首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Factor D, a protein purified from rabbit liver that selectively enhances traversal of template oligodeoxythymidine tracts by diverse DNA polymerases, was examined for the sequence specificity of its binding to DNA. Terminally [32P]-labeled oligomers with the sequence 5'-d[AATTC(N)16G]-3', N being dT, dA, dG, or dC, were interacted with purified factor D and examined for the formation of protein-DNA complexes that exhibit retarded electrophoretic mobility under nondenaturing conditions. Whereas significant binding of factor D to 5'-d[AATTC(T)16G]-3' is detected, there is no discernable association between this protein and oligomers that contain 16 contiguous moieties of dG, dA, or dC. Furthermore, factor D does not form detectable complexes with the duplexes oligo(dA).oligo(dT) or poly(dA).poly(dT). The preferential interaction of factor D with single-stranded poly(dT) is confirmed by experiments in which the polymerase-enhancing activity of this protein is protected by poly(dT) against heat inactivation two- and four-fold more efficiently than by poly(dA) or poly(dA).poly(dT), respectively.  相似文献   

2.
E. coli DNA topoisomerase I catalyzes DNA topoisomerization by transiently breaking and rejoining single DNA strands (1). When an enzyme-DNA incubation mixture is treated with alkaline or detergent, DNA strand cleavage occurs, and the enzyme becomes covalently linked to the 5'-phosphoryl end of the cleaved DNA (2). Using oligonucleotides of defined length and sequence composition, this cleavage reaction is utilized to study the mechanism of E. coli DNA topoisomerase I. dA7 is the shortest oligonucleotide tested that can be cleaved by the enzyme. dT8 is the shortest oligo(dT) that can be cleaved. The site of cleavage in both cases is four nucleotides from the 3' end of the oligonucleotide. No cleavage can be observed for oligo(dC) and oligo(dG) of length up to eleven bases long. dC15 and dC16 are cleaved at one tenth or less the efficiency of oligo(dA) and oligo(dT) of comparable length.  相似文献   

3.
Y Kawase  S Iwai  H Inoue  K Miura    E Ohtsuka 《Nucleic acids research》1986,14(19):7727-7736
The thermal stability of DNA duplexes containing deoxyinosine in a pairing position in turn with each of the four major deoxynucleotides has been investigated by measuring ultraviolet-absorbance at different temperatures. d(G2A4 X A4G2) and d(C2T4YT4C2) were prepared by the solid-phase phosphotriester method. When X is deoxyinosine, the Tm values of the duplexes are in the order Y = dC greater than dA greater than dG greater than dT greater than dU. The Tm of other duplexes containing dG, dA and dT at X were also measured. Self-complementary duplexes d(GGGAAINTTCCC) showed the same order of stability with N being dC, dA, dG and dT. Thermal stabilities of duplexes containing dG instead of dI were compared with other matched and mismatched duplexes. The Tm values of sequence isomers containing purine-pyrimidine combinations were compared. Self-complementary duplexes containing G-C and A-T in the central positions showed Tm values ca. 10 degrees higher than those containing C-G and T-A in the same positions. Thermodynamic parameters and circular dichroism spectra of these oligonucleotides were compared.  相似文献   

4.
Three types of DNA: approximately 2700 bp polydeoxyguanylic olydeoxycytidylic acid [poly(dG)-poly(dC)], approximately 2700 bp polydeoxyadenylic polydeoxythymidylic acid [poly(dA)-poly(dT)] and 2686 bp linear plasmid pUC19 were deposited on a mica surface and imaged by atomic force microscopy. Contour length measurements show that the average length of poly(dG)-poly(dC) is approximately 30% shorter than that of poly(dA)-poly(dT) and the plasmid. This led us to suggest that individual poly(dG)-poly(dC) molecules are immobilized on mica under ambient conditions in a form which is likely related to the A-form of DNA in contrast to poly(dA)-poly(dT) and random sequence DNA which are immobilized in a form that is related to the DNA B-form.  相似文献   

5.
CD binding studies of nonintercalative oligopeptides related to netropsin, named lexitropsins, have been carried out with synthetic duplex DNAs and natural DNA. While netropsin possesses a high dA.dT sequence specificity, these ligands show a progressive lowering of the ability to bind to dA.dT basepairs in DNA and a dramatic reduction of the sequence specificity seen at high salt concentration due to a replacement of pyrrole moieties by imidazoles. This variation in DNA sequence specificity of lexitropsins is mirrored in corresponding large differences in the template inactivation of poly(dA-dT).poly(dA-dT) in the RNA polymerase reaction by these drugs. The presence of imidazole permits binding of the oligopeptide to dG.dC pairs, which is most effective for the triimidazole peptide. Results at increasing salt concentration reveal, however, that a tight binding to pure dG.dC sequences does not occur. A proper sequence containing dG.dC and dA.dT pairs is supposed to be required for a higher specificity. The CD data accord well with previously reported melting studies and are in favor of recent theoretical results suggesting that the diminished AT preference may be due to an increase in the complexation energy with the dG.dC pairs.  相似文献   

6.
Osmium tetroxide, 2,2'-bipyridine (Os,bipy) has been widely applied as a probe of the DNA structure. To obtain information about reactivity of DNA bases toward this probe synthetic homopolynucleotides poly(dT), poly(dC), poly(dG) and poly(dA) were treated with Os,bipy and the content of modified bases measured by stripping voltammetry and absorption spectrophotometry. After 20 hours' treatment strong modification of poly(dT) and poly(dC) and weak modification of poly(dG) were observed, while no modification was detected in poly(dA). At short incubation times under conditions close to those usually used in probing the DNA structure the extent of poly(dT) modification was more than 10 times higher than that of poly(dC). Thus, in single-stranded DNA Os,bipy reacts with T much greater than C and G. Due to the fast reaction of thymines with Os,bipy (and osmium tetroxide, pyridine) these chemicals can be applied in Maxam-Gilbert nucleotide sequencing as agents specific for thymines in single-stranded DNA.  相似文献   

7.
Fapy.dG is produced in DNA as a result of oxidative stress. Under some conditions Fapy.dG is formed in greater yields than 8-oxodG from a common chemical precursor. Recently, Fapy.dG and its C-nucleoside analogue were incorporated in chemically synthesized oligonucleotides at defined sites. Like 8-oxodG, Fapy.dG instructs DNA polymerase to misincorporate dA opposite it in vitro. The interactions of DNA containing Fapy.dG or the nonhydrolyzable analogue with Fpg and MutY are described. Fpg excises Fapy.dG (K(M) = 2.0 nM, k(cat) = 0.14 min(-1)) opposite dC approximately 17-fold more efficiently than when mispaired with dA, which is misinserted by DNA polymerase in vitro. Fpg also prefers to bind duplexes containing Fapy.dG.dC or beta-C-Fapy.dG.dC compared to those in which the lesion is opposite dA. MutY incises dA when it is opposite Fapy.dG and strongly binds duplexes containing the lesion or beta-C-Fapy.dG. Incision from Fapy.dG.dA is faster than from dG.dA mispairs but slower than from DNA containing 8-oxodG opposite dA. These data demonstrate that Fapy.dG closely resembles the interactions of 8-oxodG with two members of the GO repair pathway in vitro. The similar effects of Fapy.dG and 8-oxodG on DNA polymerase and repair enzymes in vitro raise the question as to whether Fapy.dG elicits similar effects in vivo.  相似文献   

8.
Thermostable RecA protein (ttRecA) from Thermus thermophilus HB8 showed strand exchange activity at 65 degrees C but not at 37 degrees C, although nucleoprotein complex was observed at both temperatures. ttRecA showed single-stranded DNA (ssDNA)-dependent ATPase activity, and its activity was maximal at 65 degrees C. The kinetic parameters, K(m) and kcat, for adenosine triphosphate (ATP) hydrolysis with poly(dT) were 1.4 mM and 0.60 s-1 at 65 degrees C, and 0.34 mM and 0.28 s-1 at 37 degrees C, respectively. Substrate cooperativity was observed at both temperatures, and the Hill coefficient was about 2. At 65 degrees C, all tested ssDNAs were able to stimulate the ATPase activity. The order of ATPase stimulation was: poly(dC) > poly(dT) > M13 ssDNA > poly(dA). Double-stranded DNAs (dsDNA), poly(dT).poly(dA) and M13 dsDNA, were unable to activate the enzyme at 65 degrees C. At 37 degrees C, however, not only dsDNAs but also poly(dA) and M13 ssDNA showed poor stimulating ability. At 25 degrees C, poly(dA) and M13 ssDNA gave circular dichroism (CD) peaks at around 192 nm, which reflect a particular structure of DNA. The conformation was changed by an upshift of temperature or binding to Escherichia coli RecA protein (ecRecA), but not to ttRecA. The dissociation constant between ecRecA and poly(dA) was estimated to be 44 microM at 25 degrees C by the change in the CD. These observations suggest that the capability to modify the conformation of ssDNA may be different between ttRecA and ecRecA. The specific structure of ssDNA was altered by heat or binding of ecRecA. After this alteration, ttRecA and ecRecA can express their activities at each physiological temperature.  相似文献   

9.
The effects of purine deoxyribonucleosides on bromodeoxyurdine (BrdU) mutagenesis in Syrian hamster melanoma cells were determined. Both deoxyguanosine (dG) and deoxyadenosine (dA) were found to stimulate mutagenesis without changing the amount of BrdU in DNA. In addition, the stimulation of mutagenesis by dG and dA was suppressed by the addition of deoxycytidine (dC). These results suggest that BrdU mutagenesis involves the perturbation of dC metabolism, which perturbation is enhanced by dGTP and dATP. The mutagenic activity of dG in the absence of BrdU was tested, as was that of thymidine (dT), which we had shown previously to stimulate BrdU mutageneis. With dG alone, no increase above the spontaneous mutation frequency was detected. However, at extremely high concentration, dT in the absence of BrdU was slightly mutagenic, and the mutagenesis by dT was enhanced by dG and suppressed by dC.  相似文献   

10.
We have undertaken a search for mammalian DNA-binding proteins that enhance the activity of DNA polymerases in a template sequence-specific fashion. In this paper, we report the extensive purification and characterization of a new DNA-binding protein from rabbit liver that selectively stimulates DNA polymerases to copy synthetic poly[d(G-C)] and the poly(dC) strand of poly(dC).poly(dG) as well as single-stranded natural DNA that contains stretches of oligo(dC). The enhancing protein, a polypeptide of 65 kDa designated factor C, stimulates the copying of the two synthetic templates by Escherichia coli DNA polymerase I, Micrococcus luteus polymerase, and eukaryotic DNA polymerases alpha and beta, but not by avian myeloblastosis virus polymerase. Factor C, however, does not affect utilization by these polymerases of the poly(dG) strand of poly(dC).poly(dG), of poly(dC) primed by oligo(dG), or of poly(dA).poly(dT) and poly[d(A-T)]. With polymerase I, Michaelis constants (Km) of poly[d(G-C)] and of the poly(dC) strand of poly(dC).poly(dG) are decreased by factor C 37- and 4.7-fold, respectively, whereas maximum velocity (Vmax) remains unchanged. By contrast, neither the Km value of the poly(dG) strand of poly(dC).poly(dG) nor the Vmax value with this template is altered by factor C. Rates of copying of activated DNA, denatured DNA, or singly primed M13 DNA are not affected significantly by factor C. However, primer extension analysis of the copying of recombinant M13N4 DNA that contains runs of oligo(dC) within an inserted thymidine kinase gene shows that factor C increases processivity by specifically augmenting the efficiency at which polymerase I traverses the oligo(dC) stretches. Direct binding of factor C to denatured DNA is indicated by retention of the protein-DNA complex on columns of DEAE-cellulose. Binding of factor C to poly[d(G-C)] is demonstrated by the specific adsorption of the enhancing protein to columns of poly[d(G-C)]-Sepharose. We propose that by binding to poly[d(G-C)] and to poly(dC).poly(dG), factor C enables tighter binding of some DNA polymerases to these templates and facilitates enzymatic activity.  相似文献   

11.
Two-dimensional proton NMR studies are reported on the complementary d(C-A-T-G-T-G-T-A-C).d(G-T-A-C-epsilon A-C-A-T-G) nonanucleotide duplex (designated epsilon dA.dT 9-mer duplex) containing 1,N6-ethenodeoxyadenosine (epsilon dA), a carcinogen-DNA adduct, positioned opposite thymidine in the center of the helix. Our NMR studies have focused on the conformation of the epsilon dA.dT 9-mer duplex at neutral pH with emphasis on defining the alignment at the dT5.epsilon dA14 lesion site. The through-space NOE distance connectivities establish that both dT5 and epsilon dA14 adopt anti glycosidic torsion angles, are directed into the interior of the helix, and stack with flanking Watson-Crick dG4.dC15 and dG6.dC13 pairs. Furthermore, the d(G4-T5-G6).d(C13-epsilon A14-C15) trinucleotide segment centered about the dT5.epsilon dA14 lesion site adopts a right-handed helical conformation in solution. Energy minimization computations were undertaken starting from six different alignments of dT5(anti) and epsilon dA14(anti) at the lesion site and were guided by distance constraints defined by lower and upper bounds estimated from NOESY data sets on the epsilon dA.dT 9-mer duplex. Two families of energy-minimized structures were identified with the dT5 displaced toward either the flanking dG4.dC15 or the dG6.dC13 base pair. These structures can be differentiated on the basis of the observed NOEs from the imino proton of dT5 to the imino proton of dG4 but not dG6 and to the amino protons of dC15 but not dC13 that were not included in the constraints data set used in energy minimization. Our NMR data are consistent with a nonplanar alignment of epsilon dA14(anti) and dT5(anti) with dT5 displaced toward the flanking dG4.dC15 base pair within the d(G4-T5-G6).d(C13-epsilon A14-C15) segment of the epsilon dA.dT 9-mer duplex.  相似文献   

12.
Sugimoto N  Nakano M  Nakano S 《Biochemistry》2000,39(37):11270-11281
Thermodynamics of 66 RNA/DNA duplexes containing single mismatches were measured by UV melting methods. Stability enhancements for rG. dT mismatches were the largest of all mismatches examined here, while rU.dG mismatches were not as stable. The methyl group on C5 of thymine enhanced the stability by 0.12 approximately 0.53 kcal mol(-)(1) depending on the identity of adjacent Watson-Crick base pairs, whereas the 2'-hydroxyl group in ribouridine stabilized the duplex by approximately 0.6 kcal mol(-)(1) regardless of the adjacent base pairs. Stabilities induced by the methyl group in thymine, the 2'-hydroxyl group of ribouridine, and an nucleotide exchange at rG.dT and rU.dG mismatches were found to be independent of each other. The order for the mismatch stabilities is rG.dT > rU. dG approximately rG.dG > rA.dG approximately rG.dA approximately rA. dC > rA.dA approximately rU.dT approximately rU.dC > rC.dA approximately rC.dT, although the identity of the adjacent base pairs slightly altered the order. The pH dependence stability and structural changes were suggested for the rA.dG but not for rG.dA mismatches. Comparisons of trinucleotide stabilities for G.T and G.U pairs in RNA, DNA, and RNA/DNA duplexes indicate that stable RNA/DNA mismatches exhibit a stability similar to RNA mismatches while unstable RNA/DNA mismatches show a stability similar to that of DNA mismatches. These results would be useful for the design of antisense oligonucleotides.  相似文献   

13.
Tethering an ethylene diamine linker to the 5' terminus of an oligothymidine sequence provides a site for complexation with K(2)PtCl(4). Due to the low reactivity of dT toward a platinum source, we chose dT(8) and dT(15) as our initial synthetic targets for platination. Post-synthetic reaction of the platinum reagent with the diamino oligothymidine generates the diamino dichloro platinum-DNA conjugate that can be used for DNA duplex targeting by oligodeoxyncleotide-mediated triplex formation. The dT(8) sequence is not sufficiently long to facilitate triplex formation and Pt-cross-linking, whereas with a dT(15) sequence cross-linking between the third strand and the duplex occurs exclusively with the duplex target strand directly involved in triplex formation. No examples of cross-linking to the complementary target strand, or of cross-linking to both target strands are observed. Most efficient cross-linking occurs when the dinucleotide d(GpG) is present in the target strand and no cross-linking occurs with the corresponding 7-deazaG dinucleotide target. Cross-linking is also observed when dC or dA residues are present in the target strand, or even with a single dG residue, but it is not observed in any cases to dT residues. Triplex formation provides the ability to target specific sequences of double-stranded DNA and the orientational control arising from triplex formation is sufficient to alter the binding preferences of platinum. Conjugates of the type described here offer the potential of delivering a platinum complex to a specific DNA site.  相似文献   

14.
The effect that Escherichia coli single-stranded DNA binding (SSB) protein has on the single-stranded DNA-dependent ATPase activity of RecA protein is shown to depend upon a number of variables such as order of addition, magnesium concentration, temperature and the type of single-stranded DNA substrate used. When SSB protein is added to the DNA solution prior to the addition of RecA protein, a significant inhibition of ATPase activity is observed. Also, when SSB protein is added after the formation of a RecA protein-single-stranded DNA complex using either etheno M13 DNA, poly(dA) or poly(dT), or using single-stranded phage M13 DNA at lower temperature (25 °C) and magnesium chloride concentrations of 1 mm or 4 mm, a time-dependent inhibition of activity is observed. These results are consistent with the conclusion that SSB protein displaces the RecA protein from these DNA substrates, as described in the accompanying paper. However, if SSB protein is added last to complexes of RecA protein and single-stranded M13 DNA at elevated temperature (37 °C) and magnesium chloride concentrations of 4 mm or 10 mm, or to poly(dA) and poly(dT) that was renatured in the presence of RecA protein, no inhibition of ATPase activity is observed; in fact, a marked stimulation is observed for single-stranded M13 DNA. A similar effect is observed if the bacteriophage T4-coded gene 32 protein is substituted for SSB protein. The apparent stoichiometry of DNA (nucleotides) to RecA protein at the optimal ATPase activity for etheno M13 DNA, poly(dA) and poly(dT) is 6(±1) nucleotides per RecA protein monomer at 4 mm-MgCl2 and 37 °C. Under the same conditions, the apparent stoichiometry obtained using single-stranded M13 DNA is 12 nucleotides per RecA protein monomer; however, the stoichiometry changes to 4.5 nucleotides per RecA protein monomer when SSB protein is added last. In addition, a stoichiometry of four nucleotides per RecA protein can be obtained with single-stranded M13 DNA in the absence of SSB protein if the reactions are carried out in 1 mm-MgCl2. These data are consistent with the interpretation that secondary structure within the natural DNA substrate limits the accessibility of RecA protein to these regions. The role of SSB protein is to eliminate this secondary structure and allow RecA protein to bind to these previously inaccessible regions of the DNA. In addition, our results have disclosed an additional property of the RecA protein-single-stranded DNA complex: namely, in the presence of complementary base-pairing and at elevated temperatures and magnesium concentrations, a unique RecA protein-DNA complex forms that is resistant to inhibition by SSB protein.  相似文献   

15.
The synthesis of polydeoxyribose polymers by Escherichia coli DNA polymerase I has been investigated with control and gamma-irradiated DNA-like polymer templates containing only two bases. The results show that irradiation of a poly(dA) strand leads to the incorporation of dG, whereas irradiation of poly(dC) and poly(dG) strands both lead to the incorporation of dA. Irradiation of poly(dT) does not lead to the incorporation of any wrong base. The wrong bases are incorporated into the complementary strand of the newly synthesised DNA.  相似文献   

16.
G Deng  R Wu 《Nucleic acids research》1981,9(16):4173-4188
Terminal deoxynucleotidyl transferase (E.C.2.7.7.3.1.) from calf thymus was used to add homopolymer tails to duplex DNA with 3' protruding, even, or 3' recessive ends. A gel electrophoresis method was employed to analyze the tail length and the percent of DNA with tails. In all the tailing reactions, dA, dT, and dC tails from CoCl2-containing buffer were longer than those from MnCl2 - or MgCl2 - containing buffers, whereas dG tails from MnCl2 -containing buffer were the longest. By varying the ratio of dNTP over DNA terminus and the concentration of terminal transferase, optimal conditions were found for adding dG or dC tails of 10-25 nucleotides in length and dA and dT tails of 20-40 nucleotides in length to duplex DNA with all types of 3' termini.  相似文献   

17.
Sedimentation velocity analysis has been used to examine the base-specific structural conformations and unusual hydrogen bonding patterns of model oligonucleotides. Homo-oligonucleotides composed of 8-28 residues of dA, dT, or dC nucleotides in 100 mM sodium phosphate, pH 7.4, at 20 degrees C behave as extended monomers. Comparison of experimentally determined sedimentation coefficients with theoretical values calculated for assumed helical structures show that dT and dC oligonucleotides are more compact than dA oligonucleotides. For dA oligonucleotides, the average width (1.7 nm), assuming a cylindrical model, is smaller than for control duplex DNA whereas the average rise per base (0.34 nm) is similar to that of B-DNA. For dC and dT oligonucleotides, there is an increase in the average widths (1.8 nm and 2.1 nm, respectively) whereas the average rise per base is smaller (0.28 nm and 0.23 nm, respectively). A significant shape change is observed for oligo dC(28) at lower temperatures (10 degrees C), corresponding to a fourfold decrease in axial ratio. Optical density, circular dichroism, and differential scanning calorimetry data confirm this shape change, attributable from nuclear magnetic resonance analysis to i-motif formation. Sedimentation equilibrium studies of oligo dG(8) and dG(16) reveal extensive self-association and the formation of G-quadruplexes. Continuous distribution analysis of sedimentation velocity data for oligo dG(16) identifies the presence of discrete dimers, tetramers, and dodecamers. These studies distinguish the conformational and colligative properties of the individual bases in DNA and their inherent capacity to promote specific folding pathways.  相似文献   

18.
Binding of synthetic pentapeptide Val-Thr-Thr-Val-Val-N2H2Dns (where Dns is a residue of 5-dimethylamino naphthyl-1-sulfonic acid) is studied by circular dichroism, electron microscopy and fluorescence methods. It is found that this peptide can self-associate in aqueous solution as revealed from the concentration-dependent changes in the UV absorbance and fluorescence spectra. At high peptide concentration (3.10(-4) M) massive peptide aggregates are formed in solution and can be visualized by electron microscopy. It is shown that pentapeptide binds to DNA predominantly in a self-associated form and exhibits preferences for certain nucleotide sequences. It binds more strongly to poly(dG).poly(dC) and poly[d(A-C)].poly[d(G-T)] than to poly(dA).poly(dT). The complex with poly(dA).poly(dT) dissociates in the presence of 0.05 M NaCl, whereas the complex with poly(dG).poly(dC) is stable even in the presence of 0.2 M NaCl. The binding is a cooperative process which is accompanied by compaction of DNA at peptide/DNA base pair ratios greater than 2. At the initial stage of the compaction process the coalescence of DNA segments covered by bound peptide molecules results in the formation of DNA loops stabilized by interaction between bound peptide molecules. Increasing peptide/DNA ratio leads to the formation of rod-like particles as revealed from electron microscopy studies. Further increase in the peptide concentration leads to folding of fibrillar macromolecular complexes into globula each containing a single DNA molecule.  相似文献   

19.
Accesibility to DNA in the nucleus is important for the regulation of gene expression and for the effect of DNA-modifying drugs. We have now studied differential genome susceptibility in normal melanocytes and the corresponding malignant melanoma. DNA hypersensitivity assays revealed a markedly lesser degradation in melanoma nuclei compared to that in melanocytes. Cross-linking of DNA to nuclear proteins by ultraviolet light showed a cell-type dependent inverse correlation of genomic susceptibility with binding of (dA.dT) (dA.dT) sequences, compared to that shown with (dG.dC) (dG.dC), regardless of methylation in cytosines. Exposure to cholera toxin partly reversed genomic susceptibility and increased DNA/protein cross-linking in melanocytes. In contrast, melanoma cells showed decreased DNA/protein interactions and greater genome susceptibility after exposure to cholera toxin or okadaic acid. Our data suggest that a molecular mechanism for differential genome exposure in cancer cells involves a modified expression of sequence-specific DNA-binding proteins.  相似文献   

20.
The interaction of immunopurified high mobility group 2a protein (HMG-2a) with DNA was examined by the nitrocellulose filter binding assay. The relative binding activity of HMG-2a for synthetic polynucleotides was: (dI).(dC) greater than (dA-dT).(dA-dT) greater than (dA).(dT) much greater than (dG).(dC) greater than (dG-dC).(dG-dC). The protein also exhibited a marked preference for (A + T)-rich restriction fragments derived from rat and Drosophila satellites, yeast centromeres, phage lambda, and the ovalbumin gene and its 5' flanking sequences. These preferential DNA interactions occurred at ionic strengths and temperatures within the physiological range which argue for an in vivo role of DNA stability in dictating the genomic distribution of the large Mr HMG proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号