首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The three main polyamines putrescine (Put), spermidine (Spd) and spermine (Spm) were characterized by HPLC in intact spinach leaf cells, intact chloroplasts, thylakoid membranes, Photosystem II membranes, the light-harvesting complex and the PS II complex. All contain the three polyamines in various ratios; the HPLC polyamine profiles of highly resolved PS II species (a Photosystem II core and the rection center) suggest an enrichment in the polyamine Spm.Abbreviations Chl chlorophyll - HPLC high performance liquid chromatography - LHC light-harvesting complex - PS II Photosystem II - PS II-RC Photosystem II reaction center - Put putrescine - Spd spermidine - Spm spermine - 10%S-core D1-D2-Cyt b559-47 kD-43 kD complex  相似文献   

2.
Selective solubilization of Photosystem II membranes with the non-ionic detergent octyl thioglucopyranoside has allowed the isolation of a PS II system which has been depleted of the 22 and 10 kDa polypeptides but retains all three extrinsic proteins (33, 23 and 17 kDa). The PS II membranes which have been depleted of the 22 and 10 kDa species show high rates of oxygen evolution activity, external calcium is not required for activity and the manganese complex is not destroyed by exogenous reductants. When we compared this system to control PS II membranes, we observed a minor modification of the reducing side, and a conversion of the high-potential to the low-potential form of cytochrome b 559.Abbreviations Chl- chlorophyll - DCBQ- 2,5-dichloro-p-benzoquinone - DCMU- 3-(3,4-dichlorophenyl)-1,1-dimethylurea - ESR- electron spin resonance - MES- 2-(N-morpholino)ethanesulfonic acid - OTG- octyl--d-thioglucopyranoside - PS II- Photosystem II - PEG- polyethylene glycol, Mr=6000 - Tris- 2-amino-2-hydroxyethylpropane-1,3-diol  相似文献   

3.
Pure and active oxygen-evolving PS II core particles containing 35 Chl per reaction center were isolated with 75% yield from spinach PS II membrane fragments by incubation with n-dodecyl--D-maltoside and a rapid one step anion-exchange separation. By Triton X-100 treatment on the column these particles could be converted with 55% yield to pure and active PS II reaction center particles, which contained 6 Chl per reaction center.Abbreviations Bis-Tris bis[2-hydroxyethyl]imino-tris[hydroxymethyl]methane - Chl chlorophyll - CP29 Chl a/b protein of 29 kDa - Cyt b 559 cytochrome b 559 - DCBQ 2,5-dichloro-p-benzo-quinone - LHC II light-harvesting complex II, predominant Chl a/b protein - MES 2-[N-Morpholino]ethanesulfonic acid - Pheo pheophytin - PS H photosystem II - QA bound plastoquinone, serving as the secondary electron acceptor in PS II (after Pheo) - SDS sodiumdodecylsulfate  相似文献   

4.
Stromal membranes enriched in PS I contain a low potential cytochrome with a reduced -band peak close to 560 nm. The identity of this cytochrome component has been ascribed either to a low potential form of the Photosystem II cytochrome b-559 or to a different cytochrome with a reduced -band of 560 nm. The half-bandwidth of the 560 nm component in stromal membranes is identical to that of purified cytochrome b-559. Western blots show that the stromal membranes contain an amount of PS II cytochrome b-559 -subunit that is more than sufficient to account for the cytochrome b-560 detected spectrophotometrically in these membranes. These immunochemical data and the similarity of (i) the spectral peaks, and (ii) the redox properties of low potential PS II cytochrome b-559 and the b-560 component, suggest that the simplest inference is that the cytochrome b-560 protein in stromal membranes is identical to the PS II cytochrome b-559.Abbreviations: A absorbance - cyt cytochrome - DCBQ 2,5-dichloro-p-benzoquinone - Emx midpoint potential at pH x - hbw half-bandwidth - LP low potential - MD menadiol - MES 2-(N-morpholino)ethanesulfonic acid - MHQ methylhydroquinone - PS I-PS II photosystems I, II - SDS-PAGE sodium dodecylsulfate polyacrylamide gel electrophoresis  相似文献   

5.
The precursor to the nuclear-coded 17 kDa early light-inducible protein (ELIP) of pea has been transported into isolated intact chloroplasts. The location of the mature protein in the thylakoid membranes was investigated after using cleavable crosslinkers such as DSP and SAND in conjunction with immuno-fractionation methods and by application of mild detergent fractionation. We show that ELIP is integrated into the membranes via the unstacked stroma thylakoids. After isolation of protein complexes by solubilization of membranes with Triton X-100 and sucrose density-gradient centrifugation the crosslinked ELIP comigrates with the PS II core complex. Using SAND we identified ELIP as a 41–51 kDa crosslinked product while with DSP four products of 80 kDa, 70 kDa, 50–42 kDa and 23–21 kDa were found. The immunoprecipitation data suggested that the D1-protein of the PS II complex is one of the ELIP partners in crosslinked products.Abbreviations chl chlorophyll - D1 herbicide-binding protein - DSP dithiobis-(succinimidylpropionate) - ELIP early light-inducible protein - LHC I and LHC II light-harvesting chlorophyll a/b complex associated with photosystem I or II - PAGE polyacrylamide gel electrophoresis - poly(A)-rich RNA polyadenyd mRNA - PS I and PS II photosystems I and II - SAND sulfosuccinimidyl 2-(m-azido-o-nitro-benzamido)-ethyl-1,3-dithiopropionate - Triton X-100 octylphenoxypolyethoxyethanol  相似文献   

6.
The possibility of a Photosystem II (PS II) cyclic electron flow via Cyt b-559 catalyzed by carbonylcyanide m-chlorophenylhydrazone (CCCP) was further examined by studying the effects of the PS II electron acceptor 2,6-dichloro-p-benzoquinone (DCBQ) on the light-induced changes of the redox states of Cyt b-559. Addition to barley thylakoids of micromolar concentrations of DCBQ completely inhibited the changes of the absorbance difference corresponding to the photoreduction of Cyt b-559 observed either in the presence of 10 M ferricyanide or after Cyt b-559 photooxidation in the presence of 2 M CCCP. In CCCP-treated thylakoids, the concentration of photooxidized Cyt b-559 decreased as the irradiance of actinic light increased from 2 to 80 W m-2 but remained close to the maximal concentration (0.53 photooxidized Cyt b-559 per photoactive Photosystem II) in the presence of 50 M DCBQ. The stimulation of Cyt b-559 photooxidation in parallel with the inhibition of its photoreduction caused by DCBQ demonstrate that the extent of the light-induced changes of the redox state of Cyt b-559 in the presence of CCCP is determined by the difference between the rates of photooxidation and photoreduction of Cyt b-559 occuring simultaneously in a cyclic electron flow around PS II.We also observed that the Photosystem I electron acceptor methyl viologen (MV) at a concentration of 1 mM barely affected the rate and extent of the light-induced redox changes of Cyt b-559 in the presence of either FeCN or CCCP. Under similar experimental conditions, MV strongly quenched Chl-a fluorescence, suggesting that Cyt b-559 is reduced directly on the reducing side of Photosystem II.Abbreviations ADRY acceleration of the deactivation reactions of the water-splitting system Y - ANT-2p 2-(3-chloro-4-trifluoromethyl)anilino-3,5-dinitrothiophene - CCCP carbonylcyanide-m-chlorophenylhydrazone - DCBQ 2,6-dichloro-p-benzoquinone - FeCN ferricyanide - MV methyl viologen - P680 Photosystem II reaction center Chl-a dimer CIW-DPB publication No. 1118.  相似文献   

7.
A series of experiments have been conducted with isolated reaction centers of photosystem two (PS II) with the aim to elucidate the functional role of cytochrome (Cyt b 559). At pH 6.5 it was found that Cyt b 559 was reversibly photoreduced by red actinic light when Mn2+ was present as an electron donor while at pH 8.5 a photo-oxidation was observed under the same lighting conditions, which was dark reversible in the presence of hydroquinone. These pH dependent light induced changes were measured under anaerobic conditions and correlated with changes in the relative levels of high (HP) and low (LP) potential forms of the cytochrome. At pH 6.5 the cytochrome was mainly in its LP form while at pH 8.5 a significant proportion was converted to the HP form as detected by dark titrations with hydroquinone. This pH dependent difference in the levels of HP and LP Cyt b 559 was also detected when bright white light was used to monitor the level of the LP form using a novel reaction involving direct electron donation from the flavin of glucose oxidase (present in the medium and used together with glucose and catalase as an oxygen trap). The results suggest that PS II directly oxidises and reduces the HP and LP forms, respectively and that the extent of these photo-reactions is dependent on the relative levels of the two forms, which are in turn governed by the pH. This conclusion is interpreted in terms of the model presented previously (Barber J and De Las Rivas J (1993) Proc Natl Acad Sci USA 90: 10942–10946) whereby the pH induced effect is considered as a possible mechanism by which interconversion of LP and HP forms of Cyt b 559 is achieved. In agreement with this was the finding that as the extent of photo-oxidisable HPCyt b 559 increases, with increasing pH, the rate of irreversible photo-oxidation of -carotene decreases, a result expected if the HP form protects against donor side photoinhibition.Abbreviations -car -carotene - CCCP carbonylcyanide m-chloro-phenylhydrazone - Chl chlorophyll - Cyt b 559 cytochrome b 559 - HPCyt b 559 high potential form of cytochrome b 559 which is reducible by hydroquinone - LPCyt b 559 low potential form of cytochrome b 559 which is non-reducible by hydroquinone - D1 and D2 products of the psbA and psbD genes, respectively - LHC II light-harvesting chlorophyll protein complex associated with PS II - Mes 2-(N-morpholino) ethanesulphonic acid - P680 primary electron donor of PS II - Pheo pheophytin - PQ plastoquinone - PS II Photosystem II - QA first stable quinone electron acceptor of PS II - QB second stable quinone electron acceptor of PS II - RC reaction center - SDS sodium dodecyl sulphate - SiMo silicomolybdate - Tris tris(hydroxymethyl) amino methane - YZ and YD tyrosine residues 161 in D1 and D2 proteins of the PS II RC which act as secondary electron donors to P680  相似文献   

8.
Cytochrome b559 (Cyt b559) is a well-known intrinsic component of Photosystem II (PS II) reaction center in all photosynthetic oxygen-evolving organisms, but its physiological role remains unclear. This work reports the response of the two redox forms of Cyt b559 (i.e. the high- (HP) and low-potential (LP) forms) to inhibition of the donor or acceptor side of PS II. The photooxidation of HP Cyt b559 induced by red light at room temperature was pH-dependent under conditions in which electron flow from water was diminished. This photooxidation was observed only at pH values higher than 7.5. However, in the presence of 1 M CCCP, a limited oxidation of HP Cyt b559 was observed at acidic pH, At pH 8.5 and in the presence of the protonophore, this photooxidation of the HP form was accompanied by its partial transformation into the LP form. On the other hand, a partial photoreduction of LP Cyt b559 was induced by red light under aerobic conditions when electron transfer through the primary quinone acceptor QA was impaired by strong irradiation in the presence of DCMU. This photoreduction was enhanced at acidic pH values. To the best of our knowledge, this is the first time that both photoreduction and photooxidation of Cyt b559 is described under inhibitory conditions using the same kind of membrane preparations. A model accommodating these findings is proposed.Abbreviations CCCP carbonylcyanide 3-chlorophenylhydrazone - Cyt cytochrome - DCBQ 2,5-dichloro-p-benzoquinone - DCMU dichlorophenyldimethylurea - E m midpoint redox potential - HP and LP high- and low-potential forms of Cyt b559 - P680 primary donor - IA acceptor side inhibition - ID donor side inhibition - Pheo pheophytin - PS II photosystem II - QA primary quinone acceptor of PS II - QB secondary quinone acceptor of PS II  相似文献   

9.
A highly purified oxygen evolving Photosystem II core complex was isolated from PS II membranes solubilized with the non-ionic detergent n-octyl--D-thioglucoside. The three extrinsic proteins (33, 23 and 17 kDa) were functionally bound to the PS II core complex. Selective extraction of the 22, 10 kDa, CP 26 and CP 29 proteins demonstrated that these species are not involved in the binding of the extrinsic proteins (33, 23 and 17 kDa) or the DCMU sensitivity of the Photosystem II complex.Abbreviations Chl chlorophyll - DCBQ 2,6-dichloro-p-benzoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - LHC light-harvesting complex - MES 2-(N-morpholino)ethanesulfonic acid - OGP n-octyl--d-glucoside - OTG n-octyl--d-thioglucoside - PAGE polyacrylamide gel electrophoresis - PS II Photosystem II - SDS sodium dodecyl sulfate  相似文献   

10.
Restoration of a high potential (HP) form of cytochrome b-559 (Cyt b-559) from a low potential (LP) form was the primary process in the reconstitution of O2-evolving center during the photoreactivation of Tris-inactivated chloroplasts. In normal chloroplasts, about 0.5 to 0.7 mol of Cyt b-559 was present in the HP form per 400 chlorophyll molecules. However, the HP form was converted to the LP form when the O2-evolving center was inactivated by 0.8 M alkaline Tris-washing (pH 9.1). The inactivation was reversible and both the Cyt b-559 HP form and the O2-evolving activity were restored by incubating the inactivated chloroplasts with weak light, Mn2+, Ca2+ and an electron donor (photoreactivation). The recovery of the HP form preceded the recovery of O2-evolving activity. 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB) did not inhibit the recovery of the HP form. Thus, the recovery of Cyt b-559 HP form was the primary reaction in the photoreactivation, which was stimulated by the light-induced redox reaction of the PS-II core center.Abbreviations ASC ascorbate - BSA bovine serum albumin - Chl chlorophyll - Cyt b-559 HP form high potential form of cytochrome b-559 - Cyt b-559 LP form low potential form of cytochrome b-559 - Cyt b-559 VLP form very low potential form of cytochrome b-559 - Cyt f cytochrome f - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DCPIP 2,6-dichlorophenol indophenol - Hepes N-2-hydroxyethyl-piperazine-N-2-ethanesulfonic acid - HQ hydroquinone - SHN chloroplast-preparation medium containing 0.4 M sucrose, 50 mM Hepes-Na (pH 7.8) and 20 mM NaCl - PS-II Photosystem II  相似文献   

11.
We have found that in isolated spinach thylakoids, plastoquinone-pool (PQ-pool), after its photoreduction, undergoes dark-reoxidation with the half-time of 1/2 = 43 ± 3 s. To explain the observed rates of PQ-pool reoxidation, a nonenzymatic plastoquinol (PQH2) autoxidation under molecular oxygen and an enzymatic oxidation by the low-potential form of cytochrome b-559 (cyt. b-559LP), as the postulated PQ-oxidase in chlororespiration, were investigated. It was found that the autoxidation rate of PQH2 in organic solvents and liposomes was too low to account for the observed oxidation rate of PQH2 in thylakoids. The rate of cyt. b-559LP autoxidation in isolated Photosystem II was found to be similar (1/2 = 26 ± 5 s) to that of the PQ-pool. This suggests that the LP form of cyt. b-559 is probably responsible for the PQ-oxidase activity observed during chlororespiration.  相似文献   

12.
The nature of interaction of cytochrome b-559 high potential (HP) with electron transport on the reducing side of photosystem II was investigated by measuring the susceptibility of cytochrome b-559HP to 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) under different conditions. Submicromolar DCMU concentrations decreased the rate of absorbance change corresponding to cytochrome b-559HP photoreduction while the amplitude was lowered at higher concentrations (up to 10 M). Appreciable extents of cytochrome b-559HP photoreduction were observed at DCMU concentrations which completely abolished the electron transport from water to methyl viologen under the same experimental conditions. However, the susceptibility of cytochrome b-559HP to DCMU increased with the degree of cytochrome b-559HP oxidation, induced either by ferricyanide or by illumination of low intensity (2 W/m2) of red light in the presence of 2 M carbonyl cyanide-m-chlorophenylhydrazone. Also, the DCMU inhibition was more severe when the pH increased from 6.5 to 8.5, indicating that the unprotonated form of cytochrome b-559HP is more susceptible to DCMU. These results demonstrate that cytochrome b-559HP can accept electrons prior to the QB site, probably via QA although both QA and QB can be involved to various extents in this reaction. We suggest that the redox state and the degree of protonation of cytochrome b-559HP alter its interaction with the reducing side of photosystem II.Abbreviations ADRY acceleration of the deactivation reactions of the water-splitting system Y - CCCP carbonylcyanide m-chlorophenylhydrazone - FeCN ferricyanide - HP high potential - MV methylviologen CIW-DPB Publication No.1096.  相似文献   

13.
Cytochrome (cyt) b-559 absorbance changes in intact chloroplasts were deconvoluted using a previously described LED-Array-Spectrophotometer (Klughammer et al. (1990), Photosynth Res 25: 317–327). When intact chloroplasts were isolated in the presence of ascorbate, approx. 15% of the total cyt b-559 could be transiently oxidised by 200 M H2O2 in the dark. This fraction displays low-potential properties, as it can be also oxidised by menadione in the presence of 5 mM ascorbate. Heat pretreatment increased the size of this fraction by a factor of 3–4. Low concentrations of cyanide (in the M range) prolonged the oxidation time while high concentrations suppressed the oxidation (I50=1.5 mM KCN). The former KCN-effect relates to inhibition of ascorbate dependent H2O2-reduction which is catalysed by ascorbate peroxidase, whereas the latter effect reflects competition between H2O2 and CN for the same binding site at the cytochrome heme. In the light, much lower concentrations of H2O2 were required to obtain oxidation, the amplitude depending on light intensity and on the concentration of the added H2O2, but never exceeding approx. 15% of the total cyt b-559. In the light, but not in the dark, H2O2 also induced the transient oxidation of a cyt f fraction similar in size to the H2O2-oxidisable cyt b-559 fraction. In this case, H2O2 serves as an acceptor of Photosystem I in conjunction with the ascorbate peroxidase detoxification system. Light can also induce oxidation of a 15% cyt b-559 fraction without H2O2-addition, if nitrite is present as electron acceptor and the chloroplasts are depleted of ascorbate. It is concluded that light-induced cyt b-559 oxidation in vivo is likely to be restricted to the H2O2-oxidisable cyt b-559 LP fraction and is normally counteracted by ascorbate.Abbreviations APX ascorbate peroxidase - chl chlorophyll - cyt cytochrome - HP high potential - LP low potential - MDA monodehydroascorbate - PQ plastoquinone - PS I and PS II Photosystems I and II  相似文献   

14.
The psbP gene product, the so called 23 kDa extrinsic protein, is involved in water oxidation carried out by Photosystem II. However, the protein is not absolutely required for water oxidation. Here we have studied Photosystem II mediated electron transfer in a mutant of Chlamydomonas reinhardtii, the FUD 39 mutant, that lacks the psbP protein. When grown in dim light the Photosystem II content in thylakoid membranes of FUD 39 is approximately similar to that in the wild-type. The oxygen evolution is dependent on the presence of chloride as a cofactor, which activates the water oxidation with a dissociation constant of about 4 mM. In the mutant, the oxygen evolution is very sensitive to photoinhibition when assayed at low chloride concentrations while chloride protects against photoinhibition with a dissociation constant of about 5 mM. The photoinhibition is irreversible as oxygen evolution cannot be restored by the addition of chloride to inhibited samples. In addition the inhibition seems to be targeted primarily to the Mn-cluster in Photosystem II as the electron transfer through the remaining part of Photosystem II is photoinhibited with slower kinetics. Thus, this mutant provides an experimental system in which effects of photoinhibition induced by lesions at the donor side of Photosystem II can be studied in vivo.Abbreviations Chl chlorophyll - DCIP 2,6-dichlorophenolindophenol - DPC 2,2-diphenylcarbonic dihydrazide - HEPES 4-(2-hydroxyethyl)-1-piperazinethanesulfonic acid - P680 the primary electron donor to PS II - PpBQ phenyl-p-benzoquinone - PS II Photosystem II - QA the first quinone acceptor of PS II - QB the second quinone acceptor of PS II - SDS sodium dodecyl sulfate - Tris tris(hydroxymethyl)aminomethane - TyrD accessory electron donor on the D2-protein - TyrZ tyrosine residue, acting as electron carrier between P680 and the water oxidizing system  相似文献   

15.
Most of the chloroplastb-559 is high potential at neutral pH as defined by hydroquinone reducibility. FCCP* (20 M) and antimycin A (50 M) convert high potentialb-559 to a low potential state which can be reduced by ascorbate but not hydroquinone. The low and high potential states of cytochromeb-559 are different forms of the same cytochrome.Three lines of evidence indicate that the cytb-559 oxidized by photosystem I is low potential: (1) theb-559 photooxidized by far-red light in the presence of FCCP (3 M) is low potentialb-559; (2) the amplitude of theb-559 oxidation by far-red light and the amount of low potentialb-559 present in the dark have the same general dependence on pH; (3) inhibitor studies show that plastoquinone mediates the oxidation of cytb-559 by PS I.The well-known stimulation ofb-559 oxidation by far-red light in the presence of FCCP is attributed to FCCP-facilitated photoconversion of high potentialb-559 to a low potential form.It is concluded that if cytb-559 is oxidized by system I light, then it is a low potential form (E m7+80 mV) which is oxidized. It is not proven, however, that a significant amount of cytb-559 is oxidized by PS I under coupled or physiological conditions.Possible thermodynamic regulation of non-cyclic electron flow involving the distribution between high and low potential forms of cytb-559 is discussed.  相似文献   

16.
Various washing procedures were tested on Triton-prepared PS II particles for their ability to remove the 33 kDa extrinsic polypeptide (33 kDa EP) associated with the water-splitting complex. Residual 33 kDa EP was evaluated by Coomassie blue staining of SDS gels of washed particles and by Western blotting with an antibody specific for the 33 kDa EP. A wash with 16 mM Tris buffer, pH 8.3, inhibited water-splitting activity but did not remove all the 33 kDa EP. Sequential washes with 30 mM octyl glucoside (pH 8.0 and 6.8), and a single wash with 0.8 M Tris were also ineffective in removing all the 33 kDa EP. Washing with 1 M CaCl2 was more effective in removing 33 kDa EP; while only a faint trace of protein was detectable by Coomassie-staining, immunoblotting revealed a considerable remainder. The treated particles retained some water-splitting activity. The two step procedure of Miyao and Murata (1984) involving 1 M NaCl and 2.3 M urea was most effective, removing all but a trace of antibody positive protein. Our finding suggests that (1) the degree of depletion of the 33 kDa EP cannot be judged on the basis of Coomassie stain alone, and (2) this extrinsic protein is very tightly associated with the membrane, perhaps via a hydrophilic portion of this otherwise hydrophilic protein. The results also suggest that the presence or absence of the 33 kDa protein per se is not the primary determinant of residual water splitting activity.Abbreviations Chl chlorophyll - DCPIP dichlorophenolindophenol - DPC diphenolcarbazide - DTT dithiothreitol - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - MES 2(N-morpholino)ethanesulfonic acid - SDS sodium dodecyl sulfate - Tris Tris(hydroxymethyl)aminomethane  相似文献   

17.
Summary The occurrence of a vitamin-K-like substance (naphthoquinone group) and flavins (flavin mononucleotide and flavin adenine dinucleotide) is demonstrated in plasma membranes isolated from maize (Zea mays L.) roots, on the basis of high-pressure liquid chromotography and spectral analysis. At least three NAD(P)H dehydrogenases could be purified to homogeneity from this plant material. Two of these proteins (25 and 30 kDa) reduce hexacyanoferrate III and quinones, while the third (41 kDa) reduces oxalacetic acid but not hexacyanoferrate III in the presence of NADH. Low-temperature spectra demonstrate the occurrence of a b-type cytochrome in plasma membranes isolated from maize roots. The latter compound could be reduced by ascorbic acid (E0 > +80 mV) and shows an -band maximum at 559 nm (at –196 °C). NADH-dependent cytochromeb reduction could be observed only in the presence of detergent and increased after preincubation with vitamin K3 (menadione). On the basis of the presented data a possible function of naphthoquinones in plasma membrane electron transfer is discussed.Abbreviations Brij 58 polyoxyethylene 20 cetyl ether - Coenzyme Q10 ubiquinone-50 - duroquinone tetramethyl-p-benzoquinone - E0 standard redox potential - Na2EDTA ethylenediaminetetraacetic acid disodium salt - HEPES N-[2-hydroxyethyl]piperazine-N[2-ethane-sulfonic acid] - juglone 5-hydroxy-1,4-naphthoquinone - PMSF phenylmethylsulfonyl fluoride - vitamin K1 2-methyl-3-phyty 1-1,4-naphthoquinone - vitamin K3 2-methyl-1,4-naphthoquinone  相似文献   

18.
A rapid procedure has been developed for the isolation of the photosystem two reaction centre complex (PS II RC) from a double mutant of Chlamydomonas reinhardtii, F54-14, which lacks the Photosystem one complex and the chloroplast ATPase. Thylakoid membranes are solubilised with 1.5% (w/v) Triton X-100 and the PS II RC purified by anion-exchange chromatography using TSK DEAE-650(S) (Merck). The complex has a pigment stoichiometry of approximately six chlorophyll a: two pheophytin a: one cytochrome b-559: one to two -carotene. It photoaccumulates reduced pheophytin and oxidised P680 in the presence of sodium dithionite and silicomolybdate, respectively. Immunoblotting experiments have confirmed the presence of the D1 and D2 polypeptides in this complex. The -subunit of cytochrome b-559 was identified by N-terminal sequencing. Comparison of the complex with the PS II RC from pea using SDS-polyacrylamide gel electrophoresis showed that their polypeptide compositions were similar. However, the -subunit of cytochrome b-559 from C. reinhardtii has a lower apparent molecular weight than the pea counterpart whereas the -subunit is larger.Abbreviations DM n-dodecyl -d-maltoside - RC reaction centre - SiMo silicomolybdate, SiMo12O40 4– - TAP Tris-acetate-phosphate  相似文献   

19.
Photosystem II (PS II) particles isolated from spinach in the presence of 10 M CuSO4 contained 1.2 copper/300 Chl that was resistant to EDTA. When CuSO4 was not added during the isolation, PS II particles contained variable amounts of copper resistant to EDTA (0.1–1.1 copper/300 Chl). No correlation was found between copper content and oxygen evolving capacity of the PS II particles. To identify the copper binding protein, we developed a fractionation procedure which included solubilisation of PS II particles followed by precipitation with polyethylene glycol. A 22-fold purification of copper with respect to protein was achieved for a 28 kDa protein. Partial amino acid sequence of a 13 kDa fragment, obtained after V8 (endo Glu-C) protease treatment, showed identity with CP 26 over a 14 amino acid stretch. EPR measurements on the purified protein suggest oxygen and/or nitrogen as ligands for copper but tend to exclude sulfur. We conclude that the 28 kDa apoprotein of CP 26 from spinach binds one copper per molecule of CP 26. A possible function for this copper protein in the xanthophyll cycle is discussed.Abbreviations CP 26 and CP 29 chlorophyll a/b protein complex 26 and 29 - LHC II light-harvesting chlorophyll a/b protein complex of Photosystem II - SB14 sulfobetaine 14 A preliminary report of these results was presented at the IX Int. Congress on Photosynthesis, Nagoya, Japan, 1992.  相似文献   

20.
《BBA》1987,893(2):267-274
The D1-D2-cytochrome b-559 reaction center complex and the 47 kDa antenna chlorophyll protein isolated from spinach Photosystem II were characterized by means of low temperature absorption and fluorescence spectroscopy. The low temperature absorption spectrum of the D1-D2-cytochrome b-559 complex showed two bands in the Qy region located at 670 and 680 nm. On the basis of its absorption maximum and orientation the latter component may be attributed at least in part to P-680, the primary electron donor of Photosystem II. The 47 kDa antenna complex showed absorption bands at 660, 668 and 677 nm and a minor component at 690 nm. The latter transition appeared to be associated with the characteristic low temperature 695 nm fluorescence band of Photosystem II. The 695 nm emission band was absent in the D1-D2 complex, which indicates that it does not originate from the reaction center pheophytin, as earlier proposed. The transition dipole responsible for the main fluorescence at 684 nm from this complex had a parallel orientation with respect to the membrane plane in the native structure. The reaction center preparation contains two spectrally distinct carotenoids with different orientations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号