首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fanconi anemia (FA) is an autosomal disorder that causes genome instability. FA patients suffer developmental abnormalities, early-onset bone marrow failure, and a predisposition to cancer. The disease is manifested by defects in DNA repair, hypersensitivity to DNA crosslinking agents, and a high degree of chromosomal aberrations. The FA pathway comprises 13 disease-causing genes involved in maintaining genomic stability. The fast pace of study of the novel DNA damage network has led to the constant discovery of new FA-like genes involved in the pathway that when mutated lead to similar disorders. A majority of the FA proteins act as signal transducers and scaffolding proteins to employ other pathways to repair DNA. This review discusses what is known about the FA proteins and other recently linked FA-like proteins. The goal is to clarify how the proteins work together to carry out interstrand crosslink repair and homologous recombination-mediated repair of damaged DNA.  相似文献   

2.
DNA interstrand crosslinks (ICLs) repair represents a formidable task for mammalian cells. Indeed, such DNA lesions, bridging both opposite DNA helices, function as a roadblock for every DNA transaction, in particular DNA replication. The eight Fanconi anemia (FA) proteins interact in a common pathway that is thought to be central in ICLs sensing/repair. Interestingly, FA cells, either mutated in one of the proteins composing the FA core complex or in the downstream FA protein FANCD2, exhibited a partial intra-S checkpoint defect in response to crosslinked DNA. Most importantly, the FA proteins work in the ATR-NBS1 branch of the ICL-induced checkpoint pathway as demonstrated by knocking-down CHK1 or MRE11 expression in a FA background. Even though our data disclose a clear functional role for the FA proteins in the intra-S checkpoint response it does not give a definite answer on what FA proteins do in this process and how they participate in the suppression/restart of DNA synthesis.It seems conceivable that FA proteins participate in the process involved in the recovery of stalled replication forks, a common event in proliferating cells, possibly ensuring correct replication fork repair by homologous recombination.  相似文献   

3.
The genetic syndrome Fanconi anemia (FA) is characterized by aplastic anemia, cancer predisposition and hypersensitivity to DNA interstrand crosslinks (ICLs). FA proteins (FANCs) are thought to work in pathway(s) essential for dealing with crosslinked DNA. FANCs interact with other proteins involved in both DNA repair and S-phase checkpoint such as BRCA1, ATM and the RAD50/MRE11/NBS1 (RMN) complex. We deciphered the previously undefined pathway(s) leading to the ICLs-induced S-phase checkpoint and the role of FANCs in this process. We found that ICLs activate a branched pathway downstream of the ATR kinase: one branch depending on CHK1 activity and the other on the FANCs-RMN complex. The transient slow-down of DNA synthesis was abolished in cells lacking ATR, whereas CHK1-siRNA-treated cells, NBS1 or FA cells showed partial S-phase arrest. CHK1 RNAi in NBS1 or FA cells abolished the S-phase checkpoint, suggesting that CHK1 and FANCs/NBS1 proteins work on parallel pathways. Furthermore, we found that ICLs trigger ATR-dependent FANCD2 phosphorylation and FANCD2/ATR colocalization. This study demonstrates a novel relationship between the FA pathway(s) and the ATR kinase.  相似文献   

4.
The Fanconi anemia pathway and the DNA interstrand cross-links repair   总被引:4,自引:0,他引:4  
Rosselli F  Briot D  Pichierri P 《Biochimie》2003,85(11):1175-1184
Fanconi anemia (FA) is a genetic cancer-predisposition syndrome characterized by bone marrow failure and cellular and chromosomal hypersensitivity to DNA cross-linking agents. Seven FA genes have been isolated and their products associate to form a pathway that interacts functionally or physically with several DNA-damage response proteins involved in cell cycle checkpoints and/or DNA repair. These proteins include BLM, ATM, BRCA1, XPF and the MRE11/RAD50/NBS1 complex. In spite of several recent striking progresses in the biochemistry and the molecular biology of the disorder, the precise function(s) of the FA proteins remain(s) poorly determined. However, several recent data indicate that the FA pathway could be involved in the coordination of both cell cycle checkpoints and DNA repair.  相似文献   

5.
The Fanconi anemia (FA) pathway proteins are thought to be involved in the repair of irregular DNA structures including those encountered by the moving replication fork. However, the nature of the DNA structures that recruit and activate the FA proteins is not known. Because FA proteins function within an extended network of proteins, some of which are still unknown, we recently established cell-free assays in Xenopus laevis egg extracts to deconstruct the FA pathway in a fully replication-competent context. Here we show that the central FA pathway protein, xFANCD2, is monoubiquitinated (xFANCD2-L) rapidly in the presence of linear and branched double-stranded DNA (dsDNA) structures but not single-stranded or Y-shaped DNA. xFANCD2-L associates with dsDNA structures in an FA core complex-dependent manner but independently of xATRIP, the regulatory subunit of xATR. Formation of xFANCD2-L is also triggered in response to circular dsDNA, suggesting that dsDNA ends are not required to trigger monoubiquitination of FANCD2. The induction of xFANCD2-L in response to circular dsDNA is replication and checkpoint independent. Our results provide new evidence that the FA pathway discriminates among DNA structures and demonstrate that triggering the FA pathway can be uncoupled from DNA replication and ATRIP-dependent activation.  相似文献   

6.
The Fanconi anemia (FA) pathway plays a central role in the repair of DNA interstrand crosslinks (ICLs) and regulates cellular responses to replication stress. Homologous recombination (HR), the error‐free pathway for double‐strand break (DSB) repair, is required during physiological cell cycle progression for the repair of replication‐associated DNA damage and protection of stalled replication forks. Substantial crosstalk between the two pathways has recently been unravelled, in that key HR proteins such as the RAD51 recombinase and the tumour suppressors BRCA1 and BRCA2 also play important roles in ICL repair. Consistent with this, rare patient mutations in these HR genes cause FA pathologies and have been assigned FA complementation groups. Here, we focus on the clinical and mechanistic implications of the connection between these two cancer susceptibility syndromes and on how these two molecular pathways of DNA replication and repair interact functionally to prevent genomic instability.  相似文献   

7.
Fanconi Anemia (FA) is a rare, inherited genomic instability disorder, caused by mutations in genes involved in the repair of interstrand DNA crosslinks (ICLs). The FA signaling network contains a unique nuclear protein complex that mediates the monoubiquitylation of the FANCD2 and FANCI heterodimer, and coordinates activities of the downstream DNA repair pathway including nucleotide excision repair, translesion synthesis, and homologous recombination. FA proteins act at different steps of ICL repair in sensing, recognition and processing of DNA lesions. The multi-protein network is tightly regulated by complex mechanisms, such as ubiquitination, phosphorylation, and degradation signals that are critical for the maintenance of genome integrity and suppressing tumorigenesis. Here, we discuss recent advances in our understanding of how the FA proteins participate in ICL repair and regulation of the FA signaling network that assures the safeguard of the genome. We further discuss the potential application of designing small molecule inhibitors that inhibit the FA pathway and are synthetic lethal with DNA repair enzymes that can be used for cancer therapeutics.  相似文献   

8.
Fanconi anemia (FA) is an autosomal or X-linked recessive disorder characterized by chromosomal instability, bone marrow failure, cancer susceptibility, and a profound sensitivity to agents that produce DNA interstrand cross-link (ICL). To date, 15 genes have been identified that, when mutated, result in FA or an FA-like syndrome. It is believed that cellular resistance to DNA interstrand cross-linking agents requires all 15 FA or FA-like proteins. Here, we review our current understanding of how these FA proteins participate in ICL repair and discuss the molecular mechanisms that regulate the FA pathway to maintain genome stability.  相似文献   

9.
Fanconi anemia (FA) pathway members, FANCD2 and FANCI, contribute to the repair of replication-stalling DNA lesions. FA pathway activation relies on phosphorylation of FANCI by the ataxia telangiectasia and Rad3-related (ATR) kinase, followed by monoubiquitination of FANCD2 and FANCI by the FA core complex. FANCD2 and FANCI are thought to form a functional heterodimer during DNA repair, but it is unclear how dimer formation is regulated or what the functions of the FANCD2-FANCI complex versus the monomeric proteins are. We show that the FANCD2-FANCI complex forms independently of ATR and FA core complex, and represents the inactive form of both proteins. DNA damage-induced FA pathway activation triggers dissociation of FANCD2 from FANCI. Dissociation coincides with FANCD2 monoubiquitination, which significantly precedes monoubiquitination of FANCI; moreover, monoubiquitination responses of FANCD2 and FANCI exhibit distinct DNA substrate specificities. A phosphodead FANCI mutant fails to dissociate from FANCD2, whereas phosphomimetic FANCI cannot interact with FANCD2, indicating that FANCI phosphorylation is the molecular trigger for FANCD2-FANCI dissociation. Following dissociation, FANCD2 binds replicating chromatin prior to-and independently of-FANCI. Moreover, the concentration of chromatin-bound FANCD2 exceeds that of FANCI throughout replication. Our results suggest that FANCD2 and FANCI function separately at consecutive steps during DNA repair in S-phase.  相似文献   

10.
The Fanconi anemia/BRCA pathway: a coordinator of cross-link repair   总被引:1,自引:0,他引:1  
Fanconi anemia (FA) is a rare inherited disease characterized by genomic instability and markedly increased cancer risk. Efforts to elucidate the molecular basis of FA have unearthed a novel DNA damage response pathway, the integrity of which is critical for cellular resistance to DNA cross-linking agents. Despite significant progress in uncovering the molecular events underlying FA, the precise function of this pathway in DNA repair is unknown. This article will review evidence implicating FA proteins in multiple aspects of DNA cross-link repair and propose a model to explain the selectivity of the FA pathway toward DNA cross-linking agents.  相似文献   

11.
Fanconi anemia (FA) is a rare autosomal recessive disorder characterized by congenital abnormalities, progressive bone marrow failure, and cancer susceptibility. FA cells are hypersensitive to DNA crosslinking agents. FA is a genetically heterogeneous disease with at least 11 complementation groups. The eight cloned FA proteins interact in a common pathway with established DNA-damage-response proteins, including BRCA1 and ATM. Six FA proteins (A, C, E, F, G, and L) regulate the monoubiquitination of FANCD2 after DNA damage by crosslinking agents, which targets FANCD2 to BRCA1 nuclear foci containing BRCA2 (FANCD1) and RAD51. Some forms of hexavalent chromium [Cr(VI)] are implicated as respiratory carcinogens and induce several types of DNA lesions, including DNA interstrand crosslinks. We have shown that FA-A fibroblasts are hypersensitive to both Cr(VI)-induced apoptosis and clonogenic lethality. Here we show that Cr(VI) treatment induced monoubiquitination of FANCD2 in normal human fibroblasts, providing the first molecular evidence of Cr(VI)-induced activation of the FA pathway. FA-A fibroblasts demonstrated no FANCD2 monoubiquitination, in keeping with the requirement of FA-A for this modification. We also found that Cr(VI) treatment induced significantly more S-phase-dependent DNA double strand breaks (DSBs), as measured by γ-H2AX expression, in FA-A fibroblasts compared to normal cells. However, and notably, DSBs were repaired equally in both normal and FA-A fibroblasts during recovery from Cr(VI) treatment. While previous research on FA has defined the genetic causes of this disease, it is critical in terms of individual risk assessment to address how cells from FA patients respond to genotoxic insult.  相似文献   

12.
Fanconi anemia (FA) is a rare autosomal recessive disorder characterized by congenital abnormalities, progressive bone marrow failure, and cancer susceptibility. FA cells are hypersensitive to DNA crosslinking agents. FA is a genetically heterogeneous disease with at least 11 complementation groups. The eight cloned FA proteins interact in a common pathway with established DNA-damage-response proteins, including BRCA1 and ATM. Six FA proteins (A, C, E, F, G, and L) regulate the monoubiquitination of FANCD2 after DNA damage by crosslinking agents, which targets FANCD2 to BRCA1 nuclear foci containing BRCA2 (FANCD1) and RAD51. Some forms of hexavalent chromium [Cr(VI)] are implicated as respiratory carcinogens and induce several types of DNA lesions, including DNA interstrand crosslinks. We have shown that FA-A fibroblasts are hypersensitive to both Cr(VI)-induced apoptosis and clonogenic lethality. Here we show that Cr(VI) treatment induced monoubiquitination of FANCD2 in normal human fibroblasts, providing the first molecular evidence of Cr(VI)-induced activation of the FA pathway. FA-A fibroblasts demonstrated no FANCD2 monoubiquitination, in keeping with the requirement of FA-A for this modification. We also found that Cr(VI) treatment induced significantly more S-phase-dependent DNA double strand breaks (DSBs), as measured by gamma-H2AX expression, in FA-A fibroblasts compared to normal cells. However, and notably, DSBs were repaired equally in both normal and FA-A fibroblasts during recovery from Cr(VI) treatment. While previous research on FA has defined the genetic causes of this disease, it is critical in terms of individual risk assessment to address how cells from FA patients respond to genotoxic insult.  相似文献   

13.
Wang X  D'Andrea AD 《DNA Repair》2004,3(8-9):1063-1069
Fanconi anemia (FA) is a rare autosomal recessive disease characterized by chromosome instability and cancer predisposition. At least 11 complementation groups for FA have been identified, and eight FA genes have been cloned. Interestingly, the eight known FA proteins cooperate in a common pathway leading to the interaction of monoubiquitinated FANCD2 and BRCA2 in damaged chromatin. Disruption of this pathway results in the clinical and cellular abnormalities common to all FA subtypes. This review will examine the interaction of the cloned FA proteins with each other and with other DNA damage response proteins (i.e., ATM, ATR, and NBS1). Also, somatic (acquired) disruption of the FA pathway in human tumors appears to account for their chromosome instability and crosslinker hypersensitivity.  相似文献   

14.
Fanconi anemia (FA) proteins function in a DNA damage response pathway that appears to be part of the network including breast cancer susceptibility gene products, BRCA1 and BRCA2. In response to DNA damage or replication signals, a nuclear FA core complex of at least 6 FA proteins (FANCA, FANCC, FANCE, FANCF, FANCG, and FANCL) is activated and leads to monoubiquitination of the downstream FA protein, FANCD2. One puzzling question for this pathway is the role of BRCA2. A previous study has proposed that BRCA2 could be identical to two FA proteins: FANCD1, which functions either downstream or in a parallel pathway; and FANCB, which functions upstream of the FANCD2 monoubiquitination. Now, a new study shows that the real FANCB protein is not BRCA2, but a previously uncharacterized component of the FA core complex, FAAP95, suggesting that BRCA2 does not act upstream of the FA pathway. Interestingly, the newly discovered FANCB gene is X-linked and subject to X-inactivation. The presence of a single active copy of FANCB and its essentiality for a functional FA-BRCA pathway make it a potentially vulnerable component of the cellular machinery that maintains genomic integrity.  相似文献   

15.
Fanconi anemia (FA) is a chromosome instability syndrome and the 20 identified FA proteins are organized into two main arms which are thought to function at distinct steps in the repair of DNA interstrand crosslinks (ICLs). These two arms include the upstream FA pathway, which culminates in the monoubiquitination of FANCD2 and FANCI, and downstream breast cancer (BRCA)-associated proteins that interact in protein complexes. How, and whether, these two groups of FA proteins are integrated is unclear. Here, we show that FANCD2 and PALB2, as indicators of the upstream and downstream arms, respectively, colocalize independently of each other in response to DNA damage induced by mitomycin C (MMC). We also show that ubiquitin chains are induced by MMC and colocalize with both FANCD2 and PALB2. Our finding that the RNF8 E3 ligase has a role in recruiting FANCD2 and PALB2 also provides support for the hypothesis that the two branches of the FA-BRCA pathway are coordinated by ubiquitin signaling. Interestingly, we find that the RNF8 partner, MDC1, as well as the ubiquitin-binding protein, RAP80, specifically recruit PALB2, while a different ubiquitin-binding protein, FAAP20, functions only in the recruitment of FANCD2. Thus, FANCD2 and PALB2 are not recruited in a single linear pathway, rather we define how their localization is coordinated and integrated by a network of ubiquitin-related proteins. We propose that such regulation may enable upstream and downstream FA proteins to act at distinct steps in the repair of ICLs.  相似文献   

16.
Fanconi Anemia (FA) is an inherited multi-gene cancer predisposition syndrome that is characterized on the cellular level by a hypersensitivity to DNA interstrand crosslinks (ICLs). To repair these lesions, the FA pathway proteins are thought to act in a linear hierarchy: Following ICL detection, an upstream FA core complex monoubiquitinates the central FA pathway members FANCD2 and FANCI, followed by their recruitment to chromatin. Chromatin-bound monoubiquitinated FANCD2 and FANCI subsequently coordinate DNA repair factors including the downstream FA pathway members FANCJ and FANCD1/BRCA2 to repair the DNA ICL. Importantly, we recently showed that FANCD2 has additional independent roles: it binds chromatin and acts in concert with the BLM helicase complex to promote the restart of aphidicolin (APH)-stalled replication forks, while suppressing the firing of new replication origins. Here, we show that FANCD2 fulfills these roles independently of the FA core complex-mediated monoubiquitination step. Following APH treatment, nonubiquitinated FANCD2 accumulates on chromatin, recruits the BLM complex, and promotes robust replication fork recovery regardless of the absence or presence of a functional FA core complex. In contrast, the downstream FA pathway members FANCJ and BRCA2 share FANCD2's role in replication fork restart and the suppression of new origin firing. Our results support a non-linear FA pathway model at stalled replication forks, where the nonubiquitinated FANCD2 isoform – in concert with FANCJ and BRCA2 – fulfills a specific function in promoting efficient replication fork recovery independently of the FA core complex.  相似文献   

17.
Fanconi Anemia (FA) is an inherited multi-gene cancer predisposition syndrome that is characterized on the cellular level by a hypersensitivity to DNA interstrand crosslinks (ICLs). To repair these lesions, the FA pathway proteins are thought to act in a linear hierarchy: Following ICL detection, an upstream FA core complex monoubiquitinates the central FA pathway members FANCD2 and FANCI, followed by their recruitment to chromatin. Chromatin-bound monoubiquitinated FANCD2 and FANCI subsequently coordinate DNA repair factors including the downstream FA pathway members FANCJ and FANCD1/BRCA2 to repair the DNA ICL. Importantly, we recently showed that FANCD2 has additional independent roles: it binds chromatin and acts in concert with the BLM helicase complex to promote the restart of aphidicolin (APH)-stalled replication forks, while suppressing the firing of new replication origins. Here, we show that FANCD2 fulfills these roles independently of the FA core complex-mediated monoubiquitination step. Following APH treatment, nonubiquitinated FANCD2 accumulates on chromatin, recruits the BLM complex, and promotes robust replication fork recovery regardless of the absence or presence of a functional FA core complex. In contrast, the downstream FA pathway members FANCJ and BRCA2 share FANCD2''s role in replication fork restart and the suppression of new origin firing. Our results support a non-linear FA pathway model at stalled replication forks, where the nonubiquitinated FANCD2 isoform – in concert with FANCJ and BRCA2 – fulfills a specific function in promoting efficient replication fork recovery independently of the FA core complex.  相似文献   

18.
Wang LC  Stone S  Hoatlin ME  Gautier J 《DNA Repair》2008,7(12):1973-1981
Fanconi anemia (FA) is a recessive genetic disorder characterized by hypersensitivity to crosslinking agents that has been attributed to defects in DNA repair and/or replication. FANCD2 and the FA core complex bind to chromatin during DNA replication; however, the role of FA proteins during replication is unknown. Using Xenopus cell-free extracts, we show that FANCL depletion results in defective DNA replication restart following treatment with camptothecin, a drug that results in DSBs during DNA replication. This defect is more pronounced following treatment with mitomycin C, presumably because of an additional role of the FA pathway in DNA crosslink repair. Moreover, we show that chromatin binding of FA core complex proteins during DNA replication follows origin assembly and origin firing and is dependent on the binding of RPA to ssDNA while FANCD2 additionally requires ATR, consistent with FA proteins acting at replication forks. Together, our data suggest that FA proteins play a role in replication restart at collapsed replication forks.  相似文献   

19.
Figuring out what is wrong in Fanconi anemia (FA) patient cells is critical to understanding the contributions of the FA pathway to DNA repair and tumor suppression. Although FA patients exhibit a wide range of disease manifestation as well as severity (asymptomatic to congenital abnormalities, bone marrow failure, and cancer), cells from FA patients share underlying defects in their ability to process DNA lesions that interfere with DNA replication. In particular, FA cells are very sensitive to agents that induce DNA interstrand crosslinks (ICLs). The cause of this pronounced ICL sensitivity is not fully understood, but has been linked to the aberrant activation of DNA damage repair proteins, checkpoints and pathways. Thus, regulation of these responses through coordination of repair processing at stalled replication forks is an essential function of the FA pathway. Here, we briefly summarize some of the aberrant DNA damage responses contributing to defects in FA cells, and detail the newly-identified relationship between FA and the mismatch repair protein, MSH2. Understanding the contribution of MSH2 and/or other proteins to the replication problem in FA cells will be key to assessing therapeutic options to improve the health of FA patients. Moreover, loss of these factors, if linked to improved replication, could be a key event in the progression of FA cells to cancer cells. Likewise, loss of these factors could synergize to enhance tumorigenesis or confer chemoresistance in tumors defective in FA-BRCA pathway proteins and provide a basis for biomarkers for disease progression and response.  相似文献   

20.
Fanconi anemia (FA) is a rare recessive genetic disease characterized by congenital abnormalities, bone marrow failure and heightened cancer susceptibility in early adulthood. FA is caused by biallelic germ-line mutation of any one of 16 genes. While several functions for the FA proteins have been ascribed, the prevailing hypothesis is that the FA proteins function cooperatively in the FA-BRCA pathway to repair damaged DNA. A pivotal step in the activation of the FA-BRCA pathway is the monoubiquitination of the FANCD2 and FANCI proteins. Despite their importance for DNA repair, the domain structure, regulation, and function of FANCD2 and FANCI remain poorly understood. In this review, we provide an overview of our current understanding of FANCD2 and FANCI, with an emphasis on their posttranslational modification and common and unique functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号