首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been recently established as a powerful tool for the analysis of biomolecules. Here, MALDI-TOF MS was used for the detection of (poly-)phosphoinositides (PPI). PPI possess higher molecular weights than other phospholipids and a high phosphorylation-dependent negative charge. Both features affect the MALDI detection limits expressed as the minimum of analyte on the sample plate resulting in a signal-to-noise-ratio of S/N=5. Using 2,5-dihydroxybenzoic acid (DHB) as matrix the detection limit for phosphatidylinositol (PI) is seven times higher than for phosphatidylcholine (PC) and further increases with increasing phosphorylation or in mixtures with other well-detectable phospholipids. For phosphatidylinositol-tris-phosphate (PIP3) in a mixture with PC, the limit is about 20 times higher than for PI. The consequences for the experimental conditions are discussed. It is advisable to pre-separate PPI from biological lipid mixtures prior to the application of MALDI-TOF MS.  相似文献   

2.
3.
Archaea and a number of groups of environmentally important bacteria, e.g., sulfate-reducing bacteria, anoxygenic phototrophs, and some thermophiles, are difficult to characterize using current methods developed for phenotypically differentiating heterotrophic bacteria. We have evaluated matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF-MS) as a rapid method for identifying different groups of extremophilic prokaryotes using a linear mass spectrometer (Micromass, UK). The instrument is designed to acquire mass-spectral patterns from prokaryotic cell-wall components between masses of 500 and 10,000 Da in a statistically robust manner and create a database that can be used for identification. We have tested 28 archaea (10 genera, 20 spp.) and 42 bacteria (25 genera, 37 spp.) and found that all species yield reproducible, unique mass-spectral profiles. As a whole, the profiles for the archaea had fewer peaks and showed less differentiation compared to the bacteria, perhaps reflecting fundamental differences in cell-wall structure. The halophilic archaea all had consistent patterns that showed little differentiation; however, the software was able to consistently distinguish Halobacterium salinarium, Halococcus dombrowski, and Haloarcula marismortui from one another, although it could not always correctly distinguish four strains of Hb. salinarium from one another. The method was able to reliably identify 105 cells of either Albidovulum inexpectatum or Thermococcus litoralis and could detect as low as 103 cells. We found that the matrix, alpha-cyano-4-hydroxy-cinnamic acid yielded better spectra for archaea than 5-chloro-2-mercapto-benzothiazole. Overall, the method was rapid, required a minimum of sample processing, and was capable of distinguishing and identifying a very diverse group of prokaryotes.Communicated by F. Robb  相似文献   

4.
与传统的微生物鉴定技术相比,基质辅助激光解吸电离飞行时间质谱(matrix-assisted laser desorption ionization time-of-flight mass spectrometry, MALDI-TOF MS)是一种准确、可靠和快速的鉴定和分型的技术。本文通过检索近年来国内外相关研究论文,总结最新的研究进展,发现MALDI-TOF MS在临床病原微生物、食源性微生物以及环境微生物等鉴定中有较大的优势,加快了微生物鉴定的进程,同时探索该技术在新领域的最新进展和面临的挑战,以期为我国基质辅助激光解吸电离飞行时间质谱技术的发展提供参考。  相似文献   

5.
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been used for many years to rapidly identify whole bacteria. However, no consistent methodology exists for the rapid identification of bacteria cultured in liquid media. Thus, in this study we explored the use of MALDI-TOF MS analysis for rapid identification of cells cultured in liquid media. We determined that 2,5-dihydroxybenzoic acid (50 mg mL?1, 50% acetonitrile, 0.1% trifluoroacetic acid) was the best matrix solution for MALDI-TOF MS for this type of study. Moreover, the tested strains were successfully differentiated by principal component analysis, and the main characteristics of the mass peaks for each species were found in mixed culture samples. In addition, we found that the minimum number of cells for detection was 1.8×103. In conclusion, our findings suggest that MS-based techniques can be developed as an auxiliary method for rapidly and accurately identifying bacteria cultured in liquid media.  相似文献   

6.
The results of the characterization of a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry-based method that was developed to establish the stoichiometry of CHX-A'-diethylenetriaminepentaacetic acid (DTPA) or benzyl-DTPA conjugated to a recombinant immunoglobulin G (IgG) are reported. This simple method does not require an accurate measurement of the sample protein concentration to accurately quantify the number of DTPA conjugated. It is also not necessary to thoroughly remove nonconjugated DTPA from the sample. The average number of moles of DTPA attached per mole of IgG was calculated from the difference in the observed masses of DTPA-IgG and nonconjugated IgG divided by the molecular weight of the DTPA derivative. As more DTPA is attached, the [M+H](+) peak of DTPA-IgG becomes broader and noisier. Also, the signal intensity in the mass spectrum decreases, apparently due to the increase in the heterogeneity in the number of DTPA attached to each molecule of IgG. The standard deviation of the measured mass and that of the stoichiometry of the DTPA attached per IgG increased as more DTPA was attached. The standard deviation, expressed as coefficient of variation for samples with 2 to 4 mol of DTPA attached per mole of IgG, was 8 to 9%.  相似文献   

7.
Matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry (MS) was evaluated as a technique to characterize strains of the nitrogen-fixing actinomycete Frankia. MALDI-TOF MS reliably distinguished 37 isolates within the genus Frankia and assigned them to their respective host infection groups, i.e., the Alnus/Casuarina and the Elaeagnus host infection groups. The assignment of individual strains to sub-groups within the respective host infection groups was consistent with classification based on comparative sequence analysis of nifH gene fragments, confirming the usefulness of MALDI-TOF MS as a rapid and reliable tool for the characterization of Frankia strains.  相似文献   

8.
As recently shown, different physiologically relevant lipid classes can easily be analyzed by matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI–TOF MS). In the present study the first application of MALDI–TOF for the quantitative analysis of diacylglycerols is described. It is shown that the use of a suitable reference sample enables the quantification of diacylglycerols up to the picomolar range. The best reproducibility of quantitative results for diacylglycerols was obtained using a matrix of 2,5-dihydroxybenzoic acid in ethylacetate and incorporation of an internal standard of the same lipid class. A moderate laser power was used, resulting in a very low extent of fragmentation, allowing a quantification by using solely the highest signal arising from sodium adduct formation of diacylglycerols. A linear correlation between peak intensity and lipid concentration over one order of magnitude was found. The applicability of this new technique for the analysis of other lipids like phosphatidylcholines is also discussed.  相似文献   

9.
Histone lysine methyltransferases (HKMTs) are enzymes that play an essential role in epigenetic regulation. Thus, identification of inhibitors specifically targeting these enzymes represents a challenge for the development of new antitumor therapeutics. Several methods for measuring HKMT activity are already available. Most of them use indirect measurement of the enzymatic reaction through radioactive labeling or antibody-recognized products or coupled enzymatic assays. Mass spectrometry (MS) represents an interesting alternative approach because it allows direct detection and quantification of enzymatic reactions and can be used to determine kinetics and to screen small molecules as potential inhibitors. Application of mass spectrometry to the study of HKMTs has not been fully explored yet. We describe here the development of a simple reliable label-free MALDI-TOF MS-based assay for the detection and quantification of peptide methylation, using SET7/9 as a model enzyme. Importantly, the use of expensive internal standard often required in mass spectrometry quantitative analysis is not necessary in this assay. This MS assay allowed us to determine enzyme kinetic parameters as well as IC50 for a known inhibitor of this enzyme. Furthermore, a comparative study with an antibody-based immunosorbent assay showed that the MS assay is more reliable and suitable for the screening of inhibitors.  相似文献   

10.
The DNA of all organisms is persistently damaged by endogenous reactive molecules. Most of the single-base endogenous damage is repaired through the base excision repair (BER) pathway that is initiated by members of the DNA glycosylase family. Although the BER pathway is often considered to proceed through a common abasic site intermediate, emerging evidence indicates that there are likely distinct branches reflected by the multitude of chemically different 3′ and 5′ ends generated at the repair site. In this study, we have applied matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI–TOF–MS) to the analysis of model DNA substrates acted on by recombinant glycosylases. We examine the chemical identity of several possible abasic site and nicked intermediates generated by monofunctional and bifunctional glycosylases. Our results suggest that the intermediate from endoIII/Nth might not be a simple β-elimination product as described previously. On the basis of 18O incorporation experiments, we propose a new mechanism for the endoIII/Nth family of glycosylases that may resolve several of the previous controversies. We further demonstrate that the use of an array of lesion-containing oligonucleotides can be used to rapidly examine the substrate preferences of a given glycosylase. Some of the lesions examined here can be acted on by more than one glycosylase, resulting in a spectrum of damaged intermediates for each lesion, suggesting that the sequence and coordination of repair activities that act on these lesions may influence the biological outcome of damage repair.  相似文献   

11.
12.
13.
Different methods were established for monitoring the phospholipase A(2)(PLA(2)) activity but all of them are rather cumbersome and time consuming. In this paper we have investigated the suitability of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the determination of the PLA(2) activity. Phosphatidylcholine (PC) was digested with pancreatic PLA(2) under different conditions, i.e., various Ca(2+), PC, and PLA(2) concentrations. The digestion products were analyzed by MALDI-TOF MS and the concentration of lysophosphatidylcholine (LPC)-generated upon PLA(2) digestion-was determined by the application of an internal standard (known concentration) and by a comparison of their signal-to-noise ratios. The results clearly demonstrate that the LPC concentration determined from the MALDI-TOF mass spectra correlates directly with the activity of the applied enzyme. Additionally, LPC concentration increased with an increase in Ca(2+), as well as in the PC concentration. A single MALDI-TOF mass spectrum provides immediate information on the digestion products as well as on the residual substrate without requirements for any previous derivatization. MALDI-TOF MS can be easily and simply applied for monitoring the PLA(2) activity and we assume that this method might also be useful for other types of phospholipases.  相似文献   

14.
The interest in the analysis of lipids and phospholipids is continuously increasing due to the importance of these molecules in biochemistry (e.g. in the context of biomembranes and lipid second messengers) as well as in industry. Unfortunately, commonly used methods of lipid analysis are often time-consuming and tedious because they include previous separation and/or derivatization steps. With the development of "soft-ionization techniques" like electrospray ionization (ESI) or matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF), mass spectrometry became also applicable to lipid analysis. The aim of this review is to summarize so far available experiences in MALDI-TOF mass spectrometric analysis of lipids. It will be shown that MALDI-TOF MS can be applied to all known lipid classes and the characteristics of individual lipids will be discussed. Additionally, some selected applications in medicine and biology, e.g. mixture analysis, cell and tissue analysis and the determination of enzyme activities will be described. Advantages and disadvantages of MALDI-TOF MS in comparison to other established lipid analysis methods will be also discussed.  相似文献   

15.
Oligonucleotides containing modified bases are commonly used for biochemical and biophysical studies to assess the impact of specific types of chemical damage on DNA structure and function. In contrast to the synthesis of oligonucleotides with normal DNA bases, oligonucleotide synthesis with modified bases often requires modified synthetic or deprotection conditions. Furthermore, several modified bases of biological interest are prone to further damage during synthesis and oligonucleotide isolation. In this article, we describe the application of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) to the characterization of a series of modified synthetic oligonucleotides. The potential for and limits in obtaining high mass accuracy for confirming oligonucleotide composition are discussed. Examination of the isotope cluster is also proposed as a method for confirming oligonucleotide elemental composition. MALDI-TOF-MS analysis of the unpurified reaction mixture can be used to confirm synthetic sequence and to reveal potential problems during synthesis. Analysis during and after purification can yield important information on depurination and base oxidation. It can also reveal unexpected problems that can occur with nonstandard synthesis, deprotection, or purification strategies. Proper characterization of modified oligonucleotides is essential for the correct interpretation of experiments performed with these substrates, and MALDI-TOF-MS analysis provides a simple yet extensive method of characterization that can be used at multiple stages of oligonucleotide production and use.  相似文献   

16.
The analysis of chlorophylls and their derivatives by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry is described. Four matrices—sinapinic acid, a-cyano-4-hydroxycinnnamic acid, terthiophene, and 3-aminoquinoline—were examined to determine optimal conditions for analysis of the molecular mass and structure of chlorophyll a as a representative chlorophyll. Among them, terthiophene was the most efficient without releasing metal ions, although it caused fragmentation of the phytol-ester linkage. Terthiophene was useful for the analyses of chlorophyll derivatives as well as porphyrin products such as 8-deethyl-8-vinyl-chlorophyll a, pheophorbide a, pyropheophorbide a, bacteriochlorophyll a esterified phytol, and protoporphyrin IX. The current method is suitable for rapid and accurate determination of the molecular mass and structure of chlorophylls and porphyrins.  相似文献   

17.
We report a method to detect the presence of dimethylarginines on proteins. Peptides with dimethylarginines were hydrolyzed in acid. The hydrolysates were subjected to matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometric analysis using a mixture of alpha-cyano-4-hydroxycinnamic acid and nitrocellulose as matrix. Both asymmetric omega-N(G),N(G)-dimethylarginine and symmetric omega-N(G),N(G')-dimethylarginine give a clear signal at m/z 203. Recombinant Sbp1p modified by Hmt1p in vivo were isolated by affinity chromatography followed by electrophoresis on a polyacrylamide gel and subjected to acid hydrolysis. MALDI-TOF analysis of the acid hydrolysates confirmed the presence of dimethylarginines. The detection limit of the method is estimated at approximately 1pmol of protein.  相似文献   

18.
A robust high-throughput single-nucleotide polymorphism (SNP) genotyping method is reported, which applies allele-specific extension to achieve allelic discrimination and uses matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to measure the natural molecular weight difference of oligonucleotides for determination of the base in a single-nucleotide polymorphic location. Tenfold PCR is performed successfully by carefully designing the primers and adjusting the conditions of PCR. In addition, two ways used for PCR product purification are compared and the matrix used in mass spectrometry for high-throughput oligonucleotide analysis is evaluated. The result here shows that the method is very effective and suitable for high-throughput genotyping of SNPs.  相似文献   

19.
The effects of N and P depletion on the production and structural characterization of the cellular carbohydrate polymers of the estuarine diatom Halamphora luciae in batch culture were examined using matrix-assisted laser desorption-ionization time-of flight mass spectrometry (MALDI-TOF MS) complemented with monosaccharide composition determination and structural analyses by methylation of aqueous extracted product. The MALDI MS analysis of the cells showed a similar profile in control and N- and P-depleted media, with a displacement to higher molecular weight for cells grown in depleted media. In the monosaccharide analyses, both nutrient depletion and culture ageing led to an increase in glucose content, indicating that MALDI-TOF MS in whole cells was detecting the changes in chrysolaminarin. The maxima for the ions from f/2-P and to a lesser extent in f/2-N were displaced to higher m/z values indicating a higher degree of polymerization (DP). Methylation analysis confirmed the presence of chrysolaminarin, a (1→3)-β-d-glucan with branching in C2 and C6, where the glucan backbone had a substitution every four glucose residues. The (1→3)-β-d-glucan was also detected in the cingule by fluorescence with aniline blue.  相似文献   

20.
Glucosamine-6-phosphate synthase (GlmS, EC 2.6.1.16) catalyzes the first and rate-limiting step in the hexosamine biosynthetic pathway, leading to the synthesis of uridine-5′-diphospho-N-acetyl-d-glucosamine, the major building block for the edification of peptidoglycan in bacteria, chitin in fungi, and glycoproteins in mammals. This bisubstrate enzyme converts d-fructose-6-phosphate (Fru-6P) and l-glutamine (Gln) into d-glucosamine-6-phosphate (GlcN-6P) and l-glutamate (Glu), respectively. We previously demonstrated that matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) allows determination of the kinetic parameters of the synthase activity. We propose here to refine the experimental protocol to quantify Glu and GlcN-6P, allowing determination of both hemisynthase and synthase parameters from a single assay kinetic experiment, while avoiding interferences encountered in other assays. It is the first time that MALDI-MS is used to survey the activity of a bisubstrate enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号