首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of U937 cells with a sublethal concentration of tert-butylhydroperoxide generates DNA single strand breakage in U937 cells and this response is increased by caffeine, ATP, pyruvate or antimycin A. As we previously reported (Guidarelli, Clementi, Brambilla and Cantoni, (1997) Biochem. J. 328, 801-806), the enhancing effects of antimycin A are mediated by inhibition of complex III and the ensuing formation of superoxides and hydrogen peroxide in a reaction in which ubisemiquinone serves as an electron donor. Active electron transport was required in pyruvate-supplemented cells since the increased genotoxic response occurred as a consequence of enforced mitochondrial Ca2+ accumulation, a process driven by the increased electrochemical gradient. The enhancing effects of caffeine or ATP were also the consequence of mitochondrial Ca2+ accumulation but these responses were independent on electron transport. The increased formation of DNA lesions resulting from exposure to tert-butylhydroperoxide associated with the Ca2+-mobilizing agents or the respiratory substrate was mediated by arachidonic acid generated by Ca2+-dependent activation of phospholipase A2. Melittin, a potent phospholipase A2 activator, and reagent arachidonic acid mimicked the effects of caffeine, ATP or pyruvate on the tert-butylhydroperoxide-induced DNA single strand breakage.  相似文献   

2.
Treatment of U937 cells with a sublethal concentration of tert-butylhydroperoxide generates DNA single strand breakage in U937 cells and this response is increased by caffeine, ATP, pyruvate or antimycin A. As we previously reported (Guidarelli, Clementi, Brambilla and Cantoni, (1997) Biochem. J. 328, 801–806), the enhancing effects of antimycin A are mediated by inhibition of complex III and the ensuing formation of superoxides and hydrogen peroxide in a reaction in which ubisemiquinone serves as an electron donor. Active electron transport was required in pyruvate-supplemented cells since the increased genotoxic response occurred as a consequence of enforced mitochondrial Ca2+ accumulation, a process driven by the increased electrochemical gradient. The enhancing effects of caffeine or ATP were also the consequence of mitochondrial Ca2+ accumulation but these responses were independent on electron transport. The increased formation of DNA lesions resulting from exposure to tert-butylhydroperoxide associated with the Ca2+-mobilizing agents or the respiratory substrate was mediated by arachidonic acid generated by Ca2+-dependent activation of phospholipase A2. Melittin, a potent phospholipase A2 activator, and reagent arachidonic acid mimicked the effects of caffeine, ATP or pyruvate on the tert-butylhydroperoxide-induced DNA single strand breakage.  相似文献   

3.
We previously found that the membrane-permeant NADH-linked substrates pyruvate and beta-hydroxybutyrate enhance the formation of DNA single-strand breaks induced by tert-butylhydroperoxide (tB-OOH) in intact U937 cells. This effect is mediated by a process involving enforced mitochondrial calcium accumulation in the absence of discernible elevation in the cytosolic concentration of free calcium ions. We now show that the intracellular source of the cation is a ryanodine-sensitive calcium store. A high concentration of ryanodine, which suppressed the caffeine-mediated mobilization of calcium ions, also abolished the effects of the NADH-linked substrates on the mitochondrial accumulation of the cation as well as on the tB-OOH-induced genotoxic response. These data constitute a novel demonstration of a physiological mechanism with important pathological implications.  相似文献   

4.
Peroxynitrite stimulates in U937 cells release of arachidonic acid (AA) sensitive to various phospholipase A(2) (PLA(2)) inhibitors, including arachidonyl trifluoromethyl ketone (AACOCF(3)), which specifically inhibits cytosolic PLA(2) (cPLA(2)). This response linearly increases using non toxic concentrations of the oxidant, and reaches a plateau at levels at which toxicity becomes apparent. Three separate lines of evidence are consistent with the notion that AA generated by cPLA(2) promotes survival in cells exposed to peroxynitrite. Firstly, toxicity was suppressed by nanomolar levels of exogenous AA, or by AA generated by the direct PLA(2) activator melittin. Secondly AACOCF(3), or other PLA(2) inhibitors, promoted cell death after exposure to otherwise non toxic concentrations of peroxynitrite; exogenous AA abolished the enhancing effects mediated by the PLA(2) inhibitors. Finally, U937 cells transfected with cPLA(2) antisense oligonucleotides were killed by concentrations of peroxynitrite that were non-toxic for cells transfected with nonsense oligonucleotides. This lethal response was insensitive to AACOCF(3) and prevented by exogenous AA.  相似文献   

5.
The short-chain lipid hydroperoxide analogue tert-butylhydroperoxide induces peroxynitrite-dependent and -independent DNA single strand breakage in PC12 cells. U937 cells that do not express constitutive nitric oxide synthase respond to tert-butylhydroperoxide treatment with peroxynitrite-independent DNA cleavage. Under experimental conditions leading to equivalent strand break frequencies, the analysis of poly(ADP-ribose) polymerase activity showed an increase in PC12 cells but not in U937 cells. The enhanced poly(ADP-ribose) polymerase activity observed in PC12 cells was paralleled by a significant decline in NAD+ content and both events were prevented by treatments suppressing formation of peroxynitrite. Although DNA breaks were rejoined at similar rates in the two cell lines, an inhibitor of poly(ADP-ribose) polymerase delayed DNA repair in PC12 cells but had hardly any effect in U937 cells. The results obtained using the latter cell type were confirmed with an additional cell line (Chinese hamster ovary cells) that does not express nitric oxide synthase. Collectively, our data suggest that tert-butylhydroperoxide-induced peroxynitrite-independent DNA strand scission is far less effective than the DNA cleavage generated by endogenous peroxynitrite in stimulating the activity of poly(ADP-ribose) polymerase.  相似文献   

6.
Han YH  Xia L  Song LP  Zheng Y  Chen WL  Zhang L  Huang Y  Chen GQ  Wang LS 《Proteomics》2006,6(11):3262-3274
We reported recently that moderate hypoxia and hypoxia-mimetic agents could induce growth arrest and differentiation of leukemic cells via the mediation of hypoxia-inducible factor 1 alpha (HIF-1alpha), but the exact molecular mechanisms remain largely unknown. In this study, human acute promonocytic leukemic U937 cells were incubated under 2% O2 or in 50 microM of the hypoxia mimetic agent cobalt chloride (CoCl2) and normal oxygen for 24 h, and their protein expression profiles were compared by 2-DE coupled with MALDI-TOF/TOF MS/MS. We identified 62 and 16 proteins that were significantly deregulated by hypoxia and CoCl2 treatment, respectively. These proteins were mainly involved in metabolism, gene expression regulation, signal transduction, cell proliferation, differentiation and apoptosis. As an example, N-myc downstream regulated gene 1 (NDRG1), a putative differentiation-related gene, was up-regulated in both 2% O2- and CoCl2-treated U937 cells. Moreover, enforced HIF-1alpha expression also elevated NDRG1 mRNA and protein in U937 cells. These data will provide some clues for understanding mechanisms by which leukemic cells response to hypoxia.  相似文献   

7.
In this study, we evaluated the influence of protein kinase C zeta (PKC zeta) on topoisomerase II inhibitor-induced cytotoxicity in monocytic U937 cells. In U937-zeta J and U937-zeta B cells, enforced PKC zeta expression, conferred by stable transfection of PKC zeta cDNA, resulted in total inhibition of VP-16- and mitoxantrone-induced apoptosis and decreased drug-induced cytotoxicity, compared with U937-neo control cells. In PKC zeta-overexpressing cells, drug resistance correlated with decreased VP-16-induced DNA strand breaks and DNA protein cross-links measured by alkaline elution. Kinetoplast decatenation assay revealed that PKC zeta overexpression resulted in reduced global topoisomerase II activity. Moreover, in PKC zeta-overexpressing cells, we found that PKC zeta interacted with both alpha and beta isoforms of topoisomerase II, and these two enzymes were constitutively phosphorylated. However, when human recombinant PKC zeta (rH-PKC zeta) was incubated with purified topoisomerase II isoforms, rH-PKC zeta interacted with topoisomerase II beta but not with topoisomerase II alpha. PKC zeta/topoisomerase II beta interaction resulted in phosphorylation of this enzyme and in decrease of its catalytic activity. Finally, this report shows for the first time that topoisomerase II beta is a substrate for PKC zeta, and that PKC zeta may significantly influence topoisomerase II inhibitor-induced cytotoxicity by altering topoisomerase II beta activity through its kinase function.  相似文献   

8.
U937 human monoblast cells incubated with leukotriene D4 (LTD4) rapidly released arachidonic acid metabolites into the culture medium. Release was suppressed by the high-affinity LTD4 receptor antagonist SK&F 104353. Arachidonic acid release induced by LTD4 has been linked to a rapid induction of gene expression, and the propagation of the receptor binding signal is probably associated with enzymes that regulate gene expression. We have studied the participation of DNA topoisomerase I in LTD4 signal transduction. LTD4-specific release of arachidonic acid metabolites was inhibited (60-80%) by the topoisomerase I inhibitor camptothecin. LTD4 increased protein-linked DNA strand breakage induced by camptothecin in U937 cells; this enhancement was prevented by coincubation of the cells with LTD4 plus the receptor antagonist SK&F 104353. In addition, LTD4 produced a rapid transient increase in extractable topoisomerase I activity, which was maximum within the first 10 min after addition of LTD4 to the culture medium. Incubation of cultures for greater than 10 min with LTD4 before the addition of camptothecin resulted in no enhancement of camptothecin-induced DNA strand breakage, consistent with a reversal of topoisomerase I activation. Staurosporine, an inhibitor of protein kinase C, blocked LTD4-induced arachidonic acid release and attenuated the effect of LTD4 on camptothecin-induced DNA strand breakage. These results are consistent with the view that the regulation of topoisomerase I activity is involved in the propagation of LTD4-mediated signals in U937 cells.  相似文献   

9.
Human monocytes are known to metabolize arachidonic acid (AA) and to release prostaglandins upon stimulation. Previous data indicate that in vitro maturation and differentiation of monocytes result in alteration of this property with greatly diminished response to stimulators of release of prostaglandin E (PGE) and thromboxane B2 (TxB2) occurring after cells have been cultured. To further study the effects of differentiation on human monocyte AA metabolism, a model system was established based upon the human histiocytic cell line U937. Among tested stimulants, which included opsonized zymosan, complement fragment C3b, phorbol myristate acetate (PMA), calcium ionophore A23187, and concanavalin A, it was found that Escherichia coli lipopolysaccharide (LPS) was unique in that it stimulated increased release of TxB2 from U937 cells. The effect of the phorbol ester PMA, a compound commonly used to induce differentiation of U937, on the ability of U937 to respond to LPS was examined. Following 48 hr of treatment with PMA, U937 became capable of releasing both PGE and TxB2 in response to small doses of LPS. As previously observed for human monocytes, the release of PGE was delayed for several hours following stimulation and failed to reach maximal cumulative levels in culture until 24-48 hr following stimulation. In contrast to human monocytes, PMA-induced U937 were capable of maintaining their responsiveness to LPS for several days. Thus, the U937 cell line provides a useful model for study of the effects of differentiation of human mononuclear phagocytes on their ability to metabolize AA, and for the effects of LPS on histiocytic tumor cell prostaglandin release.  相似文献   

10.
Human monocytic leukemia U937 cells undergo apoptosis when cells are treated with the anticancer drug etoposide. To study the mechanism of drug-induced apoptosis, we used an in vitro apoptosis system with cytosol from etoposide-treated U937 cells. The cytosol from apoptotic U937 cells showed activity to induce morphologic changes and oligonucleosomal DNA fragmentation in isolated nuclei in vitro; both are typical features of apoptosis. We generated monoclonal antibodies to the proteins in the etoposide-treated U937 cytosol. We found that a 50 kDa protein, recognized by SN-1 monoclonal antibody, appeared in the cytosol of U937 cells, in accordance with its cell-free apoptosis activity. Z-Asp, an inhibitor of interleukin-1beta converting enzyme (ICE) family proteases, inhibited the appearance of the 50 kDa protein and the emergence of the cell-free apoptosis activity in the etoposide-treated U937 cytosol. These results indicate that the 50 kDa protein is produced by the activation of ICE family protease during apoptosis and suggest some roles of the protein in the development of apoptosis.  相似文献   

11.
Low concentrations of camptothecin induced differentiation of human and mouse myeloid leukemia cells including human HL60, U937, ML1, and K562 cells and mouse M1 cells as measured by various differentiation-associated properties. When K562 cells were pretreated with 20 nM camptothecin for 2 h, 53% of the cells were induced to differentiate as measured by NBT staining. Significant single strand breaks in DNA of K562 cells were caused by this treatment. Most single strand breaks were accompanied by protein-DNA cross linking. The combination of camptothecin and rTNF synergistically induced differentiation of human ML1, U937, and M1 cells. These results suggest that topo I may be important in some differentiation of myeloid leukemia cells.  相似文献   

12.
Peroxynitrite does not directly cause strand scission of genomic DNA. Rather, as we previously reported, the DNA cleavage is largely mediated by H(2)O(2) resulting from the dismutation of superoxide generated in the mitochondria upon peroxynitrite-dependent inhibition of complex III. The present study demonstrates that this process is strictly controlled by the availability of Ca(2+) in the mitochondrial compartment. Experiments using intact as well as permeabilized U937 cells showed that the DNA-damaging response evoked by peroxynitrite is enhanced by treatments causing an increase in mitochondrial Ca(2+) uptake and remarkably reduced under conditions leading to inhibition of mitochondrial Ca(2+) accumulation. An additional, important observation was that the source of the Ca(2+) mobilized by peroxynitrite is the ryanodine receptor; preventing the mobilization of Ca(2+) with ryanodine suppressed the mitochondrial formation of reactive oxygen species and the ensuing DNA strand scission. Identical results were obtained using PC12, C6, and THP-1 cells. These results, along with our previous findings indicating that the DNA damage induced by peroxynitrite is also suppressed by inhibition of the electron flow through complex I, e.g., by rotenone, or by the respiration-deficient phenotype, demonstrate that the mitochondrial formation of DNA-damaging species is critically regulated by the inhibition of complex III and by the availability of Ca(2+).  相似文献   

13.
The availability of free arachidonic acid (AA) constitutes a limiting step in the synthesis of biologically active eicosanoids. Free AA levels in cells are regulated by a deacylation/reacylation cycle of membrane phospholipids, the so-called Lands cycle, as well as by further remodeling reactions catalyzed by CoA-independent transacylase. In this work, we have comparatively investigated the process of AA incorporation into and remodeling between the various phospholipid classes of human monocytes and monocyte-like U937 cells. AA incorporation into phospholipids was similar in both cell types, but a marked difference in the rate of remodeling was appreciated. U937 cells remodeled AA at a much faster rate than human monocytes. This difference was found not to be related to the differentiation state of the U937 cells, but rather to the low levels of esterified arachidonate found in U937 cells compared to human monocytes. Incubating the U937 cells in AA-rich media increased the cellular content of this fatty acid and led to a substantial decrease of the rate of phospholipid AA remodeling, which was due to reduced CoA-independent transacylase activity. Collectively, these findings provide the first evidence that cellular AA levels determine the amount of CoA-independent transacylase activity expressed by cells and provide support to the notion that CoA-IT is a major regulator of AA metabolism in human monocytes.  相似文献   

14.
Cytosolic phospholipases A2 (cPLA2) and cyclooxygenases-1 and -2 (COX-1 and -2) play a pivotal role in the metabolism of arachidonic acid (AA) and in eicosanoid production. The coordinate regulation and expression of these enzymes is not well defined. In this study, the effect of phorbol 12-myristate 13-acetate (PMA), tumor necrosis factor (TNF), lipopolysaccharide (LPS) and macrophage-colony stimulating factor (M-CSF) on AA release and prostaglandin E2 (PGE2) production and the expression of cPLA2 and COX-1 and -2 were investigated in U937 human pre-monocytic cells and fully differentiated macrophages. Treatment of U937 cells with PMA or macrophages with LPS increased AA release and PGE2 production. Incubation of U937 cells or macrophages for 8 h with all stimuli elevated cPLA2 expression. In contrast, cPLA2 expression was reduced upon further incubation of U937 cells or macrophages for 24 h with all stimuli indicating a bi-phasic expression pattern of this enzyme. PMA induced COX-1 expression in U937 cells whereas LPS induced COX-2 expression in macrophages. Although TNF and M-CSF induced a significant amount of AA release in both cell models, they failed to induce a comparable production of PGE2 since they were unable to induce the coordinate expression of the downstream key enzymes, COX-1 or COX-2. The results suggest that the enhancement of AA release in both U937 cells and macrophages may be caused by both increased cPLA2 activity and elevated cPLA2 protein expression. In addition, PMA stimulates PGE2 production via up-regulation of COX-1, and likely COX-2, expression in U937 cells whereas LPS stimulates PGE2 production via induction of COX-2 expression in macrophages.  相似文献   

15.
Peroxynitrite, a highly reactive nitrogen species, promotes in U937 cells (a promonocytic cell line) a mitochondrial permeability transition (MPT)-dependent necrosis. An initial event triggered by peroxynitrite (i.e., inhibition of complex III of the mitochondrial respiratory chain) is responsible for the time-dependent formation of H(2)O(2), essential for the occurrence of cell death. Otherwise non-toxic concentrations of peroxynitrite nevertheless commit cells to MPT-dependent necrosis, which is however prevented by a cytoprotective signaling driven by arachidonic acid (AA) released by the cytosolic PLA(2) isoform. Interestingly, the mechanism whereby delayed formation of H(2)O(2) promotes toxicity in cells exposed to intrinsically toxic concentrations of peroxynitrite is independent of the accumulation of additional damage. Cell death is in fact mediated by inhibition of the AA-dependent cytoprotective signaling. Exogenous AA, however, prevented toxicity also under these conditions. An additional point to be made is that the major findings obtained using U937 cells were reproduced in different cell types belonging to the monocyte/macrophage lineage. Hence, within the context of the inflammatory response, monocytes and macrophages may cope with peroxynitrite by using AA, a signaling molecule largely available at the inflammatory sites.  相似文献   

16.
Okadaic acid is a specific inhibitor of serine/threonine protein phosphatase 1 (PP-1) and 2A (PP-2A). The phosphorylation and dephosphorylation at the serine/threonine residues on proteins play important roles in regulating gene expression, cell cycle progression, and apoptosis. In this study, phosphatase inhibitor okadaic acid induces apoptosis in U937 cells via a mechanism that appears to involve caspase 3 activation, but not modulation of Bcl-2, Bax, and Bcl-X(L) expression levels. Treatment with 20 or 40 nM okadaic acid for 24 h produced DNA fragmentation in U937 cells. This was associated with caspase 3 activation and PLC-gamma1 degradation. Okadaic acid-induced caspase 3 activation and PLC-gamma1 degradation and apoptosis were dose-dependent with a maximal effect at a concentration of 40 nM. Moreover, PMA (phorbol myristate acetate), PKC (protein kinase C) activator, protected U937 cells from okadaic acid-induced apoptosis, abrogated okadaic acid-induced caspase 3 activation, and specifically inhibited downregulation of XIAP (X-linked inhibitor of apoptosis) by okadaic acid. PMA cotreated U937 cells exhibited less cytochrome c release and sustained expression levels of the IAP (inhibitor of apoptosis) proteins during okadaic acid-induced apoptosis. In addition, these findings indicate that PMA inhibits okadaic acid-induced apoptosis by a mechanism that interferes with cytochrome c release and activity of caspase 3 that is involved in the execution of apoptosis.  相似文献   

17.
Oxidized low-density lipoproteins (oxLDL) play a critical role in atherogenesis. One oxidative pathway of LDL involves myeloperoxidase, which catalyzes the production of hypochlorous acid (HOCl) in monocytes. We investigated the apoptotic mechanism induced by oxLDL, generated by HOCl treatment of native LDL, in human monocytic U937 cell line. The involvement of the mitochondrial apoptotic pathway was analyzed in Bcl-2-overexpressing clones, generated from U937 cells. HOCl-oxLDL induced in U937 cells (i) a marked caspase-dependent increase of apoptosis, (ii) a loss of mitochondrial membrane potential, (iii) a specific activation of caspase-2, -3, -8, and -9, and (iv) a similar degree of apoptosis in presence or absence of anti-Fas and anti-TNF-R1 antibodies. Moreover, the degree of HOCl-oxLDL-induced caspase-3 and -8 activation, and apoptosis was significantly reduced in U937/Bcl-2 cells, with no activation of caspase-9. By contrast, Cu-oxLDL-mediated apoptosis in U937 cells involved exclusively the mitochondrial pathway. In conclusion, the mechanism of HOCl-oxLDL-induced apoptosis in monocytic U937 cells involves the two pathways of apical caspase activation: (i) death receptor-mediated caspase-8 and (ii) mitochondria-mediated caspase-9. This converges in the activation of executing caspases, including caspase-3, and apoptosis. The interference of Bcl-2 overexpression with HOCl-oxLDL-induced apoptosis suggests the importance of mitochondrial involvement in this apoptotic mechanism.  相似文献   

18.
U937 human myeloid leukemia cells are induced to apoptosis by tumour necrosis factor (TNF) plus cycloheximide (CHX). We have analysed the effect of various inhibitors of the arachidonic acid (AA) metabolism on several features of this process. The formation of high molecular weight and oligonucleosomal DNA fragments as well as nuclear fragmentation were reduced by inhibitors of 5-lipoxygenase (BWA4C and BWB70C), 5-LO activating protein (MK-886), and cytosolic PLA2 (AACOCF3). None of these agents blocked the morphological changes detected by microscopy or flow cytometry, phosphatidylserine exposure on the cell surface or Caspase 3-like activation. AA also induced nuclear fragmentation at a concentration of 1-20 microM. However, the mechanisms by which these inhibitors act, remain unexplained since there was no 5-LO expression in the U937 cells and no AA release followed their stimulation with TNF plus CHX.  相似文献   

19.
We compared the DNA damaging potency of acrylamide (AA) and its metabolite glycidamide (GA) in the comet assay in cell systems differing with respect to species origin and cytochrome P450-depended monooxygenase (CYP2E1) expression (V79, Caco-2, primary rat hepatocytes). Only after 24 h incubation in the highest concentration of AA (6 mM) a slight but significant increase in DNA damage was observed in V79 and Caco-2 cells. In primary rat hepatocytes, however, expressing substantial amounts of CYP2E1, no induction of DNA strand breaks was found. At the end of the incubation time period (24 h), still 67+/-19% of the CYP2E1 protein was detected by Western blotting. Direct treatment with GA resulted in a significant increase in DNA damage in V79 cells and primary rat hepatocytes at concentrations > or =100 microM (24 h). Caco-2 cells were found to be less sensitive, exhibiting an increase in DNA strand breaks at concentrations > or 300 microM GA. These data confirm the higher genotoxic potential of GA compared to AA but also indicate that high expression of CYP2E1 per se is not necessarily associated with increased genotoxicity of AA. We, therefore, investigated whether the intracellular glutathione (GSH) level might be a critical determinant for the genotoxicity of AA in cells with different CYP2E1 status. Depletion of intracellular GSH by dl-buthionine-[S,R]-sulfoxime (BSO) in rat hepatocytes and V79 cells resulted in a significant induction of DNA strand breaks after incubation with 1 mM AA. However, at higher concentrations (> or =1.25 mM) a strong increase in cytotoxicity, resulting in a severe loss of viability, was observed. In summary, the DNA strand breaking effect of AA appeared not to be directly correlated with the CYP2E1 status of the cells. Depletion of GSH is associated with an increase in AA genotoxicity but seems also to lead to a substantial enhancement of cytotoxicity.  相似文献   

20.
A short-term growth of U937 cells in serum-free medium causes a prompt, mitochondrial permeability transition (MPT)-dependent necrotic response after exposure to an otherwise non-toxic concentration of peroxynitrite. This event is mediated by inhibition of extracellular signal-regulated kinase 1 and 2 (ERK1/2) phosphorylation, essential for the cytosolic phospholipase A(2)-dependent arachidonic acid (AA) release evoked by peroxynitrite. Reduced availability of the lipid messenger would therefore limit the efficiency of the AA-dependent survival signalling and cause an MPT-based necrosis. Since peroxynitrite further reduces the extent of ERK1/2 phosphorylation, regardless of whether cells had been grown in serum-free or -containing medium, it appears that basal ERK1/2 phosphorylation is a critical determinant for the survival response of U937 cells to a non-toxic, but nevertheless MPT-committing, concentration of peroxynitrite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号