首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The reactive stromal phenotype is an important factor for prostate cancer progression and may be a new target for treatment and prevention. A new high efficiency preclinical protocol, the EPI bioassay, reflects the interaction of endocrine, paracrine and immune, (EPI) factors on induced androgen metabolism in human prostate reactive stroma. The bioassay is based on co-culturing human primary prostate stromal cells and LAPC-4 prostatic adenocarcinoma cells in a downscaled format of 96-well-plates for testing multiple doses of multiple target compounds. Metabolism of dehydroepiandrosterone (DHEA) with or without TGFβ1-induced stimulation (D+T) of the reactive stroma phenotype was assessed by increased testosterone in the media and PSA production of the epithelial prostate cancer cells. Using the non-metabolizable androgen R1881, effects from direct androgen action were distinguished from stromal androgen production from DHEA. Stromal cell androgenic bioactivity was confirmed using conditioned media from D+T-treated stromal cell monocultures in an androgen-inducible AR screening assay. We further showed that both agonists to estrogen receptor (ER), DPN (ERβ) and PPT (ERα), as well as estrogenic natural compounds including soy isoflavones attenuated D+T-induced PSA production. Studies with the pure ER agonists showed that activating either ERα or ERβ could inhibit both D+T-mediated and R1881-mediated PSA production with the D+T effect being more pronounced. In conclusion, natural compounds with estrogenic activity and pure ER agonists are very potent inhibitors of stromal conversion of DHEA to androgenic metabolites. More studies are needed to characterize the mechanisms involved in estrogenic modulation of the endocrine-immune-paracrine balance of the prostate microenvironment.  相似文献   

3.
4.
5.
三种转基因酵母法筛选类雌激素活性物质方法的比较   总被引:1,自引:0,他引:1  
利用转基因酵母菌株,分别采用摇瓶法、96孔板法和单板法筛选类雌激素活性化学品,并对实验参数进行了优化。通过对工作光密度及β半乳糖苷酶反应时间的优化,使改进后的转基因酵母筛选法筛选一批样品的时间从原来需要的几天缩短为半天。并且在时间缩短的同时,仍保留原来检测的高灵敏度和准确性,也节省了大量的试验耗材,达到了能应用于环境样品中类雌激素活性物质的快速测定的目的。    相似文献   

6.
An assessment of the presence and health risks of endocrine-disrupting chemicals in the drinking water treatment plant (DWTP) of Wu Chang was performed. A recombinant yeast assay was used to assess the endocrine disrupting activity of the effluents of the DWTP. Agonistic activities of the estrogen receptor and androgen receptor were not detected in any of the effluent samples. However, anti-estrogenic and anti-androgenic activities were observed. In addition, the removal rates of the DWTP for the anti-androgenic activities were limited. A health risk assessment was performed on the basis of the results of the recombinant yeast assay, and the total daily production of hormones was used to evaluate the health risks of these types of endocrine-disrupting chemicals. The predicted effects of the anti-estrogenic and anti-androgenic disrupting activities were below 1.5%. This study suggested that the combined toxicity bioassays with health risk assessment could provide an available method to assess endocrine-disrupting chemicals and to evaluate the potential adverse effects on human health for aquatic environmental samples.  相似文献   

7.
Selective estrogen receptor modulators (SERMs) and selective androgen receptor modulators (SARMs) are compounds that activate their cognate receptor in particular target tissues without affecting other organs. Many of these compounds will find their use in therapeutic treatments. However, they also will have a high potential for misuse in veterinary practice and the sporting world. Here we demonstrate that yeast estrogen and androgen bioassays can be used to detect SERMs and SARMs, and are also useful screening tools to investigate their mode of action. Six steroidal 11β-substituents of E2 (SERMs) and some arylpropionamide- and quinoline-based SARMs were tested. In addition, 7 compounds previously tested on AR agonism and determined as inactive in the yeast androgen bioassay, while QSAR modelling revealed strong binding to the human androgen receptor, are now shown to act as AR antagonists.  相似文献   

8.
9.
10.
Anthropogenic chemicals occurring in the environment, namely endocrine-disrupting chemicals (EDCs), have generated growing concern over their potential adverse effects on human wildlife health and ecosystem processes. This interest resulted particularly from their abilities to mimic the effect of endogenous hormones. In this study, we used stable transfected reporter cell lines to investigate the endocrine-disrupting profile of water as well as sediment samples. Samples are collected from up- and downstream of an industrial wastewater discharge point at the Hamdoun River in the vicinity of an industrial zone located at the center of Tunisia. The analysis of estrogen, androgen, and xenobiotic (pregnane X and dioxin) ligands receptors expressed by chimeric cell lines indicated that while the water and sediment samples from upstream sites have lower levels of estrogenic activity, those from downstream exhibited stronger estrogenic, aryl hydrocarbon receptor (AhR), and Pregnane X Receptor (PXR) activities. Moreover, collected samples have shown hormonal activity in terms of all tested receptors except the androgenic ones. In vitro recombinant estrogen receptor competitive binding assays revealed that while the estrogenic activities of the downstream water sample compounds had a strong affinity for estrogen receptor α (ERα), those present in the sediment samples showed a weaker one. These findings were consolidated by subsequent chemical analysis (high-performance liquid chromatography with UV detectors). Our results indicate that the water and sediment discharges at the Hamdoun River represent a major sink for EDCs from natural and industrial effluents, particularly those of the textile industry, with pernicious potential to disrupt normal endocrine functions.  相似文献   

11.
Androgenic compounds induce an interaction between the NH2- and COOH-terminal regions (N–C interaction) of androgen receptor (AR). We describe a rapid yeast bioassay for androgenic and anti-androgenic compounds based on androgen-dependent β-catenin-enhanced N–C interaction. The bioassay was also effective at detecting compounds that inhibit the N–C interaction in ways that do not involve binding to the ligand-binding domain.  相似文献   

12.
Androgens are known to regulate both the structure and function of lacrimal tissue in a variety of species. To explore the endocrine basis for this hormone action, the following study was designed to: (1) determine the cellular distribution of androgen receptors in the lacrimal gland; and (2) examine the influence of gender and the endocrine environment on the glandular content of these binding sites. Lacrimal glands were obtained from intact, castrated, hypophysectomized, diabetic or sham-operated male or female adult rats, mice or hamsters, as well as from orchiectomized rats exposed to placebo compounds or physiological levels of testosterone. The cellular of androgen receptors was evaluated by utilizing an immunoperoxidase protocol, in which a purified rabbit polyclonal antibody to the rat androgen receptor was used as the first antibody. Our findings with lacrimal glands showed that: (1) androgen receptors are located almost exclusively in nuclei of epithelial cells; (2) the cellular distribution or intranuclear density of these binding sites is far more extensive in glands of males, as compared to females; (3) orchiectomy or hypophysectomy, but not sham-surgery or diabetes, lead to a dramatic reduction in the immunocytochemical expression of androgen receptors; and (4) testosterone administration to orchiectomized rats induces a marked increase in androgen receptor content, relative to that in placebo-exposed glands. Our results also reveal that a 10 kb androgen receptor mRNA exists in the rat lacrimal gland. Overall, these findings demonstrate that gender and the endocrine system may significantly influence the distribution of androgen binding sites in rat lacrimal tissue. Moreover, our results show that androgens up-regulate their own lacrimal gland receptors.  相似文献   

13.
Recently we constructed recombinant yeast cells that express the human androgen receptor (hAR) and yeast enhanced green fluorescent protein (yEGFP), the latter in response to androgens. When exposed to 17beta-testosterone, the concentration where half-maximal activation is reached (EC50) was 50 nM. Relative androgenic potencies (RAP), defined as the ratio between the EC50 of 17beta-testosterone and the EC50 of the compound, were 1.7, 1.2 and 0.008 for 19-nortestosterone, tetrahydrogestrinone and 17beta-estradiol respectively. Steroids representative for other hormone receptors, like estrone, 17alpha-ethynylestradiol, and diethylstilbestrol for the estrogen receptor and corticosterone and dexamethasone for the glucocorticoid receptor, showed no agonistic response. Only compounds known to exert androgenic effects give a response. Determined RAPs were in line with results obtained from optimised QSAR model calculations and demonstrated that Saccharomyces cerevisiae showed no metabolism of test compounds and displayed no crosstalk from endogenous hormone receptors. The suitability of this bioassay to verify the outcomes of (Q)SAR models to predict the activities of different steroids was further examined by studies with steroid isomers and a number of designer steroids, confirming that the 17beta-hydroxyl group, 3-keto group and 5alpha-steroidal framework are extremely important for the activity of the androgenic steroid.  相似文献   

14.
A recombinant Huh7-PPRE-Luc cell line for analyzing the peroxisome proliferator response element (PPRE)-driven luciferase activity was established. The cells exhibited a good dose–response induction in PPRE-driven luciferase activity by three subtypes of peroxisome proliferator-activated receptor (PPAR) agonists as well as by a retinoid X receptor agonist, 9-cis-retinoic acid. Among five environmental chemicals tested, benzyl butyl phthalate and bisphenol induced PPRE-driven luciferase activation in Huh7-PPRE-Luc cells and caused adipogenic differentiation of 3T3-L1 cells. This recombinant Huh7-PPRE-Luc cell line would be useful for screening potential environmental obesogens with PPAR activity.  相似文献   

15.
Development and differentiation of the prostate from the fetal urogenital sinus (UGS) is dependent on androgen action via androgen receptors (AR) in the UGS mesenchyme. Estrogens are not required for prostate differentiation but do act to modulate androgen action. In mice exposure to exogenous estrogen during development results in permanent effects on adult prostate size and function, which is mediated through mesenchymal estrogen receptor (ER) alpha. For many years estrogens were thought to inhibit prostate growth because estrogenic drugs studied were administered at very high concentrations that interfered with normal prostate development. There is now extensive evidence that exposure to estrogen at very low concentrations during the early stages of prostate differentiation can stimulate fetal/neonatal prostate growth and lead to prostate disease in adulthood. Bisphenol A (BPA) is an environmental endocrine disrupting chemical that binds to both ER receptor subtypes as well as to AR. Interest in BPA has increased because of its prevalence in the environment and its detection in over 90% of people in the USA. In tissue culture of fetal mouse UGS mesenchymal cells, BPA and estradiol stimulated changes in the expression of several genes. We discuss here the potential involvement of estrogen in regulating signaling pathways affecting cellular functions relevant to steroid hormone signaling and metabolism and to inter- and intra-cellular communications that promote cell growth. The findings presented here provide additional evidence that BPA and the estrogenic drug ethinylestradiol disrupt prostate development in male mice at administered doses relevant to human exposures.  相似文献   

16.
Some chemicals have the potential to adversely affect sexual development through multiple endocrine actions. Prochloraz is an imidazole fungicide that displays diverse mechanisms of action, including inhibition of aromatase activity, inhibition of androgen synthesis, and antagonism of the androgen receptor. The objective of this study was to assess the effects of prochloraz on the sexual development of zebrafish (Danio rerio) in the Fish Sexual Development Test (FSDT) proposed as an OECD test guideline for detection of endocrine disruptors. Zebrafish were exposed to prochloraz (0, 16, 64 or 202 microg/L) for 60 days from 24 h post fertilization. Fish exposed to 202 microg/L prochloraz showed an increased proportion of males. Furthermore, the incidence of intersex and the stages of the gonads were altered in the treated fish compared to the control fish. A significant vitellogenin decrease was observed in both female and male zebrafish at an exposure concentration of 202 microg/L prochloraz. However, in the male fish, significantly increased vitellogenin concentrations were observed in the groups exposed to 16 or 64 microg/L prochloraz. This study serves as a part of the validation of the FSDT and indicates that the FSDT is suitable in detecting compounds with multiple endocrine actions. This is of importance in the assessment of the potential risk of existing and new chemicals.  相似文献   

17.
For screening of a large number of samples for androgenic activity, a robust system with minimal handling is required. The coding sequence for human androgen receptor (AR) was inserted into expression plasmid YEpBUbi-FLAG1, resulting in the plasmid YEpBUbiFLAG-AR, and the estrogen response element (ERE) on the reporter vector YRpE2 was replaced by an androgen response element (ARE), resulting in the plasmid YRpE2-ARE. Thus, a fully functional transactivation assay system with beta-galactosidase as a reporter gene could be created. Furthermore, green fluorescent protein (GFP) was introduced as an alternative reporter gene that resulted in a simplification of the whole assay procedure. For evaluation of both reporter systems, seven steroidal compounds with known AR agonistic properties (5 alpha-dihydrotestosterone, testosterone, androstenedione, 17 alpha-methyltestosterone, progesterone, epitestosterone, and d-norgestrel) were tested, and their potencies obtained in the different assays were compared. Furthermore, potencies from the transactivation assays were compared with IC(50) values obtained in radioligand binding assays. The newly developed androgen receptor transactivation assay is a useful tool for characterizing compounds with androgenic activity.  相似文献   

18.
A whole-cell bioassay has been developed for the total toxicity testing of liquid samples. The method is based on the induction of the bioluminescent activity of genetically manipulated mammalian cells. For that purpose, transfection was used to introduce, in HeLa cells, a DNA sensing element that responds to chemical stress agents (heavy metals, genotoxic agents, and endocrine-disrupting chemicals). Such element was designed to direct the expression of a reporting gene (firefly luciferase) through the activation of Drosophila melanogaster hsp22 promoter. A molecular approach was conducted to optimize hsp22 promoter element in order to decrease the background expression level of the reporting gene and to increase the sensitivity of the bioassay for testing endocrine disruptors. As a result, in the presence of 20-100 microM cadmium chloride, a 6-fold increase in luciferase expression was obtained using a specially designed truncated hsp22 promoter construction. The following chemicals known to be found in the polluted samples were tested: CdCl2, Cd(NO3)2, NaAsO2, alachlore, fentine acetate, thiram, and maneb. The stressing effect of each of them was sensitively detected by the present bioassay in the 0.05-50 microM concentration range.  相似文献   

19.
以载体双表达的方式构建重组酵母环境雌激素的评价体系, 用于快速筛选雌激素类化合物。在表达载体中, 用3-磷酸甘油醛脱氢酶(GPD)启动子驱动a人雌激素受体基因(hERa)的表达; 在报告载体中, 用雌激素效应元件(ERE)调控的绿色荧光蛋白(yEGFP)作为报告基因。将两者转化于酵母细胞(W303-1A)中, 构建成重组绿色荧光蛋白酵母细胞。该酵母细胞经不同浓度的雌激素类化合物作用后, 发现GFP的表达量与此类受试物具有明显的剂量效应关系。与其他环境雌激素酵母评价体系相比, 该重组酵母评价细胞, 在应用时不需要破坏细胞壁, 也不需要底物和相关试剂, 可直接在96孔板中操作完成, 具有快速、高通量、敏感性高、重现性好及廉价等特点。  相似文献   

20.
Endocrine disrupting compounds (EDCs) are chemicals that negatively impact endocrine system function, with effluent from paper mills one example of this class of chemicals. In Florida, female Eastern mosquitofish (Gambusia holbrooki) have been observed with male secondary sexual characteristics at three paper mill-impacted sites, indicative of EDC exposure, and are still found at one site on the Fenholloway River. The potential impacts that paper mill effluent exposure has on the G. holbrooki endocrine system and the stream ecosystem are unknown. The objective of this study was to use gene expression analysis to determine if exposure to an androgen receptor agonist was occurring and to couple this analysis with in vitro assays to evaluate the presence of androgen and progesterone receptor active chemicals in the Fenholloway River. Focused gene expression analyses of masculinized G. holbrooki from downstream of the Fenholloway River paper mill were indicative of androgen exposure, while genes related to reproduction indicated potential progesterone exposure. Hepatic microarray analysis revealed an increase in the expression of metabolic genes in Fenholloway River fish, with similarities in genes and biological processes compared to G. holbrooki exposed to androgens. Water samples collected downstream of the paper mill and at a reference site indicated that progesterone and androgen receptor active chemicals were present at both sites, which corroborates previous chemical analyses. Results indicate that G. holbrooki downstream of the Fenholloway River paper mill are impacted by a mixture of both androgens and progesterones. This research provides data on the mechanisms of how paper mill effluents in Florida are acting as endocrine disruptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号