共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Michela Landoni Alessandra De Francesco Massimo Galbiati Chiara Tonelli 《Plant molecular biology》2010,74(3):235-247
Calmodulin (CAM) is an ubiquitous calcium binding protein whose function is to translate the signals, perceived as calcium
concentration variations, into the appropriate cellular responses. In Arabidopsis
thaliana there are 4 CAM isoforms which are highly similar, encoded by 7 genes, and one possible explanation proposed for the evolutionary
conservation of the CAM gene family is that the different genes have acquired different functions so that they play possibly overlapping but non-identical
roles. Here we report the characterization of the Arabidopsis mutant cam2-2, identified among the lines of the gene-trapping collection EXOTIC because of a distorted segregation of kanamycin resistance.
Phenotypic analysis showed that in normal growth conditions cam2-2 plants were indistinguishable from the wild type while genetic analysis showed a reduced transmission of the cam2-2 allele through the male gametophyte and in vitro pollen germination revealed a reduced level of germination in comparison
with the wild type. These results provide genetic evidence of the involvement of a CAM gene in pollen germination and support the theory of functional diversification of the CAM gene family. 相似文献
3.
One of the rare weak points of the model plant Arabidopsis is the technical problem associated with the germination of its male gametophyte and the generation of the pollen tube in
vitro. Arabidopsis pollen being tricellular has a notoriously low in vitro germination compared to species with bicellular pollen. This drawback
strongly affects the reproducibility of experiments based on this cellular system. Together with the fact that pollen collection
from this species is tedious, these are obstacles for the standard use of Arabidopsis pollen for experiments that require high numbers of pollen tubes and for which the percentage of germination needs to be
highly reproducible. The possibility of freeze-storing pollen after bulk collection is a potential way to solve these problems,
but necessitates methods that ensure continued viability and reproducible capacity to germinate. Our objective was the optimization
of germination conditions for Arabidopsis pollen that had been freeze-stored. We optimized the concentrations of various media components conventionally used for in
vitro pollen germination. We found that in general 4 mM calcium, 1.62 mM boric acid, 1 mM potassium, 1 mM magnesium, 18% sucrose
at pH 7 and a temperature of 22.5°C are required for optimal pollen germination. However, different experimental setups may
deviate in their requirements from this general protocol. We suggest how to optimally use these optimized methods for different
practical experiments ranging from morphological observations of pollen tubes in optical and electron microscopy to their
bulk use for molecular and biochemical analyses or for experimental setups for which a specific medium stiffness is critical.
F. Bou Daher and Y. Chebli contributed equally to this study. 相似文献
4.
An Arabidopsis deletion mutant was fortuitously identified from the alpha population of T-DNA insertional mutants generated
at the University of Wisconsin Arabidopsis Knockout Facility. Segregation and reciprocal crosses indicated that the mutant
was a gametophytic pollen sterile mutant. Pollen carrying the mutation has the unusual phenotype that it is viable, but cannot
germinate. Thus, the mutant was named pollen germination defective mutant 1 (pgd1), based on the pollen phenotype. Flanking sequences of the T-DNA insertion in the pgd1 mutant were identified by thermal asymmetric interlaced (TAIL) PCR. Sequencing of bands from TAIL PCR revealed that the T-DNA
was linked to the gene XLG1, At2g23460, at its downstream end, while directly upstream of the T-DNA was a region between At2g22830 and At2g22840, which
was 65 genes upstream of XLG1. Southern blotting and genomic PCR confirmed that the 65 genes plus part of XLG1 were deleted in the pgd1 mutant. A 9,177 bp genomic sequence containing the XLG1 gene and upstream and downstream intergenic regions could not rescue the pgd1 pollen phenotype. One or more genes from the deleted region were presumably responsible for the pollen germination defect
observed in the pgd1 mutant. Because relatively few mutations have been identified that affect pollen germination independent of any effect on
pollen viability, this mutant line provides a new tool for identification of genes specifically involved in this phase of
the reproductive cycle. 相似文献
5.
6.
The shoot apical meristem of higher plants consists of a population of stem cells at the tip of the plant body that continuously gives rise to organs such as leaves and flowers. Cells that leave the meristem differentiate and must be replaced to maintain the integrity of the meristem. The balance between differentiation and maintenance is governed both by the environment and the developmental status of the plant. In order to respond to these different stimuli, the meristem has to be plastic thus ensuring the stereotypic shape of the plant body. Meristem plasticity requires the ZWILLE (ZLL) gene. In zll mutant embryos, the apical cells are misspecified causing a variability of the meristems size and function. Using specific antibodies against ZLL, we show that the zll phenotype is due to the complete absence of the ZLL protein. In immunohistochemical experiments we confirm the observation that ZLL is solely localized in vascular tissue. For a better understanding of the role of ZLL in meristem stability, we analysed the genetic interactions of ZLL with WUSCHEL (WUS) and the CLAVATA1, 2 and 3 (CLV) genes that are involved in size regulation of the meristem. In a zll loss-of-function background wus has a negative effect whereas clv mutations have a positive effect on meristem size. We propose that ZLL buffers meristem stability non-cell-autonomously by ensuring the critical number of apical cells required for proper meristem function.Edited by G. JürgensAn erratum to this article can be found at 相似文献
7.
Protein mono-ADP-ribosylation post-translationally transfers the ADP-ribose moiety from the β-NAD+ donor to various protein acceptors. This type of modification has been widely characterized and shown to regulate protein
activities in animals, yeast and prokaryotes, but has never been reported in plants. In this study, using [32P]NAD+ as the substrate, ADP-ribosylated proteins in Arabidopsis were investigated. One protein substrate of 32 kDa in adult rosette leaves was found to be radiolabeled. Heat treatment,
protease sensitivity and nucleotide derivative competition assays suggested a covalent reaction of NAD+ with the 32 kDa protein. [carbonyl-14C]NAD+ could not label the 32 kDa protein, confirming that the modification was ADP-ribosylation. Poly (ADP-ribose) polymerase inhibitor
failed to suppress the reaction, but chemicals that destroy mono-ADP-ribosylation on specific amino acid residues could break
up the linkage, suggesting that the reaction was not a poly-ADP-ribosylation but rather a mono-ADP-ribosylation. This modification
mainly existed in leaves and was enhanced by oxidative stresses. In young seedlings, two more protein substrates with the
size of 45 kDa and over 130 kDa, respectively, were observed in addition to the 32 kDa protein, indicating that different
proteins were modified at different developmental stages. Although the substrate proteins remain to be identified, this is
the first report on the characterization of endogenously mono-ADP-ribosylated proteins in plants. 相似文献
8.
Oxygen-free radicals are thought to play an essential role in senescence. Therefore, the expression patterns of the small
gene family encoding the H2O2 scavenging enzymes ascorbate peroxidase (APX; EC 1.11.1.11) were analyzed during senescence of Arabidopsis thaliana (L.) Heinh. Applying real-time RT-PCR, the mRNA levels were quantified for three cytosolic (APX1, APX2, APX6), two chloroplastic
types (stromal sAPX, thylakoid tAPX), and three microsomal (APX3, APX4, APX5) isoforms identified in the genome of Arabidopsis. The genes of chloroplastic thylakoid-bound tAPX and the microsomal APX4 exhibit a strong age-related decrease of mRNA level
in leaves derived from one rosette as well as in leaves derived from plants of different ages. In contrast to the tAPX, the
mRNA of sAPX was only reduced in old leaves of old plants. The microsomal APX3 and APX5, and the cytosolic APX1, APX2, and
APX6 did not show remarkable age-related changes in mRNA levels. The data show that expression of the individual APX genes
is differentially regulated during senescence indicating possible functional specialization of respective isoenzymes. The
hydrogen peroxide levels seem to be controlled very precisely in different cell compartments during plant development. 相似文献
9.
10.
Xue-Li Wan Jie Yang Xiao-Bai Li Qiao Zhou Cong Guo Man-Zhu Bao Jun-Wei Zhang 《Plant Molecular Biology Reporter》2016,34(5):899-908
Small heat shock proteins (sHSPs) have been shown to be involved in stress tolerance. However, their functions in Prunus mume under heat treatment are poorly characterized. To improve our understanding of sHSPs, we cloned a sHSP gene, PmHSP17.9, from P. mume. Sequence alignment and phylogenetic analysis indicated that PmHSP17.9 was a member of plant cytosolic class III sHSPs. Besides heat stress, PmHSP17.9 was also upregulated by salt, dehydration, oxidative stresses and ABA treatment. Leaves of transgenic Arabidopsis thaliana that ectopically express PmHSP17.9 accumulated less O2 ? and H2O2 compared with wild type (WT) after 42 °C treatment for 6 h. Over-expression of PmHSP17.9 in transgenic Arabidopsis enhanced seedling thermotolerance by decreased relative electrolyte leakage and MDA content under heat stress treatment when compared to WT plants. In addition, the induced expression of HSP101, HSFA2, and delta 1-pyrroline-5-carboxylate synthase (P5CS) under heat stress was more pronounced in transgenic plants than in WT plants. These results support the positive role of PmHSP17.9 in response to heat stress treatment. 相似文献
11.
A new deletion allele of the APETALA1 (AP1) gene encoding a type II MADS-box protein with the key role in the initiation of flowering and development of perianth organs has been identified in A. thaliana. The deletion of seven amino acids in the conserved region of the K domain in the ap1-20 mutant considerably delayed flowering and led to a less pronounced abnormality in the corolla development compared to the weak ap1-3 and intermediate ap1-6 alleles. At the same time, a considerable stamen reduction has been revealed in ap1-20 as distinct from ap1-3 and ap1-6 alleles. These data indicate that the K domain of AP1 can be crucial for the initiation of flowering and expression regulation of B-class genes controlling stamen development. 相似文献
12.
13.
The Carboxylesterase Gene Family from <Emphasis Type="Italic">Arabidopsis thaliana</Emphasis> 总被引:3,自引:0,他引:3
Carboxylesterases hydrolyze esters of short-chain fatty acids and have roles in animals ranging from signal transduction to xenobiotic detoxification. In plants, however, little is known of their roles. We have systematically mined the genome from the model plant Arabidopsis thaliana for carboxylesterase genes and studied their distribution in the genome and expression profile across a range of tissues. Twenty carboxylesterase genes (AtCXE) were identified. The AtCXE family shares conserved sequence motifs and secondary structure characteristics with carboxylesterases and other members of the larger / hydrolase fold superfamily of enzymes. Phylogenetic analysis of the AtCXE genes together with other plant carboxylesterases distinguishes seven distinct clades, with an Arabidopsis thaliana gene represented in six of the seven clades. The AtCXE genes are widely distributed across the genome (present in four of five chromosomes), with the exception of three clusters of tandemly duplicated genes. Of the interchromosomal duplication events, two have been mediated through newly identified partial chromosomal duplication events that also include other genes surrounding the AtCXE loci. Eighteen of the 20 AtCXE genes are expressed over a broad range of tissues, while the remaining 2 (unrelated) genes are expressed only in the flowers and siliques. Finally, hypotheses for the functional roles of the AtCXE family members are presented based on the phylogenetic relationships with other plant carboxylesterases of known function, their expression profile, and knowledge of likely esterase substrates found in plants. 相似文献
14.
WRKY gene family evolution in <Emphasis Type="Italic">Arabidopsis thaliana</Emphasis> 总被引:1,自引:0,他引:1
The Arabidopsis thaliana WRKY proteins are characterized by a sequence of 60 amino acids including WRKY domain. It is well established that these
proteins are involved in the regulation of various physiological programs unique to plants including pathogen defense, senescence
and response to environmental stresses, which attracts attention of the scientific community as to how this family might have
evolved. We tried to satisfy this curiosity and analyze reasons for duplications of these gene sequences leading to their
diversified gene actions. The WRKY sequences available in Arabidopsis thaliana were used to evaluate selection pressure following duplication events. A phylogenetic tree was constructed and the WRKY family
was divided into five sub-families. After that, tests were conducted to decide whether positive or purified selection played
key role in these events. Our results suggest that purifying selection played major role during the evolution of this family.
Some amino acid changes were also detected in specific branches of phylogeny suggesting that relaxed constraints might also
have contributed to functional divergence among sub-families. Sites relaxed from purifying selection were identified and mapped
onto the structural and functional regions of the WRKY1 protein. These analyses will enhance our understanding of the precise
role played by natural selection to create functional diversity in WRKY family. 相似文献
15.
Arabidopsis ACT2 represents an ancient class of vegetative plant actins and is strongly and constitutively expressed in almost all Arabidopsis sporophyte vegetative tissues. Using the beta glucuronidase report system, the studies showed that ACT2 5′ regulatory region was significantly more active than CaMV 35S promoter in Arabidopsis seedlings and gametophyte vegetative tissues of Physcomitrella patens. Its activity was also observed in rice and maize seedlings. Thus, the ACT2 5′ regulatory region could potentially serve as a strong regulator to express a transgene in divergent plant species. ACT2 5′ regulatory region contained 15 conserved sequence elements, an ancient intron in its 5′ un-translated region (5′ UTR),
and a purine-rich stretch followed by a pyrimidine-rich stretch (PuPy). Mutagenesis and deletion analysis illustrated that
some of the conserved sequence elements and the region containing PuPy sequences played regulatory roles in Arabidopsis. Interestingly, mutation of the conserved elements did not lead a dramatic change in the activity of ACT2 5′ regulatory region. The ancient intron in ACT2 5′ UTR was required for its strong expression in both Arabidopsis and P. patens, but did not fully function as a canonical intron. Thus, it was likely that some of the conserved sequence elements and gene
structures had been preserved in ACT2 5′ regulatory region over the course of land plant evolution partly due to their functional importance. The studies provided
additional evidences that identification of evolutionarily conserved features in non-coding region might be used as an efficient
strategy to predict gene regulatory elements. 相似文献
16.
Electron tomographic analysis of post-meiotic cytokinesis during pollen development in<Emphasis Type="Italic"> Arabidopsis thaliana</Emphasis> 总被引:4,自引:0,他引:4
The mechanism of cell wall formation after male meiosis was studied in microsporocytes of Arabidopsis thaliana (L.) Heynh. by means of thin-section and immuno-electron microscopy and dual-axis electron tomography of high-pressure-frozen/freeze-substituted cells. The cellularization of four-nucleate microsporocytes involves a novel type of cell plate, called a post-meiotic-type cell plate. As in the syncytial endosperm, the microsporocyte cell plates assemble in association with mini-phragmoplasts. However, in contrast to the endosperm cell plates, post-meiotic type cell plates arise simultaneously across the entire division plane. Vesicles are transported along mini-phragmoplast microtubules by putative kinesin proteins and, prior to fusion, they become connected together by 24-nm-long linkers that resemble exocyst complexes. These vesicles fuse with each other to form wide tubules and wide tubular networks. In contrast to endosperm cell plates, the wide tubular networks in microsporocytes completely lack callose and do not appear to be constricted by dynamin rings. The most peripheral wide tubular networks begin to fuse with the plasma membrane before the more central cell plate assembly sites become integrated into a coherent cell plate. Fusion with the parental plasma membrane triggers callose synthesis and the wide tubular domains are converted into convoluted sheets. As the peripheral convoluted sheets accumulate callose and arabinogalactan proteins, they are converted into stub-like projections, which grow centripetally, i.e. toward the interior of the syncytium, fusing with the wide tubular networks already assembled in the division plane. We also demonstrate that the ribosome-excluding cell plate assembly matrix is delivered to the mini-phragmoplast with the first vesicles, and encompasses all the linked vesicles and intermediate stages in cell plate formation.Abbreviations
AGP
Arabinogalactan protein
-
MT
Microtubule 相似文献
17.
Novel<Emphasis Type="Italic"> eceriferum</Emphasis> mutants in<Emphasis Type="Italic"> Arabidopsis thaliana</Emphasis> 总被引:3,自引:0,他引:3
We conducted a novel non-visual screen for cuticular wax mutants in Arabidopsis thaliana (L.) Heynh. Using gas chromatography we screened over 1,200 ethyl methane sulfonate (EMS)-mutagenized lines for alterations in the major A. thaliana wild-type stem cuticular chemicals. Five lines showed distinct differences from the wild type and were further analyzed by gas chromatography and scanning electron microscopy. The five mutants were mapped to specific chromosome locations and tested for allelism with other wax mutant loci mapping to the same region. Toward this end, the mapping of the cuticular wax (cer) mutants cer10 to cer20 was conducted to allow more efficient allelism tests with newly identified lines. From these five lines, we have identified three mutants defining novel genes that have been designated CER22, CER23, and CER24. Detailed stem and leaf chemistry has allowed us to place these novel mutants in specific steps of the cuticular wax biosynthetic pathway and to make hypotheses about the function of their gene products.Abbreviations EMS Ethyl methane sulfonate - SEM Scanning electron microscopy - SSLP Simple sequence length polymorphism - WT Wild type 相似文献
18.
19.
Multigenic families are widely represented in the genomes of higher plants, and are required for the reliability of cellular functions. Damage of individual genes can be compensated by diverse metabolic alterations, but the exact mechanisms of such compensations still remain not fully understood. Here we present novel data regarding the mechanisms of metabolic compensation in photorespiratory knock-out mutants cat2, cat3 and cat2cat3 of Arabidopsis thaliana, which are lacking activity of catalase isoforms CAT2 and CAT3. It was found that cultivation of the mutants under low light at optimal or increased temperature did not result in any morphological, physiological or biochemical signs of oxidative stress. Each of the mutant lines shows specific features of the compensatory mechanisms. Increased activity of CAT3 isoenzyme was found in the cat2 mutant, whereas cat3 and cat2cat3 demonstrate induction of CAT1, an isoform normally absent in young leaves, as well as activation of peroxidases, namely APX and POD. Comparison of these results and earlier published data revealed that the lack of CAT2 and CAT3 isoforms is compensated by preferential activation of non-enzymatic and enzymatic protection mechanisms, respectively. 相似文献
20.