 cm土层,随时间变化呈先升后降的变化趋势,分别于施肥后第5天和第10 天达到最大值(211.1和128.8 mg·kg-1).沟施下铵态氮和硝态氮主要集中在0~20 cm土层,硝态氮含量随时间呈逐渐增加的变化趋势,于施肥后第20天达到最大值(175.7 mg·kg-1),但铵态氮随时间无显著变化;滴灌施肥下氮素在土壤中的有效时长约为20 d,而沟施下氮素在土壤中有效时长超过20 d.滴灌施肥下,土壤中铵态氮和硝态氮的含量和运移距离均随施氮量的增加而增加;沟施下,施氮量越高土壤中硝态氮含量越高,但对铵态氮含量无显著影响.滴灌施肥下林地土壤中尿素的水解、硝化速率和运移深度均高于沟施,且施氮量越大,氮素在深层土壤的积累量越高.结合欧美108杨根系和土壤氮素分布特征,滴灌施肥能够为更大的细根分布区提供氮素,更适用于人工林培育.当单次施氮量为每株50 g时,既可保证细根主要分布区内有较高含量的氮分布又不会造成淋溶,肥料利用效率可能更高.  相似文献   

2.
灌溉量和施氮量对冬小麦产量和土壤硝态氮含量的影响   总被引:3,自引:1,他引:2  
Jiang DY  Yu ZW  Xu ZZ 《应用生态学报》2011,22(2):364-368
研究了大田条件下灌溉量和施氮量对小麦产量和土壤硝态氮含量的影响.结果表明:增加灌溉量,0~200 cm土层硝态氮含量呈先降后升又降的趋势.0~80 cm土层硝态氮含量显著低于对照,而80~200 cm土层硝态氮含量显著高于对照.随灌溉量的增加,土壤硝态氮向深层运移加剧,在成熟期,0~80 cm土层硝态氮含量降低,120~200 cm土层硝态氮含量升高,并在120~140 cm土层硝态氮含量出现高峰.灌溉量不变,施氮量由210 kg·hm-2增加到300 kg·hm-2,开花期、灌浆期、成熟期0~200 cm各土层土壤硝态氮含量显著升高.随灌溉量的增加,小麦籽粒产量先增加后降低,以全生育期灌溉量为60 mm的处理籽粒产量最高.增加施氮量,籽粒产量、蛋白质含量和蛋白质产量显著提高.本试验中,施氮量为210 kg.hm-2、两次灌溉总量为60 mm的处理籽粒产量、蛋白质含量、蛋白质产量和收获指数均较高,且土壤硝态氮损失少,是较合理的水氮运筹模式.  相似文献   

3.
冬小麦生长条件下土壤硝态氮淋洗的传递函数模拟和预报   总被引:6,自引:0,他引:6  
任理  袁福生  张福锁 《生态学报》2004,24(10):2281-2288
观测了地中渗透计的土壤在 3种不同施肥量下冬小麦自播种至返青期硝态氮的淋洗动态 ,由试验资料获得了硝态氮在土壤中迁移时间的概率密度函数 ,进而运用传递函数模型对土壤排水出流液中的硝态氮浓度和淋洗量动态进行了数学模拟和预报。  相似文献   

4.
灌溉方式和施氮量对棉田氮肥利用率及损失的影响   总被引:6,自引:0,他引:6  
在田间条件下,研究不同灌溉方式(滴灌和漫灌)和不同施氮水平(0、240、360、480kg N·hm-2)对棉田氮肥利用率及损失的影响,并定量分析了氮肥被植株吸收、土壤硝态氮残留,以及氨挥发、硝态氮淋溶损失、硝化反硝化损失等氮素循环转化途径.结果表明:滴灌棉花籽棉产量、植株吸氮量和氮肥利用率均显著大于漫灌.漫灌土壤硝态氮残留量显著高于滴灌;在不同施氮量处理中滴灌土壤氨挥发损失量占肥料氮施用量的比例为0.06%~0.14%,且显著高于漫灌;滴灌和漫灌硝态氮淋溶损失量占肥料氮施用量的比例分别为4.4%和8.8%,与漫灌相比,滴灌能显著降低淋溶水中硝态氮淋失量;滴灌和漫灌肥料氮的硝化-反硝化损失量分别占肥料氮施用量的17.9%和16.8%.硝态氮淋溶和硝化-反硝化损失是新疆棉田氮素损失的主要途径.  相似文献   

5.
为研究在红壤中施用生物质炭后硝态氮的垂直运移规律,采用室内土柱模拟的方法,分别按照炭土比为0、2.22%(5 t·hm-2)、4.45%(10 t·hm-2)、8.95%(20 t·hm-2)、13.37%(30 t·hm-2)和17.80%(40 t·hm-2)设置混合土壤,并采用CXTFIT 2.0模型对试验结果进行拟合.结果表明: 在饱和条件下,不同生物质炭添加比例下,硝态氮运移的穿透曲线发生明显变化.不同处理的硝态氮相对浓度(C/Co)峰值、淋溶速率和累积淋失量随生物质炭添加量的增加而显著降低.各穿透曲线尾部均存在一定的拖尾现象,且随生物质炭添加量的增加拖尾现象越显著.对硝态氮穿透曲线的影响因素分析可知,生物质炭影响了土壤的容重、有机碳、孔隙度、阳离子交换量(CEC)等物理性质,进而导致各处理硝态氮穿透曲线发生了变化.采用CXTFIT 2.0数学模型模拟硝态氮在土壤中的运移,硝态氮的穿透曲线拟合值与实测值呈显著正相关,相关系数均>0.850,能够很好地对土壤硝态氮运移和运移参数进行预测,试验结果可为预测生物质炭施用对地下水体环境硝态氮的影响提供科学依据.  相似文献   

6.
为了解全球气候变化背景下氮沉降对土壤氮矿化的影响及硅添加对土壤氮矿化的促进作用, 该试验设置不同浓度的氮肥单独添加(0、20、40、60 g·m -2, 分别为对照CK、N20、N40、N60)以及与硅肥配施(硅酸4 g·m -2, Si4), 测定不同处理下0-20、20-40、40-60 cm土层土壤硝态氮含量、铵态氮含量、净硝化速率、净氨化速率以及净矿化速率。结果显示: (1)单独添加氮肥, 各土层土壤硝态氮和铵态氮含量均随处理浓度的增加而增加, 0-20 cm土层N20、N40、N60处理下土壤硝态氮和铵态氮分别较CK增加63.48%、126.04%、247.03%和80.66%、152.52%、244.56%; 随着土层深度增加, 土壤硝态氮、铵态氮含量均有下降, 20-40、40-60 cm土层较0-20 cm土层硝态氮含量分别平均减少53.90%、76.05%, 铵态氮含量分别平均减少48.62%、68.23%。(2)土壤净硝化速率、净氨化速率及净矿化速率随着氮肥浓度增加均呈上升趋势。相同氮肥添加浓度下, 土壤净硝化速率、净氨化速率和净矿化速率随着土层深度增加逐渐下降(除CK外)。(3)与单独添加氮肥比较, 氮硅肥配施, 土壤氮含量有显著提高, 在0-20 cm土层硝态氮和铵态氮较CK分别增加98.78%、192.62%、330.16%和99.96%、195.82%、306.32%, 20-40、40-60 cm土层也有类似趋势。同时, 氮硅配施促进了土壤氮矿化行为, 在0-20 cm土层, N60Si4处理下的土壤净硝化速率、净氨化速率较单独施氮时分别增加35.88%、27.41%。以上结果表明, 与单独氮肥添加相比, 氮硅配施不但能提高土壤氮含量, 而且能促进土壤氮的矿化作用, 对大气氮沉降有一定的缓解作用。  相似文献   

7.
旱地小麦不同栽培条件对土壤硝态氮残留的影响   总被引:19,自引:2,他引:17  
在陕西渭北旱塬进行了2a田间试验,研究不同栽培模式、施氮量和小麦种植密度对旱地硝态氮残留的影响。结果表明,种植小麦2a后0~200 cm土壤剖面中残留硝态氮58.6~283.9 kg/hm2,数量可观,短期内在渭北旱塬深厚的土壤中不会对地下水造成威胁,但夏季休闲期间容易下迁至作物无法吸收的土壤深度。与常规无覆盖模式相比,地膜覆盖和垄沟种植显著提高了作物对氮素的吸收,但同时也增加了土壤0~200 cm的硝态氮残留,这与地膜覆盖导致有机氮矿化增加有关;秸秆覆盖对作物氮素吸收和硝态氮残留均没有明显影响。施氮量低于120 kg/hm2时,各种栽培模式土壤剖面残留硝态氮的分布差异较小,只有地膜覆盖和垄沟种植处理在土壤表层有少量硝态氮累积;施氮量为240 kg/hm2时,无覆盖和秸秆覆盖土壤60~120 cm深度都有明显累积峰,地膜覆盖和垄沟种植土壤残留硝态氮则在60 cm以上土层累积较多。小麦种植密度也影响了各种栽培模式土壤硝态氮及其分布特点。垄沟种植条件下,从土壤表层到200 cm的深层,垄上土壤残留硝态氮均显著高于沟内土壤;上层差异最大,随着土壤深度的增加其差异逐渐降低;随着施氮量的增加,这种差异显著增大;随小麦种植密度的增加则显著降低。随着施氮量增加,小麦吸氮量和土壤中残留硝态氮量均显著提高;施氮增加的残留硝态氮占施氮量的0.3%~44.6%。垄沟种植模式施氮增加的残留硝态氮最多,地膜覆盖处理次之,垄沟种植处理垄上土壤增加量远远高于沟内土壤。施氮量提高1倍,增加的残留硝态氮量平均提高了3倍多。提高小麦种植密度,施氮增加的残留硝态氮平均减小13.2 kg/hm2。由于种植密度增加显著提高了小麦对氮素的吸收,因此硝态氮残留有降低的趋势。其中,秸秆覆盖模式80~140 cm土层降低显著;地膜覆盖条件下高密与低密残留硝态氮的差异主要在深层;垄沟模式中,低密度种植硝态氮残留量在整个土壤剖面都高于高密度处理;而无覆盖条件下,残留硝态氮则随种植密度的提高呈增加趋势。  相似文献   

8.
为了解全球气候变化背景下氮沉降对土壤氮矿化的影响及硅添加对土壤氮矿化的促进作用,该试验设置不同浓度的氮肥单独添加(0、20、40、60 g·m~(–2),分别为对照CK、N20、N40、N60)以及与硅肥配施(硅酸4 g·m~(–2), Si4),测定不同处理下0–20、20–40、40–60cm土层土壤硝态氮含量、铵态氮含量、净硝化速率、净氨化速率以及净矿化速率。结果显示:(1)单独添加氮肥,各土层土壤硝态氮和铵态氮含量均随处理浓度的增加而增加, 0–20 cm土层N20、N40、N60处理下土壤硝态氮和铵态氮分别较CK增加63.48%、126.04%、247.03%和80.66%、152.52%、244.56%;随着土层深度增加,土壤硝态氮、铵态氮含量均有下降,20–40、40–60cm土层较0–20cm土层硝态氮含量分别平均减少53.90%、76.05%,铵态氮含量分别平均减少48.62%、68.23%。(2)土壤净硝化速率、净氨化速率及净矿化速率随着氮肥浓度增加均呈上升趋势。相同氮肥添加浓度下,土壤净硝化速率、净氨化速率和净矿化速率随着土层深度增加逐渐下降(除CK外)。(3)与单独添加氮肥比较,氮硅肥配施,土壤氮含量有显著提高,在0–20 cm土层硝态氮和铵态氮较CK分别增加98.78%、192.62%、330.16%和99.96%、195.82%、306.32%,20–40、40–60 cm土层也有类似趋势。同时,氮硅配施促进了土壤氮矿化行为,在0–20 cm土层, N60Si4处理下的土壤净硝化速率、净氨化速率较单独施氮时分别增加35.88%、27.41%。以上结果表明,与单独氮肥添加相比,氮硅配施不但能提高土壤氮含量,而且能促进土壤氮的矿化作用,对大气氮沉降有一定的缓解作用。  相似文献   

9.
半干旱区农田土壤无机氮积累与迁移机理   总被引:41,自引:4,他引:37  
吴金水  郭胜利  党廷辉 《生态学报》2003,23(10):2040-2049
研究黄土旱塬区长期定位试验中 1 0个典型处理土壤剖面 (0~ 30 0 cm)水分和无机氮的季节变化 ,探讨在半干旱区农田无机氮的积累与迁移机理。结果表明休闲处理除表层外土壤剖面的水分、硝态氮和铵态氮的含量分别稳定在 1 7%~ 2 0 %、4~ 7mg N/kg和 6~ 1 0 mg N/kg土的范围。种植作物显著地改变土壤剖面水分和硝态氮的分布状况 ,并使其含量发生大幅度的季节变化。作物利用限制了农田土壤硝态氮向深层的迁移。小麦连作无化肥氮处理及苜蓿连作不施肥或氮、磷加有机肥处理土壤硝态氮主要集中在 0~ 40 cm土层。小麦连作单施氮肥 (1 2 0 kg N/(hm2· a) )处理经 1 7年后土壤剖面硝态氮积累总量达到施氮总量的55% ,40~ 60 cm和 1 4 0~ 2 2 0 cm土层出现两个高峰 ,并表现出随季节性变化向土壤深层迁移的趋势。氮肥与磷肥或有机肥施用大幅度减少了土壤剖面硝态氮积累 ,并使其限制在 1 60 cm以上的土层内 ,2 0 0 cm以下土层的硝态氮含量极低 (<1 mg N/kg土 ) ,因而不具向深层迁移的条件。土壤剖面的铵态氮含量不受作物、施肥和季节性气候变化的影响  相似文献   

10.
土壤硝态氮供应对满足作物氮素需求至关重要,但间作如何影响土壤硝态氮供应及其作用机制尚不清楚。本研究基于4个氮水平(N0, 0 kg·hm-2; N1, 62.5 kg·hm-2; N2, 125 kg·hm-2; N3, 187.5 kg·hm-2)的马铃薯单作、马铃薯与玉米间作小区试验,分析土壤硝态氮含量与强度、硝化势和氨氧化功能基因丰度的差异,探讨间作影响土壤硝态氮供应和氮调控的机理。结果表明: 土壤硝态氮含量和强度随施氮量增加而升高,但同一施氮水平下间作均低于单作。施氮提高了土壤硝化势,且单作的响应高于间作。土壤中氨氧化细菌(AOB)的amoA基因丰度大于氨氧化古菌(AOA),二者在间作时均随施氮量增加呈现先增加后降低的趋势;相同施氮量下,间作的AOA和AOB基因丰度(除N2外)均低于单作。相关分析、回归分析和主成分分析显示,马铃薯间作后,土壤AOB、AOA的amoA基因丰度下降,硝化势减弱,导致土壤硝态氮含量和强度降低。因此,间作导致土壤硝态氮供应降低与土壤氮转化的微生物过程有关,间作条件下的马铃薯种植应注意保障土壤氮素供应。  相似文献   

11.
施氮量对夏季玉米产量及土壤水氮动态的影响   总被引:40,自引:0,他引:40  
在黄土高原南部旱地有大量氮素残留背景的田块上,研究了不同氮肥用量对夏玉米生长及对土壤水分、硝态氮、铵态氮累积及其剖面分布的影响。结果表明:适量施氮可以提高作物产量;过量施氮没有表现出增产效果,其氮肥利用率只有3.9%,残留率则高达87.2%。施氮240kghm^-2时,0~200cm土层土壤水分达到593mm,且可以下渗到200cm土层;不施氮和施氮120kghm^-2以小区土壤的蓄水量分别为561和553mm,可下渗到180cm。对矿质态氮而言,施氮量可以显著影响土壤中硝态氮的累积和分布,但对铵态氮的影响较小;施氮0,120,240kghm^-2时.收获期土壤硝态氮累积量分别为78,148,290kghm^-2,硝态氮的下移前沿分别到达60,60,140cm。可见,适量施氮会促进作物对土壤水氮的利用。提高作物生物量和产量;过量施氮导致硝态氮在土壤中大量累积,提高硝态氮随水分淋溶危险;但硝态氮向下层土壤的移动显著滞后于水分。  相似文献   

12.
以3年生新红星苹果树为试验材料,在春季将稻草苫、农用地毯、透明塑料膜和园艺地布覆盖地表,于夏秋季调查根区土壤硝化-反硝化作用、硝酸还原酶(NR)和亚硝酸还原酶(NiR)活性以及铵态氮、硝态氮、亚硝态氮含量和植株生长的变化.结果表明: 4种覆盖处理均降低了夏季土壤硝化强度和夏秋之交的土壤NiR活性,提高了秋季土壤铵态氮含量以及夏秋之交的土壤反硝化强度、NR活性和铵态氮含量,降低了夏秋季土壤硝化强度、反硝化强度和NR活性的变异系数;稻草苫提高了夏季和秋季土壤反硝化强度与硝态氮含量,降低了夏季土壤NR和NiR活性;在4种处理中,稻草苫覆盖的土壤硝化与反硝化强度及NR活性在整个夏秋季的变异系数最低;农用地毯降低了夏季土壤反硝化强度,提高了夏季土壤NR和NiR活性、夏秋之交土壤硝态氮含量和秋季土壤反硝化强度;透明塑料膜降低了夏季土壤硝态氮含量,提高了夏季土壤亚硝态氮含量、夏秋之交土壤硝态氮含量以及秋季土壤硝化强度和NiR活性;园艺地布提高了夏季土壤反硝化强度、夏秋之交和秋季土壤的硝化强度以及秋季土壤硝态氮含量.4种覆盖处理均促进了植株生长,其中稻草苫和园艺地布促进新梢和干径增粗的效果更显著;4种覆盖处理对夏秋季土壤硝酸盐代谢的影响不同,但对土壤硝酸盐代谢与转化都具有稳定作用,其中稻草苫的稳定效果最好.  相似文献   

13.
土壤硝态氮时空变异与土壤氮素表观盈亏Ⅱ.夏玉米   总被引:33,自引:5,他引:33  
在不同氮肥用量下研究了夏玉米生育期间土壤硝态氮的时空变化特征 ,同时对不同生育阶段土壤氮素的盈余与亏缺进行了表观估算 ,结果表明 :0~ 1 0 0 cm土体内 ,夏玉米一生中土壤硝态氮均表现为在中间土层含量低 ,上层和下层含量高 ,一般以表层最高 ,但受降雨的影响在高氮肥处理会出现下层高于表层的现象。施氮肥提高了土壤硝态氮含量 ,而且提高程度与用量成正相关。降雨时土壤硝态氮可随水下移 ,在干旱条件下也可随水上移。土壤硝态氮的运移不仅受土壤水分状况的影响 ,还取决于硝态氮含量 ,含量越高 ,向下移动的越深 ,淋失的可能性越大 ;在本试验条件下 ,土壤氮素盈余主要出现在夏玉米播种~ 9叶展和 9叶展~吐丝两个生育阶段 ,吐丝~收获则出现土壤氮素的亏缺。随着氮肥用量的增加 ,玉米一生中土壤氮素的表观盈余量明显增大 ,最高平均可达 2 74 .1 kg N/hm2。研究结果表明 ,土壤氮损失是盈余氮素的一个主要去向 ,而硝态氮淋洗是夏玉米生育期间土壤氮素损失的一个重要途径。  相似文献   

14.
华北平原冬小麦/夏玉米轮作体系土壤硝态氮的适宜含量   总被引:19,自引:0,他引:19  
采用冬小麦季不同施氮处理(夏玉米季不施氮)研究了华北平原冬小麦/夏玉米轮作体系夏玉米季土壤硝态氮的适宜含量.结果表明:在播前土壤无机氮含量较高的条件下,冬小麦季施用150kgN.hm-2即可满足冬小麦/夏玉米两季作物的氮素需求;各氮肥处理在冬小麦季的氮肥施用当季的利用率仅为11%~23%,在夏玉米季氮肥残效利用率则高达30%~52%.当夏玉米播前0~90cm土层硝态氮含量达到82kg.hm-2时,无需施氮即可保证夏玉米十叶期的生长,达到151kg.hm-2时,无需施氮即可保证整个生育期的生长.夏玉米十叶期和收获后0~90cm土层硝态氮含量低于46和65kg.hm-2时,则影响作物正常生长.综合考虑产量和环境效应,冬小麦/夏玉米轮作体系中0~90cm土层硝态氮含量应控制在65~151kg.hm-2之间.  相似文献   

15.
二月兰-春玉米轮作生产体系是近年来为解决华北地区出现的大面积冬闲田而提出的冬绿肥-春玉米生产新模式.本文依托定位试验,研究了该体系从二月兰翻压到玉米收获期间的土壤硝态氮时空变化特征.结果表明:土壤硝态氮含量呈玉米生育前期高后期低的时间变化特征和硝态氮含量峰值随着生育期的推移逐渐下移的空间变化特征,且土壤硝态氮含量随施肥量的增加而显著增加.翻压二月兰对土壤硝态氮含量的时空变化有一定影响,冬春季种植二月兰可降低0~180 cm土壤硝态氮累积量;二月兰翻压后,春玉米苗期与喇叭口期土壤硝态氮规律基本一致,主要集中在0~20 cm土层,0~100 cm土壤剖面为有二月兰处理高于无二月兰处理,100~180 cm土壤剖面则为有二月兰处理低于无二月兰处理;抽雄期以后,土壤硝态氮含量普遍较低,100~180 cm土层土壤硝态氮含量为有二月兰处理略高于无二月兰处理.总体上,翻压二月兰可以增加0~180 cm土层土壤硝态氮保蓄量.  相似文献   

16.
通过室内模拟试验,研究40%、70%和110%土壤饱和持水量(WHC)下,不同形态氮(硝态氮和铵态氮)添加对亚热带森林红壤氮素转化的影响.结果表明:70%WHC下土壤净矿化和氨化速率最高,40%WHC下最低;与对照相比,70%WHC下添加硝态氮使土壤净矿化和氨化速率分别降低56.1%和43.0%,110%WHC下分别降低68.2%和19.0%,但提高了氨化速率占矿化速率的比例,表明添加硝态氮抑制了硝化.110%WHC下,添加硝态氮后,土壤净硝化速率最低,但氧化亚氮(N2O)浓度最高,最大值出现在第3~7天,表明N2O产生自反硝化途径,硝态氮也在同时段降低;而40%WHC和70%WHC下,N2O浓度在培养初期最大,即使在铵态氮和硝态氮添加处理下,试验后期N2O浓度也没有显著变化,表明自氧硝化是试验前期N2O产生的主要途径.40%WHC下,土壤可溶性有机碳含量增加最多,且在铵态氮添加处理下增加最多,可见添加铵态氮促进土壤有机质矿化,增加可溶性有机碳,但是土壤水分含量增多不利于有机质矿化.在40%WHC和110%WHC下,铵态氮添加处理土壤可溶性有机氮(SON)变化速率分别显著高于对照73.6%和176.6%,而在硝态氮添加处理下,只有40%WHC下显著高于对照78.7%,表明高水分条件和添加铵态氮有利于SON的形成.  相似文献   

17.
土壤硝态氮时空变异与土教育界氮素表观盈亏Ⅱ.夏玉米   总被引:3,自引:0,他引:3  
在不同氮肥用量下研究了夏玉米生育期间土壤硝态氮的时空变化特征,同时对不同生育阶段土壤氮素的盈余与亏缺进行了表观估算,结果表明:0-100cm土体内,夏玉米生中土壤硝态氮均表现为在中国土层含量低,上层和下层含量高,一般以表层最高,但受降雨的影响在高氮肥处理会出现下层高于表层的现象,施氮肥提高了土壤硝态氮含量,而且提高程度与用量成正相关,降雨时土壤硝态氮可随水下移,在干旱条件下也可随水上移,土壤硝态氮的运移不仅受土壤水分状况的影响,还取决于硝态氮含量,含量越高,向下移动的越深,淋失的可能性越大;在本试验条件下,土壤氮素盈余主要出现在夏玉米播种9叶展和9叶展-吐丝两个生育阶段,吐丝-收获则出现土壤氮素的亏缺,随着氮肥用量的增加,玉米一生中土壤氮素的表观盈余量明显增大,最高平均可达274.12kgN/hm^2。研究结果表明,土壤氮损失是盈余氮素的一个主要去向,而硝态氮淋洗是夏玉米生育期间土壤氮素损失的一个重要途径。  相似文献   

18.
为探究气候变化背景下,小麦-大豆轮作体系中小麦季施用硝化抑制剂对大豆土壤无机氮、N2O排放及相关酶活性的后效作用,在控制气室内设置了不同的大气CO2浓度(400和600μmol/mol)和气温(环境温度T和T+2℃),在此基础上测定了小麦季添加硝化抑制剂时大豆土壤的硝态氮和铵态氮的含量、土壤硝化-反硝化相关酶活性以及N2O排放量。结果表明,小麦季添加硝化抑制剂配合麦秸还田,使大豆土壤的硝态氮和铵态氮均有所增加,但是对土壤硝化-反硝化酶的活性影响较小。升温(ET)使大豆土壤硝态氮含量显著增加,而铵态氮含量显著降低;大气CO2浓度增加(EC)或同时升高气温和CO2浓度(ECT),土壤硝态氮和铵态氮的含量均有所增加,但与环境高温和CO2浓度(CK)下的无机氮含量差异不显著。不同环境条件下的土壤硝化-反硝化酶的活性没有明显规律。在ET和ECT条件下,大豆生长季N2O排放总量均显著高于CK处理,且添加硝化抑制剂使N2O排放...  相似文献   

19.
杨荣  苏永中 《生态学报》2009,29(3):1459-1469
在黑河中游边缘绿洲沙地农田研究了不同的水氮配合对玉米产量、土壤硝态氮在剖面中的累积和氮平衡的影响.结果表明,施氮处理较不施氮处理产量增加48.22%~108.6%,施氮量超过225 kg hm-2,玉米产量不再显著增加.受土壤结构影响土壤硝态氮在土壤中呈"W"型分布,即土壤硝态氮含量在0~20 cm、140~160 cm和260~300 cm土层均出现峰值,并随施氮量增加,峰值增高.在常规高灌溉量处理硝态氮含量峰值最高值出现在260~300 cm土层,节水25%灌溉处理硝态氮含量峰值最高值出现在土壤表层0~20 cm土层.在常规高灌溉量处理0~300 cm土层中200~300土层硝态氮累积量所占比例最高,介于27.56%~51.86%之间;节水25%灌溉处理在0~300 cm土层中100~200土层硝态氮累积量所占比例最高,介于32.94%~38.07%之间;表明低灌溉处理下土壤硝态氮在土壤浅层累积较多,而高灌溉处理使更多的硝态氮淋溶至土壤深层.与2006年相比,2007年不施氮处理0~200 cm土层土壤硝态氮含量和积累量均明显减少;而施氮处理变化很小,在低灌溉处理甚至表现出硝态氮含量和积累量增加,表明施氮是土壤硝态氮累积的主要来源,而灌溉则使硝态氮向土壤深层淋溶.0~200 cm 土层土壤硝态氮累积量平均介于27.66~116.68 kg hm-2、氮素表观损失量平均介于77.35~260.96 kg hm-2,和施氮量均呈线性相关,即随施氮量增加,土壤硝态氮累积量和氮素表观损失量均增加,相关系数R2介于0.79~0.99之间,相关均显著.随施氮量增加,玉米总吸氮量和氮收获指数增加,氮的农学利用率降低,而灌溉的影响较小.施氮量超过225 kg hm-2时,地上部植株氮肥吸收利用率和籽粒氮肥吸收利用率开始有降低趋势.所以,在沙地农田,节水10%~25%的灌溉水平和225 kg hm-2的施氮水平可以在避免水肥过量投入的基础上减少土壤有机氮淋溶对地下水造成的污染威胁.  相似文献   

20.
帽儿山地区不同类型河岸带土壤的反硝化效率   总被引:6,自引:1,他引:5  
以帽儿山地区森林背景下的森林、皆伐、草地河岸带和农田背景下的森林、裸地河岸带土壤为研究对象,采用硝态氮消失法,研究了不同背景下各类型河岸带的反硝化强度及其影响因素.结果表明:各类型河岸带中,农田背景下的森林河岸带土壤反硝化强度最大,其硝态氮消失率的变化范围为46.79%~91.13%,农田背景下的裸地河岸带土壤反硝化强度最小,其硝态氮消失率的变化范围为15.64%~81.84%;森林背景下土壤反硝化强度的大小顺序为皆伐河岸带〉森林河岸带〉草地河岸带,其硝态氮消失率的变化范围依次为42.06%~90.39%、28.24%~85.73%、21.44%~83.11%.研究区河岸带表层土壤的反硝化强度大于底层.河岸带土壤反硝化强度均受可利用碳、硝态氮的限制,各类型河岸带以农田背景下森林河岸带土壤反硝化潜力最大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号