首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The formation of hybrid myosin and subfragment 1 species by incubation of these proteins with free alkali light chains at physiological ionic and temperature conditions is described. Exchange of bound alkali light chain on myosin by free alkali light chains under these conditions is readily demonstrated from the subunit composition of the isolated myosin. Therefore, the light chain exchange previously described for the one-headed subfragment 1 [Sivaramakrishnan, M., & Burke, M (1981) J. Biol. Chem. 256, 2607--2610] also occurs in the two-headed myosin molecule. It is found than the isozyme to hybrid transformation is dependent on both the temperature and the ionic strength of the incubation mixture but is relatively independent of pH in the range 6.5--8.0. A comparison of the SF1(A1) leads to SF1(A2)h system with the SF1(A2) leads to SF1(A1)h system indicates that more hybrid is formed in the latter case. With the assumption that hybrid formation reflects the degree of reversible dissociation exhibited by the isozyme, under the particular experimental condition employed, the data signify that the subunit interactions in the two isozymes are not identical and that the heavy chain--A1 interactions are significantly more stable that the heavy chain--A2 ones. An examination of the ATPase properties of the thermal hybrids in the presence and absence of actin indicates close similarities to their corresponding "native" isozymic counterparts.  相似文献   

2.
Chicken gizzard tropomyosin, like rabbit skeletal tropomyosin, inhibits and activates skeletal actomyosin subfragment 1 ATPase at low and high [subfragment 1], respectively, showing that both smooth and skeletal tropomyosin qualitatively produce similar cooperative effects on activity. For gizzard tropomyosin, however, the extent of the inhibition was less, and the activation curve rose more sharply at lower [subfragment 1]. In terms of a two-state cooperative activity model for the actin-tropomyosin filament (Hill, T. L., Eisenberg, E., and Chalovich, J. (1981) Biophys. J. 35, 99-112), these results qualitatively suggest that, for the gizzard tropomyosin system, more units are initially in the active state (in the absence of subfragment 1) and that the switching of units to the active state is more cooperative. The greater cooperativity indicated for the gizzard system may be a consequence of the greater rigidity of gizzard tropomyosin indicated from conformational studies.  相似文献   

3.
N.C. Millar  M.A. Geeves 《FEBS letters》1983,160(1-2):141-148
The ATP-induced dissociation of actoS1 has been studied at temperatures between −10°C and +30°C in a stopped-flow apparatus using ethylene glycol as antifreeze. At temperatures at and below 0°C the observed rate of the dissociation of actin shows a hyperbolic dependence on ATP concentration. This is interpreted in terms of a rapid binding of ATP followed by an isomerisation of the ternary complex which results in actin dissociation. Ethylene glycol weakens ATP binding but the rate of the isomerisation is unaffected. The second order rate constant for the dissociation shows a break in the Arrhenius plot.  相似文献   

4.
The preparation, structural and steady-state kinetic characteristics of contractile proteins from the leg muscle of frogs Rana temporaria and Rana pipiens are described. Actin and myosin from the two frog species are indistinguishable. The proteins have structural and steady-state kinetic properties similar to those from rabbit fast-twitch skeletal muscle. Chymotrypsin digestion of frog myosin or myofibrils in the presence of EDTA yields subfragment 1, which is separated by chromatography into two components that are distinguished by their alkali light-chain content.  相似文献   

5.
The fluorescent nucleotides epsilon ADP and epsilon ATP were used to study the binding and hydrolysis mechanisms of subfragment 1 (S-1) and acto-subfragment 1 from striated and smooth muscle. The quenching of the enhanced fluorescence emission of bound nucleotide by acrylamide analyzed either by the Stern-Volmer method or by fluorescence lifetime measurements showed the presence of two bound nucleotide states for 1-N6-ethenoadenosine triphosphate (epsilon ATP), 1-N6-ethenoadenosine diphosphate (epsilon ADP), and epsilon ADP-vanadate complexes with S-1. The equilibrium constant relating the two bound nucleotide states was close to unity. Transient kinetic studies showed two first-order transitions with rate constants of approximately 500 and 100 s-1 for both epsilon ATP and epsilon ADP and striated muscle S-1 and 300 and 30 s-1, respectively, for smooth muscle S-1. The hydrolysis of [gamma-32P] epsilon ATP yielded a transient phase of small amplitude (less than 0.2 mol/site) with a rate constant of 5-10 s-1. Consequently, the hydrolysis of the substrate is a step in the mechanism which is distinct from the two conformational changes induced by the binding of epsilon ATP. An essentially symmetric reaction mechanism is proposed in which two structural changes accompany substrate binding and the reversal of these steps occurs in product release. epsilon ATP dissociates acto-S-1 as effectively as ATP. For smooth muscle acto-S-1, dissociation proceeds in two steps, each accompanied by enhancement of fluorescence emission. A symmetric reaction scheme is proposed for the acto-S-1 epsilon ATPase cycle. The very similar kinetic properties of the reactions of epsilon ATP and ATP with S-1 and acto-S-1 suggest that two ATP intermediate states also occur in the ATPase reaction mechanism.  相似文献   

6.
Modification of the free alkali light chains of myosin by iodoacetylation results in a much lower extent of exchange into myosin subfragment 1 by the thermal hybridization procedure (Burke, M., and Sivaramakrishnan, M. (1981) Biochemistry 20, 5908-5913). As reported by others (Wagner, P. D., and Stone, D. B. (1983) J. Biol. Chem. 258, 8876-8882), free alkali light chains modified by iodoacetate at their single sulfhydryl residue exhibit minimal exchange into intact myosin. However, when unmodified alkali light chain is used to probe for exchange, close to the theoretical limit of exchange is observed for subfragment 1, and significant levels of exchange are found for myosin. It appears that modification of the free alkali light chain alters the structure of the protein, and this causes either a marked reduction in its affinity for the heavy chain or in its ability to enter the light chain binding site. This conclusion is supported by tryptic digestions done on the unmodified and modified free light chains where it is found that the latter is degraded at a much faster rate, indicating a more open structure for the modified protein. The observation that alkali light chain exchanges into myosin when unmodified alkali light chains are used indicates that the presence of the associated 5,5'-dithiobis-(2-nitrobenzoic acid) light chains does not preclude the reversible dissociation of this subunit from myosin under ionic and temperature conditions approaching the physiological state.  相似文献   

7.
Rates of proteolytic cleavage of myosin subfragment 1 were measured in the absence and presence of different amounts of actin. The rates of tryptic digestion at the 50K/20K junction and papain digestion at the 25K/50K junction of the myosin head were progressively inhibited with increasing substoichiometric molar ratios of actin to myosin subfragment 1. The percentage inhibitions of digestion reactions corresponded precisely to the molar compositions of actin-subfragment 1 solutions and demonstrated that equimolar complexes of these proteins were responsible for the observed changes in the proteolysis of myosin heads.  相似文献   

8.
Nucleotide-induced states of myosin subfragment 1 cross-linked to actin   总被引:2,自引:0,他引:2  
A M Duong  E Reisler 《Biochemistry》1989,28(8):3502-3509
Actomyosin interactions and the properties of weakly bound states in carbodiimide-cross-linked complexes of actin and myosin subfragment 1 (S-1) were probed in tryptic digestion, fluorescence, and thiol modification experiments. Limited proteolysis showed that the 50/20K junction on S-1 was protected in cross-linked acto-S-1 from trypsin even under high-salt conditions in the presence of MgADP, MgAMPPNP, and MgPPi (mu = 0.5 M). The same junction was exposed to trypsin by MgATP and MgATP gamma S but mainly on S-1 cross-linked via its 50K fragment to actin. p-Phenylenedimaleimide-bridged S-1, when cross-linked to actin, yielded similar tryptic cleavage patterns to those of cross-linked S-1 in the presence of MgATP. By using p-nitrophenylenemaleimide, it was found that the essential thiols of cross-linked S-1 were exposed to labeling in the presence of MgATP and MgATP gamma S in a state-specific manner. In contrast to this, the reactive thiols were protected from modification in the presence of MgADP, MgAMPPNP, and MgPPi at mu = 0.5 M. These modifications were compared with similar reactions on isolated S-1. Experiments with pyrene-actin cross-linked to S-1 showed enhancement of fluorescence intensity upon additions of MgATP and MgATP gamma S, indicating the release of the pyrene probe on actin from the sphere of S-1 influence. The results of this study contrast the "open" structure of weakly bound actomyosin states to the "tight" conformation of rigor complexes.  相似文献   

9.
The addition of either smooth muscle or brain tropomyosin to skeletal muscle actoheavy meromyosin (HMM) or acto-myosin subfragment-1 (SF1) produces an activation of the actin-activated ATPase activity up to 100%. This contrasts with the opposite, inhibitory effect produced by skeletal muscle tropomyosin. The degree of activation or inhibition depends on the ionic conditions, which influence the affinities of tropomyosin and HMM or SF1 for actin as well as on the molar ratio of actin to myosin.Enzyme kinetic analysis indicates that the inhibitory effect of skeletal muscle tropomyosin results from an approximately six- to tenfold increase in the apparent affinity (Kapp) of the myosin head for the F-actin-tropomyosin complex with a concomitant six- to tenfold reduction in the maximal turnover rate (Vmax). Thus, there is no direct competition of skeletal muscle tropomyosin and myosin for the same site on actin. Brain tropomyosin has an opposite effect, decreasing the apparent affinity with concomitant increase in the Vmax.The effect of smooth muscle tropomyosin is more complex. At high ratios of myosin to actin this tropomyosin produces the same change in the Kapp as skeletal muscle tropomyosin but yields a value of Vmax that is about twofold higher. At lower molar ratios (below about 1 to 5 myosin subfragments to actin) the activating effect of this tropomyosin remains unchanged while the apparent affinity decreases to that observed for pure F-actin.On the basis of these data as well as from experiments carried out at fixed actin and varying SF1 concentrations, it is concluded that tropomyosins act in general as allosteric un-competitive inhibitors or activators of actomyosin by increasing or reducing the co-operative activation of myosin by actin at the level of product release.  相似文献   

10.
We have used actin labelled at Cys-374 with N-(1-pyrenyl)iodoacetamide [Kouyama & Mihashi (1981) Eur. J. Biochem. 114, 33-38] to monitor pressure-induced relaxations of acto-myosin subfragment 1. This label greatly increases the sensitivity of measurement of dissociated actin and reveals the presence of two relaxations. The experimental data can be fitted by a model in which actin binds subfragment 1 relatively weakly (K = 5.9 X 10(4) M-1) and then isomerizes to a more tightly bound complex (K = 1.7 X 10(7) M-1). This directly observed isomerization supports the model of Geeves, Goody & Gutfreund [(1984) J. Muscle Res. Cell. Motil. 5, 351-361]. The rate of the isomerization is too high to be observed in the pressure-jump apparatus (less than 200 microseconds), but analysis of the amplitudes allows estimation of the equilibrium constant of the isomerization as 280 (20 degrees C, 0.1 M-KCl, pH 7). The equilibrium is sensitive to temperature, pressure, ionic strength and the presence of ethylene glycol. The pressure-sensitivity of the isomerization suggests a significant conformational change of the acto-myosin subfragment 1 complex.  相似文献   

11.
12.
13.
At low ionic strength (7-25 mM) Mg2(+)-ATPase of myosin subfragment 1 (S1) isoforms containing alkali light chain A1 [S1(A1)] is activated by actin 1.5-2.5 times as strongly as Mg2(+)-ATPase of S1 isoforms containing alkali light chain A2[S1(A2)]. Data from analytical ultracentrifugation suggest that at low ionic strength in the absence of ATP in solution S1(A1) displays a higher affinity for F-actin than S1(A2). Such a higher affinity of S1(A1) for F-actin was also demonstrated by experiments, in which the interaction of S1 isoforms fluorescently labeled by 1.5-IAEDANS with F-actin of ghost fibers (single glycerinated muscle fibers containing F-actin but devoid of myosin) was studied. Using polarization microfluorimetry, it was shown that the interaction of both S1 isoforms with ghost fiber F-actin induces similar changes in the parameters of polarized tryptophan fluorescence. At the same time the mobility of the fluorescent probe, 1.5-IAEDANS, specifically attached to the SH-group of Cys-374 in the C-terminal region of action is markedly decreased by S1(A1) and is only slightly affected by S1(A2). The data obtained suggest that S1(A1) and S1(A2) interact with the C-terminal region of the actin molecule in different ways, i.e. S1(A1) is attached more firmly than S1(A2). This may be due to the existence of contacts between the alkali light chain of A1 of S1(A1) and the C-terminal region of actin as well as to the absence of such contacts in the case of S1(A2).  相似文献   

14.
D Schwyter  M Phillips  E Reisler 《Biochemistry》1989,28(14):5889-5895
Homogeneous preparations of actin cleaved into two fragments, the N-terminal 9- and C-terminal 36-kDa peptides, were achieved by proteolysis of G-actin with subtilisin at 23 degrees C at a 1:1000 (w/w) ratio of enzyme to actin. The subtilisin cleavage site was identified by sequence analysis to be between Met-47 and Gly-48. Although under nondenaturing conditions the two fragments remained associated to one another, the cleavage affected macromolecular interactions of actin. The rates of cleaved actin polymerization by MgCl2, KCl, and myosin subfragment 1 (S-1) were slower and the critical concentrations for this process were higher than in intact protein. Intact and cleaved actin formed morphologically indistinguishable filaments and copolymerized in the presence of MgCl2. The affinity of actin for S-1 was decreased by about 10-fold due to subtilisin cleavage, but the S-1 ATPase activity was activated to the same Vmax value by both intact and cleaved actins. DNase I inhibition measurements revealed lower affinity of cleaved actin for DNase I than that of intact protein. These results are discussed in terms of actin's structure.  相似文献   

15.
P Chaussepied  D Mornet  R Kassab 《Biochemistry》1986,25(21):6426-6432
Using the thrombin-cut [68-30 kilodalton (kDa)] myosin subfragment 1 (S-1) whose heavy chain has been selectively split within the central 50-kDa region, at Lys-560, with concomitant specific alterations of the ATPase and actin binding properties [Chaussepied, P., Mornet, D., Audemard, E., Derancourt, J., & Kassab, R. (1986) Biochemistry 25, 1134-1140; Chaussepied, P., Mornet, D., Barman, T., Travers, F., & Kassab, R. (1986) Biochemistry 25, 1141-1149], we have isolated and renatured the COOH-terminal 30-kDa fragment associated with the alkali light chains by the procedure recently described [Chaussepied, P., Mornet, D., Audemard, E., Kassab, R., Goodearl, J., Levine, B., & Trayer, I. P. (1986) Biochemistry 25, 4540-4547]. The 30-kDa peptide preparation was found to exhibit a crucial feature of the native S-1; namely, it interacts with F-actin in an adenosine 5'-triphosphate (ATP)-dependent manner. Studies by ultracentrifugation, turbidity measurements, and chemical cross-linking experiments showed that the acto-30-kDa peptide complex was dissociated almost completely by the gamma-phosphoryl group containing ligands ATP, 5'-adenylyl imidodiphosphate, and pyrophosphate, to a lesser extent by ADP, and not at all by AMP and inorganic phosphate. The maximal dissociating effect is operating with the thrombic 30-kDa entity, whereas the 22-kDa fragment produced by staphylococcal protease is only slightly dissociated. In contrast, the tryptic 20-kDa fragment binds irreversibly to actin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The rotational relaxation times of nonpolymerizable skeletal and smooth muscle tropomyosin were measured by analysis of the decay of the zero-field birefringence at different temperatures and salt concentrations. Skeletal tropomyosin in solution is equally well modeled as a rigid rod or as a semiflexible rod with a persistence length of 150 nm. Smooth muscle tropomyosin does not fit the rigid rod model but is well approximated by a semiflexible rod model with a persistence length of 55 nm. The results indicate that smooth muscle tropomyosin is either a more flexible molecule than skeletal muscle tropomyosin or is a curved structure with an end-to-end length shorter than the coiled-coil contour length. Smooth muscle tropomyosin controls the actomyosin ATPase differently from skeletal muscle tropomyosin and it had been suggested that the reason is because it is more rigid; clearly, another explanation must be sought.  相似文献   

17.
The ability of myosin subfragment 1 to interact with monomeric actin complexed to sequestering proteins was tested by a number of different techniques such as affinity absorption, chemical cross-linking, fluorescence titration, and competition procedures. For affinity absorption, actin was attached to agarose immobilized DNase I. Both chymotryptic subfragment 1 isoforms (S1A1 and S1A2) were retained by this affinity matrix. Fluorescence titration employing pyrenyl-actin in complex with deoxyribonuclease I (DNase I) or thymosin beta4 demonstrated S1 binding to these actin complexes. A K(D) of 5 x 10(-8) M for S1A1 binding to the actin-DNase I complex was determined. Fluorescence titration did not indicate binding of S1 to actin in complex with gelsolin segment 1 (G1) or vitamin D-binding protein (DBP). However, fluorescence competition experiments and analysis of tryptic cleavage patterns of S1 indicated its interaction with actin in complex with DBP or G1. Formation of the ternary DNase I-acto-S1 complex was directly demonstrated by sucrose density sedimentation. S1 binding to G-actin was found to be sensitive to ATP and an increase in ionic strength. Actin fixed in its monomeric state by DNase I was unable to significantly stimulate the Mg2+-dependent S1-ATPase activity. Both wild-type and a mutant of Dictyostelium discoideum myosin II subfragment 1 containing 12 additional lysine residues within an insertion of 20 residues into loop 2 (K12/20-Q532E) were found to also interact with actin-DNase I complex. Binding of the K12/20-Q532E mutant to the actin-DNase I complex occurred with higher affinity than wild-type S1 and was less sensitive to mono- and divalent cations.  相似文献   

18.
Golitsina NL  Lehrer SS 《FEBS letters》1999,463(1-2):146-150
To obtain proximity information between tropomyosin (Tm) and caldesmon (CaD) on the muscle thin filament, we cloned gizzard alphaTm and created two single Cys mutants S56C/C190S (56Tm) and D100C/C190S (100Tm). They were labeled with benzophenone maleimide (BPM) and UV-irradiated on thin filaments. One chain of BPM-56Tm and two chains of BPM-100Tm crosslinked to CaD. Only BPM-100Tm crosslinked to actin in the absence and presence of CaD and binding of low ratios of myosin subfragment 1 (S1) prevented the crosslinking. Tm-S1 crosslinks were produced when actin.Tm was saturated with S1. Thus, CaD on the actin.Tm filament is located <10 A away from Tm amino acids 56 and 100; in the closed state of the actin.Tm filament, Tm residue 100 is located close to the actin surface and is moved further away in the S1-induced open state; in the open state, S1 binds close to Tm.  相似文献   

19.
M Miki  T Hozumi 《Biochemistry》1991,30(22):5625-5630
A chemical modification of G-actin with (m-maleimidobenzoyl)-N-hydroxysuccinimide ester (MBS) impairs actin polymerization [Bettache, N., Bertrand, R., & Kassab, R. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 6028-6032]. MBS-actin recovers the ability to polymerize when a 2-fold molar excess of phalloidin is added in 30 mM KCl/2 mM MgCl2/20 mM Tris-HCl (pH 7.6). The resulting polymer (MBS-P-actin) is highly potentiated so that it activates the Mg(2+)-ATPase of S1 more strongly than native F-actin. The affinity of MBS-P-actin for S1 in the presence of ATP (KATPase) is about four times higher than that of native F-actin, although the maximum velocity at infinite actin concentration (Vmax) is almost the same. This high activation is not due to a cross-linking between MBS-P-actin and the S1 heavy chain, since no substantial amount of cross-linking was observed in SDS gel electrophoresis. Direct binding studies and ATPase measurements showed that the modification of actin with MBS impairs the binding of tropomyosin. Tropomyosin binding can be improved considerably by the addition of troponin. However, the regulation mechanism of the acto-S1 ATPase activity by troponin-tropomyosin is damaged. The addition of troponin-tropomyosin reduces the S1 ATPase activation by MBS-P-actin to the same level as that of native F-actin in 30 mM KCl/2.5 mM ATP/2 mM MgCl2, but there is no difference in the ATPase activation in the presence and absence of Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
R Aguirre  F Gonsoulin  H C Cheung 《Biochemistry》1986,25(22):6827-6835
Isolated myosin heads (subfragment 1) were modified by covalent attachment of 5-(iodoacetamido)fluorescein or 5-(iodoacetamido)salicylic acid to the essential sulfhydryl group SH1. The extrinsic fluorescence of the modified proteins was sensitive to binding of nucleotides and F-actin. With the fluorescein derivative [subfragment 1 (S1) modified with 5-(iodoacetamido)fluorescein (IAF) at SH1 (S1-AF)], association with MgADP decreased the probe fluorescence by 30%, whereas binding to actin increased the emission by a factor of 2. In the ternary complex acto-S1-AF X MgADP, the effect of nucleotide on the intensity of the attached fluorescein canceled the effect of actin. The fluorescence state of this ternary complex was similar to that of S1-AF X MgADP. The emission of S1-AF was resolved into two components with lifetimes of 4.3 and 0.6 ns and relative contributions of 33% and 67%, respectively. Interaction of S1-AF with nucleotides and actin did not alter the lifetimes but significantly shifted their fractional contributions. Quenching studies showed that the short lifetime likely arose from the fluorescein moiety statically quenched by internal groups. Binding of MgADP to the salicylate derivative [S1 modified with 5-(iodoacetamido)salicylic acid at SH1 (S1-SAL)] induced a 25% enhancement of the probe fluorescence, whereas formation of acto-S1-SAL decreased the emission by 10% regardless of whether MgADP was bound to the protein. Both labeled S1 species bound MgADP with a similar affinity, comparable to that of unmodified S1 previously reported by other investigators.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号