首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The equine oocyte: Factors affecting meiotic and developmental competence   总被引:1,自引:0,他引:1  
There is currently much interest in assisted reproduction techniques in the horse, however, many aspects of oocyte maturation, fertilization, and embryo development in the horse differ from those in other species. Because of the close attachment of the equine oocyte to the follicle wall, scraping of the follicle is the most effective method for oocyte recovery. A notable feature of equine oocytes is that those with expanded cumuli (Ex oocytes), which originate from atretic follicles, have higher meiotic competence (ability to mature to metaphase II in vitro) than do oocytes with compact cumuli (Cp oocytes). Cp oocytes originate in viable follicles but are largely juvenile. Recovery and culture of equine oocytes immediately after slaughter yields a higher maturation rate than that obtained from oocytes after ovary storage; this is related to damage to chromatin in Cp oocytes during storage. In contrast, developmental competence (rate of blastocyst development in vitro) is higher in oocytes recovered from the ovary after a delay. The optimum duration of maturation varies based on cumulus morphology and time of recovery from the ovary, but there is no difference in developmental competence between Ex and Cp oocytes. Because standard in vitro fertilization is not repeatable in the horse, oocyte transfer (surgical transfer of oocytes to the oviducts of inseminated mares) has been developed to allow fertilization of isolated oocytes. Fertilization in vitro may be achieved using intracytoplasmic sperm injection; culture of injected oocytes in a medium with high glucose can yield over 30% blastocyst development. Mol. Reprod. Dev. 77: 651–661, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
The relationship of holding time in media at room temperature (approximately 22 degrees C) to initial chromatin configuration and rate of in vitro maturation (IVM) of equine oocytes was determined. Only oocytes having a complete, compact cumulus were used in this study. Oocytes were removed from ovaries 3.5-8 h after slaughter and were put into one of four treatment groups: (1) immediate/fix (IF) = immediate fixation following removal from the ovary; (2) delay/fix (DF) = fixation after oocytes were held 1-4 h in medium at room temperature; (3) immediate/mature (IM) = immediate placement into maturation medium at 5% CO2 at 38.2 degrees C; and (4) delay/mature (DM) = placement into maturation medium at 5% CO2 at 38.2 degrees C after oocytes were held 1-4 h in medium at room temperature. Chromatin configurations in fixed oocytes were classified as fluorescent nucleus (FN), condensed chromatin (CC), fibrillar, intermediate, or fibrous germinal vesicle (GV). Other classifications were Metaphase I, II, or degenerating/abnormal. Oocytes held at room temperature before fixation (DF) had a lower proportion of oocytes in the fibrous GV, fibrillar and intermediate configurations than did oocytes fixed immediately (IF; 1/54, 2% versus 15/51, 30%, respectively, P < 0.001). Oocytes held before fixation tended to have a higher percentage of both the CC and FN configurations than did oocytes fixed immediately (CC: 22/40, 55% versus 11/36, 31%, respectively, P = 0.056; FN: 17/40, 43% versus 10/36, 28%, respectively, P = 0.066). Holding of oocytes did not affect the rate of resumption of meiosis or the rate of degeneration in culture; however, of oocytes resuming meiosis, more oocytes in the delayed than in the immediate maturation group had reached MII by 24h culture (14/15, 93% versus 8/15, 53%, respectively, P = 0.018).  相似文献   

3.
There is a great variability in the success of horse oocyte maturation and fertilization among laboratories. This study was conducted to determine if the meiotic and developmental competence of horse oocytes could be dependent on the method of oocyte collection, i.e., aspiration of follicular fluid with a vacuum apparatus, or opening follicles and scraping the granulosa layer. Horse oocytes were recovered from abattoir ovaries by aspiration or scraping and classified as having compact (Cp), expanded (Ex), or partial (P) cumuli. In Experiment 1 (Part A in May and Part B in October), oocytes were fixed immediately after collection to assess whether the collection method influenced the initial chromatin configuration of oocytes. In Experiment 2, in vitro maturation rates of oocytes recovered by aspiration or scraping were compared. In Experiment 3, oocytes were matured in vitro and submitted to intracytoplasmic sperm injection (ICSI). Initial chromatin configuration differed according to collection method in that there was a significantly higher prevalence of diffuse chromatin within the germinal vesicle in oocytes recovered by scraping than in oocytes recovered by aspiration (29/87, 33% and 28/166, 17%, respectively; P < 0.01). Maturation of oocytes to metaphase II did not significantly differ between scraped and aspirated oocytes (56/101, 55.4 % vs. 65/106, 61.4%, respectively). The overall pronucleus formation rate after ICSI of oocytes recovered by scraping was not significantly different than that of oocytes recovered by aspiration (50/99, 52.6% vs. 50/85, 68.5 %, respectively); however, the rate of abnormal fertilization was significantly higher for oocytes collected by aspiration (14/73, 19% vs. 6/94, 6%, respectively; P <0.05). These results demonstrate that the collection method affects the population of recovered oocytes and may contribute to differences in results observed among laboratories working with horse oocytes.  相似文献   

4.
Recovery of oocytes from ovaries collected at slaughter was carried out at three ambient temperatures (25 degrees, 30 degrees and 35 degrees C) to assess the effect on subsequent embryonic production in vitro. Oocytes recovered at each temperature were thereafter maintained at temperatures > or =35 degrees C as they were subjected to in vitro maturation, fertilization and culture (IVM/IVF/IVC). The oocytes and resulting embryos within each temperature group were subsequently evaluated for their rates of fertilization, cleavage and development to blastocysts, as well as for the number of cells/blastocyst. The results demonstrate that exposure of cumulus-ocyte-complexes (COCs) to temperatures below 35 degrees C during oocyte recovery is detrimental to optimal embryo production. Although the fertilization and cleavage rates of oocytes recovered at temperatures below 35 degrees C were not significantly lower than that of the controls, the percentage of oocytes recovered at 35 degrees C that developed to the blastocyst stage following fertilization and culture (33.7%) was significantly greater than those from oocytes recovered at either 25 degrees C (22.4%) or 30 degrees C (19.5%). The mean numbers of blastomeres/embryo were significantly lower in embryos derived from oocytes collected at either 25 degrees or 30 degrees compared with those collected at 35 degrees C. The results of this study suggest that exposure of COCs to temperatures below 35 degrees C during oocyte recovery may significantly decrease both the quantity and quality of embryos produced by in vitro methods.  相似文献   

5.
Holding immature oocytes before the onset of maturation simplifies oocyte transport and aids in scheduling later manipulations. We report here a method for holding equine oocytes in the absence of meiotic inhibitors. In Experiment 1, immature oocytes with expanded cumuli were cultured at 38.2 degrees C in medium containing cycloheximide, or were held at room-temperature in M199 with Hanks' salts, for 16-18 h before maturation. Control oocytes were matured immediately after recovery. Oocytes were fertilized by intracytoplasmic sperm injection and cultured for 4d. Embryo development was not different among treatments. In Experiment 2, oocytes were treated as in Experiment 1, but embryos were cultured for 7.5d. Blastocyst development was significantly lower in the cycloheximide-treated group than in controls (7% versus 30%) with the room-temperature group intermediate (16%). In Experiment 3, oocytes were cultured at 38.2 degrees C in medium containing roscovitine, or were held at room temperature in sealed glass vials in a mixture of 40% M199 with Earle's salts, 40% M199 with Hanks' salts, and 20% FBS (EH treatment) for 16-18 h, before maturation, sperm injection, and embryo culture for 7.5d. Blastocyst development of oocytes in the EH treatment was significantly higher than that for roscovitine-treated oocytes (34% versus 12%), but not significantly different from that for controls (25%). Oocytes in the EH treatment did not mature during holding (70% germinal vesicle stage after 18 h holding). Whereas culture with cycloheximide or roscovitine of equine oocytes with expanded cumuli reduced subsequent blastocyst formation, these oocytes could be held in a modified M199 at room temperature overnight without adverse affecting meiotic or developmental competence.  相似文献   

6.
Horse oocytes were collected from an abattoir over a 15-mo period. After classification of follicle size and cumulus morphology, oocytes were either fixed immediately (0 h) or matured in vitro (24 h). There was no effect of season on the number of antral follicles present on the ovaries, or on oocyte maturation rate for any class of oocyte. The proportion of oocytes having condensed chromatin at 0 h increased with increasing follicle size. The oocyte maturation rate also increased with follicle size, and for follicles 相似文献   

7.
This study was conducted to evaluate the in vitro development of equine oocytes with compact cumuli that had been subjected to a period of meiotic suppression with roscovitine before in vitro maturation. In experiment 1, oocytes were recovered from slaughterhouse-derived ovaries and held in M199 + 10% fetal bovine serum containing 66 microM roscovitine with or without an overlay of mineral oil in 5% CO2 in air at 38.2 degrees C for 16-18 or 24 h. No oocytes treated with roscovitine in the absence of an oil overlay for 16-18 h were maturing, compared with 2-4% of oocytes in other treatments. In experiment 2, oocytes were either fixed immediately after recovery, or were cultured for 18 h in the presence or absence of roscovitine. Oocytes cultured in the absence of roscovitine had a significantly higher rate of meiotic resumption (18%) than was found in the other two treatments (0). In experiment 3, oocytes were matured immediately or after 16-18 h culture with roscovitine. Maturation rates were similar between oocytes previously treated with roscovitine (22%) and control oocytes (19%). Mature oocytes were fertilized by intracytoplasmic sperm injection and then cultured, with or without oviductal epithelial cells, for 7.5 days. There was no significant effect of roscovitine treatment on blastocyst development. Development to blastocyst of roscovitine-treated oocytes in DMEM/F-12 + co-culture (37%) was significantly higher than that of control oocytes in DMEM/F-12 without co-culture (14%). These data indicate that equine oocytes with compact cumuli can be held in roscovitine before maturation without any harmful effect on blastocyst formation.  相似文献   

8.
Use of assisted reproduction to obtain foals from valuable mares post-mortem typically necessitates holding of ovaries during shipment to a laboratory. The present study evaluated whether holding ovaries briefly at a warm ( approximately 30 degrees C) temperature improves meiotic and developmental competence of oocytes, as determined after maturation in vitro and intracytoplasmic sperm injection. Ovaries were packaged in pairs in insulated containers, and held either at 24 or 25-35 degrees C for 4h, followed by cooling. Ovaries in both treatments were held for either a short (mean, 7-7.4h) or long (mean, 20.6-20.7h) duration before oocyte recovery. Control ovaries were collected en masse at the abattoir. The ovary temperature in this treatment slowly decreased to approximately 27 degrees C; oocyte recovery was performed after 3.5-7h total holding. There was no effect of temperature on oocyte meiotic or developmental competence within either treatment time period. Oocytes in the short duration holding group had similar meiotic competence to controls, but had a significantly decreased rate (P<0.05) of blastocyst development. Oocytes in the long duration holding group had decreased (P<0.05) meiotic competence and blastocyst development compared to controls. These findings indicate that storage of equine ovaries for only 7h may decrease blastocyst development, and that longer storage reduces both rate of oocyte maturation and blastocyst development. Further work is needed to determine if there is a critical time before 7h post-mortem by which equine oocytes should be recovered to maximize developmental competence.  相似文献   

9.
The final steps of oocyte capacitation and maturation are critical for embryonic development but detailed information is scarce on how the oocyte is affected during this period. In this study, 2033 oocytes were collected from 106 superovulated cattle at four different time points before ovulation. Follicular characteristics were measured and oocyte quality was assessed by morphology, mRNA expression of eight marker genes or developmental ability after in vitro/in vivo maturation and subsequent in vitro fertilization and culture. Approaching ovulation, expected increases in follicular size and cumulus expansion suggested progression of oocyte maturation. No differences were found in the expression patterns of analyzed genes, except for heat-shock-protein (Hsp) that was lower in in vivo matured oocytes collected shortly before ovulation. Oocytes collected at this time also had higher developmental ability measured as blastocyst rates (57.6%) after in vitro production while no differences were found between oocytes recovered earlier at the first three time points (39.3-41.5%). We conclude that oocytes recovered late in the preovulatory period are more developmentally competent than oocytes recovered at the pre-capacitation and the capacitation period, probably due to the former having matured in vivo. However, a precisely defined time for aspirating immature oocytes for subsequent in vitro development seems not to be crucial.  相似文献   

10.
Bovine follicular oocytes (n = 454), obtained after laparoscopy, were used to study in vitro capacitation, fertilization, and embryo development. Capacitation was accomplished by treating bovine spermatozoa with high ionic strength medium. Maturation, fertilization, and development studies were carried out in Brackett's defined medium or in Ham's F-10. In vitro fertilization rates, ranging from 14% to 55%, were found to be influenced by individual variations among males. Brackett's defined medium was found to be superior to Ham's F-10 for oocyte maturation, fertilization, and growth, these media giving cleavage rates of 60% and 32%, respectively. Oocytes with expanded cumuli at the time of recovery cleaved at a rate of 43%, which is significantly different from oocytes recovered without granulosa cells (22%) or oocytes with compact cumuli and corona cells (5%). The in vitro development pattern of the in vitro-fertilized embryos was found to be similar to that observed in vivo. Embryos were observed at the 2-cell stage 44.5 +/- 6.3 h after in vitro insemination, 4-cell after 59.0 +/- 9.4 h, 8-cell after 74.8 +/- 12.7 h, and 16-cell after 96.2 +/- 13.9 h (observations at 12-h intervals). The procedures described here resulted in cleavage rates of up to 60% using follicular oocytes embedded in expanded cumuli cells and semen samples from selected males.  相似文献   

11.
The aim of the study was to determine the contribution of cumulus cells on the developmental competence of porcine oocytes during follicle growth. Oocytes from large (5-8mm) and small (2-3mm) follicles were cultured with or without follicle stimulating hormone (FSH), subsequently examined for nuclear stage and spindle morphology, or fertilized and cultured for embryo development, or analyzed for glutathione content. Additionally, the significance of cumulus investment, corona radiata cells, cumulus cell number and origin of cumulus cells for oocyte maturation were investigated. Small follicle oocytes cultured without FSH exhibited the highest incidence of spindle aberrations. Oocytes cultured without FSH exhibited reduced sperm penetration and blastocyst rates, and a higher proportion monospermic oocytes developed to the blastocyst stage when derived from large follicles. The glutathione content in oocytes increased during follicle growth and oocyte maturation, but no direct correlation between oocyte glutathione content and oocyte developmental capacity was observed. Oocytes with a bigger cumulus investment exhibited better embryo development. Oocytes with a single corona radiata cell layer (CROs) exhibited similar progression through meiosis to oocytes with more cumulus cell layers, but showed reduced embryo development. More blastocysts were observed when CROs were cultured with disconnected cumulus cells during IVM, but no blastocyst increase was observed when CROs were cocultured with a higher number of cumulus cells or with cumulus cells from large follicles. We conclude that increased developmental capacity of oocytes during follicle growth is intrinsic and whether cumulus cells originate from large or small follicles, their contribution to oocyte maturation remains unchanged. Further, cumulus investment can be used as a variable to predict oocyte developmental capacity.  相似文献   

12.
Oocytes and follicular components obtained from ovaries recovered from mature Hereford cows at slaughter were used to determine follicular influence on oocyte maturation. Some oocytes were fixed immediately to determine the stage of maturation. The remaining oocytes were cultured for 32 to 34 hr in various environments to determine the influences of the granulosum and follicular fluids on meiotic changes. All noncultured oocytes had dictyate nuclei except one in premetaphase. Oocytes cultured in 50 or 100% follicular fluid or in contact with stratum granulosum cells showed some meiotic inhibition both before and after germinal vesicle breakdown (GVB). The least resumption of meiosis occurred in oocytes cultured in their intact follicles.  相似文献   

13.
In this study we assessed the effect of GnRH on the recovery rate, meiotic synchronization and in vitro developmental competence of oocytes recovered close to the expected time of ovulation. Twenty-three heifers were superstimulated with FSH, and luteolysis was induced by PGF(2alpha) injection 48 h after the start of treatment Twelve heifers received 200 microg GnRH at 34 h after PGF(2alpha) treatment, Blood samples were collected between 35 to 47 h after PGF(2alpha) administration to determine the time of the LH surge. Transvaginal follicular aspiration was performed at 60 h after PGF(2alpha), and the recovered oocytes were fertilized or fixed either immediately or after 24 h of maturation in vitro. GnRH-treated heifers showed an LH surge within 3 h after treatment, while only 4 of the 10 heifers in the control group exhibited an LH surge by 47 h after treatment with PGF(2alpha). The average number of large follicles (> 10 mm) was 21.3 +/- 2.3 and 19.3 +/- 2.4 for GnRH-treated and control heifers, respectively. The oocyte recovery rate was 87.7 and 63.1% (P < 0.05), respectively, and most of the cumulus-oocyte-complexes (COC) recovered from the 2 groups had an expanded cumulus (80.4 and 80.5%, respectively). Oocytes with an expanded cumulus from the GnRH group had completed meiotic maturation at higher rate than the controls (97 vs 20%;P < 0.05). In vitro development to the blastocyst stage of cumulus-expanded oocytes fertilized immediately after recovery was higher in GnRH-treated than in control heifers (60.3 vs 40.0%; P < 0.05). No difference was observed when oocytes with compact or expanded cumulus were matured in vitro for 24 h before fertilization. These results indicate that GnRH injections improve the oocyte recovery rate and that oocytes have a higher development competence than those obtained from non-GnRH-treated animals. We propose that this higher in vitro developmental competence may result from a more synchronous or further advanced meiotic maturation. However, due to the small number of oocytes in our study, we must emphasize that our findings on meiotic resumption are of preliminary nature.  相似文献   

14.
Oocytes were recovered by laparoscopic aspiration from 3- to 8-week-old calves treated with follicle-stimulating hormone (FSH) followed by human chorionic gonadotropin (hCG) to induce follicular growth and oocyte maturation in vivo. Most of the recovered oocytes either had resumed meiotic maturation at the time of aspiration or were competent to undergo maturation during subsequent culture in vitro. Oocytes matured in vivo following FSH and hCG treatment underwent in vitro fertilization (70%) at rates not significantly different from those of control oocytes recovered from adult cow ovaries at abattoirs and matured in vitro (75%). Calf oocytes that were immature at aspiration exhibited lower fertilization rates after in vitro maturation (36%) but their rate of development to morulae and blastocysts did not differ from that of mature oocytes at aspiration. A total of 91% of the zygotes produced from calf oocytes developed to morula and 27% to blastocyst stages during 6 days of culture. The proportion developing to morulae was significantly higher (P<0.05) than that observed for zygotes resulting from in vitro maturation and fertilization of oocytes recovered from cow ovaries obtained at an abattoir and processed concomitantly (59% to morulae and 18% to blastocysts). Morulae or blastocysts developed from oocytes from 5 to 6-week-old calves, when transferred to synchronized recipient heifers, resulted in 2 confirmed pregnancies, one of which produced a single full-term live calf. The ability to produce embryos from oocytes recovered from newborn or prepubertal calves offers the potential for markedly reducing the generation interval in cattle, thereby substantially accelerating the rate of genetic gain that can be achieved through embryo transfer.  相似文献   

15.
The aim of the study was to determine whether the selection of immature oocytes by a combination of cumulus-oocyte-complexes (COCs) morphology and staining with brilliant cresyl blue (BCB) would be helpful in selecting developmentally competent oocytes, and thereby increase the efficiency of blastocyst production from ovarian oocytes of FSH-primed, adult goats. In a second experiment the interaction between oocyte quality and semen donor was assessed. In a third experiment the usefulness of Vero cells for co-culture with goat embryos was investigated. In the pool of morphologically normal COCs recovered from ovaries following slicing (21.9+/-11.0), the mean rate of COCs classified as BCB+ was 85.6%, and the BCB- was approximately 11%. Oocytes classified as grade 1 and BCB+ exhibited the highest developmental competence (P<0.001) after in vitro maturation and fertilization compared with oocytes of grade 1 BCB- and grade 2 BCB+ or BCB-. There were no significant differences in developmental competence in grade 2 oocytes, regardless of BCB coloration. No significant differences in embryo cleavage and blastocyst formation rates among three bucks were observed when morphologically normal, BCB+ oocytes were used. For all tested bucks, differences in embryo production efficiency were related only to the oocyte quality. Similar blastocyst rates were developed from embryos co-cultured with goat oviduct epithelial cells (34.3%) and with Vero cells (33.3%). These results show that the most important criterion for selection of COCs before maturation is the visual assessment of morphological features. Staining with BCB of COCs recovered from adult goats does not enhance efficiency of selection of developmentally competent oocytes for IVF.  相似文献   

16.
The aim of this present study was to increase the efficiency of blastocyst production from cows after in vitro maturation/fertilization (IVM/IVF) by oocyte selection before maturation. Oocytes were selected on the basis of brillant cresyl blue (BCB) staining, used to indicate glucose-6-phosphate dehydrogenase (G6PDH) activity. To re-valuate the hypothesis that growing oocytes are expected to have a high level of active G6PDH, while mature oocytes have low G6PDH activity, cumulus oocyte complexes (COCs) were recovered from slaughterhouse ovaries by slicing the surface of the ovary. Only oocytes with a compact cumulus investment were used. Oocytes were placed into three groups: (1) control--placed immediately into culture; (2) holding control--COCs kept in PBS containing 0.4% BSA for 90 min before placement into culture; and (3) treatment--incubation with BCB for 90 min before culture. Treated oocytes were then divided into BCB- (colorless cytoplasm, increased G6PDH) and BCB+ (colored cytoplasm, low G6PDH) on their ability to metabolize the stain. Activity of G6PDH was determined via measurement of NADP reduction induced by G6P as substrate oxidized by G6PDH in the cytosol of control, BCB- and BCB+ groups; G6PDH activity was significant higher in BCB- COCs than in control and BCB+ COCs. After IVM, oocytes were fertilized in vitro. Embryos were cultured to day 8. The rate of maturation to metaphase II was significantly higher for control and BCB+ oocytes than for BCB- oocytes. The BCB+ oocytes yielded a significantly higher proportion of blastocysts (34.1%) than did control or holding control oocytes (18.3 and 19.2%); and both controls and BCB+ oocytes had significantly higher blastocyst development than did BCB- oocytes (3.9%). These results show that the staining of bovine cumulus oocyte complexes with BCB before in vitro maturation may be used to select developmentally competent oocytes for IVF. In addition, G6PDH activity may be useful as a marker for oocyte quality in future studies on factors affecting developmental competence.  相似文献   

17.
目的探讨不同取卵时间对兔ICSI胚胎体外发育的影响。方法采用Piezo操作系统对实验兔进行辅助体外受精。结果hCG注射后14、16、18h取卵,ICSI后的受精率分别为82.2%、75.9%和0.0%,对受精卵进行体外发育培养,桑椹胚的发育率分别为72.9%、70.0%、0.0%,囊胚的发育率分别为62.2%、53.3%、0.0%。14h和16h之间受精率、桑椹胚率、囊胚率差异不显著(P〉0.05),但是14h采卵比16h要好;18h和14h、16h之间差异显著(P〈0.05)。结论不同取卵时间影响实验兔的ICSI体外受精率及胚胎的体外发育率,hCG注射后14h取卵最有利于兔ICSI胚胎的发育。  相似文献   

18.
After in vitro maturation, the unfertilized pig oocytes underwent the process called ageing. This process involves typical events such as fragmentation, spontaneous parthenogenetic activation or lysis. Inhibition of histone deacetylase, using its specific inhibitor trichostatin A (TSA), significantly delayed the maturation of pig oocytes cultured in vitro. The ageing of oocytes matured under the effect of TSA is the same as the ageing in oocytes matured without TSA. The inhibition of histone deacetylase during oocyte ageing significantly reduced the percentage of fragmented oocytes (from 30% in untreated oocytes to 9% in oocytes aged under the effect of 100 nM of TSA). Oocytes matured in vitro and subsequently aged for 1 day under the effects of TSA retained their developmental capacity. After parthenogenetic activation, a significantly higher portion (27% vs. 15%) of oocytes developed to the blastocyst stage after 24 h ageing under 100 nM TSA when compared with oocytes activated after 24 h ageing in a TSA-free medium. The parthenogenetic development in oocytes aged under TSA treatment is similar to the development of fresh oocytes (29% of blastocyst) artificially activated immediately after in vitro maturation.  相似文献   

19.
We evaluated the relationship between follicle size and oocyte recovery (OR) using ultrasound-guided follicle aspiration. Thirty Holstein cows were subjected to OR without gonadotrophic therapy. Oocytes were recovered two to four times from each cow in a total of 67 aspiration sessions. Ovarian follicles with diameters < or =4 mm and >4 mm were aspirated in separated groups. Recovered oocytes from each group were kept separate and submitted to in vitro maturation, fertilization, and culture to the blastocyst stage. A total of 430 follicles were aspirated, of which 154 (35.8%) were from follicles >4 mm and 276 (64.2%) were from follicles < or =4 mm. Seventy-seven oocytes (50%) were recovered from follicles >4 mm and 200 (72.2%) were from follicles < or =4 mm. Nineteen blastocysts were obtained from follicles >4 mm, whereas 45 blastocysts were obtained from follicles < or =4 mm. Recovery rate was greater (P<0.01) in follicles < or =4 mm. Oocyte quality, cleavage rate and blastocyst development did not differ between different follicle sizes. Routine aspiration of small follicles (< or =4 mm) could increase the number of oocytes available for in vitro development.  相似文献   

20.
Two experiments were conducted to determine the effects of storage on equine ovaries or isolated oocytes. Ovaries were collected at an abattoir and were maintained at room temperature during collection and transport (3-9h total). After arrival at the laboratory, ovaries were divided into three groups: immediate oocyte collection (control), storage at room temperature overnight (15-18 h) before oocyte collection, or storage at 4 degrees C overnight before oocyte collection. Collected oocytes were cultured in maturation medium for 24h. There was a significant increase in the proportion of oocytes classified as having compact cumuli in the two storage groups when compared with the controls. For oocytes originally having expanded cumuli, the rate of maturation to MII was significantly higher in the control group (72%) than in either storage group, and the maturation rate for oocytes from ovaries stored at room temperature (27%) was significantly higher than that for ovaries stored at 4 degrees C (10%). A similar trend was seen for oocytes originally having compact cumuli (24, 11, and 3% in MI-II for control, room temperature, and cold groups, respectively). In Experiment 2, we evaluated the effect of different packaging systems on the maturation of horse oocytes within a portable incubator. Use of 1 ml of equilibrated maturation medium in a 1 ml glass vial was associated with maturation equivalent to that for standard incubation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号