首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Background and Aims Neotyphodium lolii is a fungal endophyteof perennial ryegrass (Lolium perenne), improving grass fitnessthrough production of bioactive alkaloids. Neotyphodium speciescan also affect growth and physiology of their host grasses(family Poaceae, sub-family Pooideae), but little is known aboutthe mechanisms. This study examined the effect of N. lolii onnet photosynthesis (Pn) and growth rates in ryegrass genotypesdiffering in endophyte concentration in all leaf tissues. • Methods Plants from two ryegrass genotypes, Nui D andNui UIV, infected with N. lolii (E+) differing approx. 2-foldin endophyte concentration or uninfected clones thereof (E–)were grown in a controlled environment. For each genotype xendophyte treatment, plant growth rates were assessed as tilleringand leaf extension rates, and the light response of Pn, darkrespiration and transpiration measured in leaves of young (30–45d old) and old (>90 d old) plants with a single-chamber openinfrared gas-exchange system. • Key Results Neotyphodium lolii affected CO2-limited ratesof Pn, which were approx. 17 % lower in E+ than E– plants(P < 0·05) in the young plants. Apparent photon yieldand dark respiration were unaffected by the endophyte (P >0·05). Neotyphodium lolii also decreased transpiration(P < 0·05), but only in complete darkness. There wereno endophyte effects on Pn in the old plants (P > 0·05).E+ plants grew faster immediately after replanting (P < 0·05),but had approx. 10 % lower growth rates during mid-log growth(P < 0·05) than E– plants, but there was noeffect on final plant biomass (P > 0·05). The endophyteeffects on Pn and growth tended to be more pronounced in NuiUIV, despite having a lower endophyte concentration than NuiD. • Conclusions Neotyphodium lolii affects CO2 fixation,but not light interception and photochemistry of Pn. The impactof N. lolii on plant growth and photosynthesis is independentof endophyte concentration in the plant, suggesting that theendophyte mycelium is not simply an energy drain to the plant.However, the endophyte effects on Pn and plant growth are stronglydependent on the plant growth phase.  相似文献   

2.
Background and Aims Summer dormancy in perennial grasseshas been studied inadequately, despite its potential to enhanceplant survival and persistence in Mediterranean areas. The aimof the present work was to characterize summer dormancy anddehydration tolerance in two cultivars of Dactylis glomerata(dormant ‘Kasbah’, non-dormant ‘Oasis’)and their hybrid using physiological indicators associated withthese traits. • Methods Dehydration tolerance was assessed in a glasshouseexperiment, while seasonal metabolic changes which produce putativeprotectants for drought, such as carbohydrates and dehydrinsthat might be associated with summer dormancy, were analysedin the field. • Key Results The genotypes differed in their ability tosurvive increasing soil water deficit: lethal soil water potential(s) was –3·4 MPa for ‘Kasbah’ (althoughnon-dormant), –1·3 MPa for ‘Oasis’,and –1·6 MPa for their hybrid. In contrast, lethalwater content of apices was similar for all genotypes (approx.0·45 g H2O g d. wt–1), and hence the greater survivalof ‘Kasbah’ can be ascribed to better drought avoidancerather than dehydration tolerance. In autumn-sown plants, ‘Kasbah’had greatest dormancy, the hybrid was intermediate and ‘Oasis’had none. The more dormant the genotype, the lower the metabolicactivity during summer, and the earlier the activity declinedin spring. Decreased monosaccharide content was an early indicatorof dormancy induction. Accumulation of dehydrins did not correlatewith stress tolerance, but dehydrin content was a function ofthe water status of the tissues, irrespective of the soil moisture.A protein of approx. 55 kDa occurred in leaf bases of the mostdormant cultivar even in winter. • Conclusions Drought avoidance and summer dormancy arecorrelated but can be independently expressed. These traitsare heritable, allowing selection in breeding programmes.  相似文献   

3.
Five Gladiolus cultivars, namely ‘Aldebaran’, ‘BrightEye’, ‘Illusion’, ‘Manisha’ and‘Manmohan’, were exposed to 1 and 2 µg l–1sulphur dioxide to test their relative-sensitivity toleranceto the pollutant Plants were fumigated experimentally for 2h daily Foliar injury symptoms were observed first in ‘Manisha’followed by ‘Aldebaran’ and ‘Illusion’at the higher dose Photosynthetic pigments and leaf extractpH were significantly decreased, particularly in ‘Manisha’and ‘Illusion’ Overall disturbances in the plantmetabolism due to SO2 treatment led to retarded growth of plants,as evident from decreased shoot length and phytomass valuesThe order of sensitivity of the five Gladiolus cultivars toSO2 was as follows, with the greatest first Manisha, Illusion,Aldebaran, Bright Eye, Manmohan Cultivars, Gladiolus, sensitivity, sulphur dioxide, tolerance  相似文献   

4.
Diverse Responses of Maple Saplings to Forest Light Regimes   总被引:7,自引:1,他引:6  
Seedlings of 11 species of forest maples (AcerL.) were grownoutdoors from budburst to senescence under three light regimes:‘gap centre under clear skies’ (approx. 20% opensky irradiance; red:far-red ratio=1.12); ‘gap centre undercloudy skies’ (1.5%, ratio=1.03); and ‘gap edge’(2.5%, ratio=0.6). Seedlings grown under the gap centre (clearsky) regime had significantly greater height growth, greaterspecific leaf mass, higher root:shoot ratio, greater investmentin roots, higher leaf nitrogen concentrations, greater chlorophylla:bratio,lower photosynthetic rates under dim light, higher maximum photosyntheticrate, higher stomatal conductance, and lower leaf internal CO2concentrationscompared with those grown in either gap edge or gap centre (cloudy)regimes. Responses to the gap edgevs.gap centre (cloudy) treatmentsdiffer little, suggesting that shade acclimation in forest mapleseedlings is mainly a response to light intensity rather thanspectral quality. The ubiquitous and, except for leaf internalCO2concentration, highly significant interspecific variationin traits was broad-ranging and continuous. These results suggestthat (1) the responses to light quality found in shade intolerantherbaceous and woody species growing in more open habitats maynot have a selective advantage in seedlings of shade tolerantforest trees, and (2) the adaptive plastic response to understoreyvs.gapenvironments in forest maples, which is qualitatively consistentacross species, is founded on co-ordinated, small shifts insets of functionally inter-related traits.Copyright 1998 Annalsof Botany Company Acer,forest gap heterogeneity, plasticity, specific leaf mass, photosynthesis, leaf chlorophyll, nitrogen, stomatal density, root growth, root:shoot ratio, growth form.  相似文献   

5.
The effect of tetraploidy on leaf characteristics and net gasexchange was studied in diploid (2x ) and autotetraploid (4x) ‘Valencia’ sweet orange (Citrus sinensis (L.)Osb.) and ‘Femminello’ lemon (Citrus limon (L.)Burm. f.) leaves. Comparisons between ploidy levels were madeunder high irradiance (I) in a growth chamber or low total Iin a glasshouse. Tetraploids of both species had thicker leaves,larger mesophyll cell volume and lower light transmittance thandiploids regardless of growth I. Mesophyll surface area perunit leaf area of 2x leaves was 5–15% greater than on4x leaves. Leaf thickness and mesophyll cell volume were greaterin high I leaves than low I leaves. In high I, average leafarea was similar for 2x and 4x leaves, whereas in low I it was30% greater in 4x than in 2x leaves. Nitrogen and chlorophyllconcentration per cell increased with ploidy level in both growthconditions. The ratio of chlorophyll a:b was 25% greater in2x than in 4x leaves. When net CO2assimilation rate (ACO2) wasbased on leaf area, 4x orange leaves had 24–35% lowerACO2than their diploids. There were no significant differencesin ACO2between 2x and 4x orange or lemon leaves when expressedon a per cell basis. Overall, lower ACO2per unit leaf area oftetraploids was related to increase in leaf thickness, largermesophyll cell volume, the decrease in mesophyll area exposedto internal air spaces, and the lower ratio between cell surfaceto cell volume. Such changes probably increased the resistanceto CO2diffusion to the site of carboyxlation in the chloroplasts. Cell volume; chlorophyll; irradiance; leaf thickness; nitrogen; photosynthesis; ploidy; Citrus limon ; C. sinensis ; ‘Valencia’ sweet orange; ‘Femminello’ lemon  相似文献   

6.
Plants of four isolines of soyabean [Glycine max(L.) Merrill]‘Clark’, viz‘L71-920’ (maturity genecomplemente1e2e3 ), ‘L80-5914’ (E1e2e3), ‘Clark’(e1E2E3), and ‘L65-3366’ (E1E2E3), were grown inshort (12.25 h d - 1natural light) and long days (12.25 h d- 1natural light supplemented with 2.75 h d - 1low-irradianceartificial light) from first flowering to maturity in a polythenetunnel maintained at 30/24°C (day/night). Whereas therewere few differences among the isolines grown in short days,in long days the dominant alleles increased crop duration, biomassand seed yield substantially. Increases in biological and economicyield were not solely a consequence of longer crop duration:the dominant alleles also increased crop growth rate and radiationuse efficiency in long days (from 1.3 g MJ - 1total radiationine1e2e3 to 2.8 g MJ - 1inE1E2E3 ). Greater radiation use efficiencyresulted from a relatively longer leaf area duration, betterdistribution and orientation of a larger mass of leaves withinthe canopy, and smaller partitioning of assimilates to reproductivestructures. The work reveals the substantial effects of thethree lociE1 / e1, E2/ e2and E3/e3 on the response of plantgrowth, as well as development, to environment. Their relevanceto crop adaptation is discussed. Copyright 2000 Annals of BotanyCompany Glycine max(L.) Merrill, soyabean, maturity genes, flowering, phenology, growth, yield  相似文献   

7.
A series of experiments was conducted to assess net CO2assimilationand growth responses to waterlogging of grafted and seedlingtrees in the genus Annona. Seedlings of A. glabra, A. muricataandA. squamosa L., and scions of ‘Gefner’ atemoya(A. squamosaxA. cherimola Mill.), ‘49-11’ (‘Gefner’atemoyaxA. reticulata L.), ‘4-5’ (‘Priestley’atemoyaxA. reticulata), A. reticulata grafted onto either A.glabra, A. reticulata orA. squamosa rootstocks were floodedfor up to 60 d. Soil anaerobiosis occurred on the third dayof flooding. Seedlings ofA. glabra and A. muricata, and thescions ‘49-11’, ‘Gefner’ atemoya, andA. reticulata grafted onto A. glabra rootstock were consideredflood tolerant based on their ability to survive and grow inflooded conditions. Scions of the normally flood-sensitive A.reticulata, ‘Gefner’ atemoya, and ‘49-11’tolerated root waterlogging when grafted onto the flood-tolerantspecies, A. glabra. In contrast, flooding of A. squamosa seedlingsand rootstocks, and A. reticulata rootstocks greatly reducedgrowth and net CO2assimilation rates, and resulted in 20–80%tree mortality. Stem anatomical responses to long-term flooding(12 continuous months) were assessed in seedlings of A. glabraand A. muricata, and trees of ‘49-11’ grafted ontoA. glabra. Flooded trees developed hypertrophied stem lenticels,particularly in A. glabra, and enlarged xylem cells resultingin thicker stems with reduced xylem density. Flooding did notincrease air spaces in pre-existing xylem near the pith or inxylem tissue that was formed during flooding. Thus, flood tolerancedid not involve aerenchyma formation in the stem. Copyright1999 Annals of Botany Company Flood tolerance, net CO2assimilation, photosynthesis, stem anatomy, shoot growth, anaerobiosis, Annonaceae.  相似文献   

8.
Four experiments were conducted to determine the effect of tradewinds in Guam, USA, on growth and gas exchange of three papaya(Carica papaya L.) cultivars. ‘Known You 1’, ‘Sunrise’,and ‘Tainung 2’ papaya seedlings at two differentstages of development were exposed to 0, 36 or 100% ambientwind. Wind exposure reduced stem height and leaf or stem dryweight in most cases, but had little influence on root growth.Net CO2assimilation (ACO2) at midday was lower for seedlingsexposed to wind than for those protected from wind. Dark respirationof exposed seedlings increased as much as 120% above that ofthe protected seedlings during the night. Wind exposure decreasedwhole plant evapotranspiration by up to 36% during the photoperiod,but increased evapotranspiration by 58–87% during thenocturnal period. Responses to wind exposure were similar amongcultivars, except that growth of ‘Tainung 2’ seedlingswas less affected by wind than that of the other cultivars.Seedlings that were exposed to the various wind treatments fromgermination onwards were less influenced by wind exposure thanwere seedlings that were grown in a protected nursery beforebeing exposed to the various wind treatments. These data indicatethat: (1) ambient trade winds in Guam are strong enough to decreasethe growth of papaya seedlings; (2) plant age influences theresponse; (3) stem and leaf growth are more influenced thanroot growth; and (4) decreasedACO2 and increased dark respirationmay be partly responsible for growth reduction. Copyright 2001Annals of Botany Company Carica papaya, gas exchange, wind  相似文献   

9.
ROBSON  M. J. 《Annals of botany》1982,49(3):321-329
Simulated swards of each of two selection lines of Lolium perennecv. S23 with ‘fast’ and ‘slow’ ratesof ‘mature tissue’ respiration were establishedin growth rooms at 20/15 °C day/night temperatures and studiedover four successive regrowth periods of 46, 30, 26 and 53 daysduration. The ‘slow’ line outyielded the ‘fast’,both in harvestable shoot (above a 5 cm cut) and in root andstubble. Its advantage increased over successive regrowth periodsto 23 per cent (total biomass). Gas analysis measurements onthe entire communities (including roots), during the final regrowthperiod, showed that the ‘slow’ line had a 22–34per cent lower rate of dark respiration per unit dry weight.This enabled it to maintain its greater mass of tissue for thesame cost in terms of CO2 efflux per unit ground area. Halfthe extra dry weight produced by the ‘slow’ line,relative to the ‘fast’, could be attributed to itsmore economic use of carbon. The rest could be traced to a 25per cent greater tiller number which enabled the ‘slow’line to expand leaf area faster (though not at a greater rateper tiller), intercept more light and fix more carbon, earlyin the regrowth period. Lolium perenne L., ryegrass, respiration, maintenance respiration, tiller production, simulated swards, canopy photosynthesis, carbon economy  相似文献   

10.
Nitrate provision has been found to regulate the capacity forChara corallina cells to take up nitrate. When nitrate was suppliedto N sufficient cells maximum nitrate uptake was reached after8 h. Prolonged treatment of the cells in the absence of N alsoresulted in the apparent ability of these cells to take up nitrate.Chlorate was found to substitute partially for nitrate in the‘induction’ step. The effects on nitrate reductionwere separated from those on nitrate uptake by experiments usingtungstate. Tungstate pretreatment had no effect on NO3uptake ‘induced’ by N starvation, but inhibitedNO3 uptake associated with NO3 pretreatment. Chloridepretreatment similarly had no effect on NO3 uptake ‘induced’by N deprivation, but inhibited NO3 uptake followingNO3 pretreatment. The data suggest that there are atleast two mechanisms responsible for the ‘induction’of nitrate uptake by Chara cells, one associated with NO3reduction and ‘induced’ by CIO3 or NO3and one associated with N deprivation. Key words: Nitrate, Chlorate, Chara corallina, Induction  相似文献   

11.
Differences in premature leaf abscission and in visible steminjury in genetic lines of poplar followed continuous fumigationswith air pollutant levels of SO2 (90–100 nl l–1)and O3 (70–80 nl l–1) either separately or together.The clones used were: Populus deltoides var. missiouriensisMarsh., P. nigra cv. ‘italicd’ L., and the hybridsP. nigra cv. ‘italica’ xP. deltoides (He-X/3) andP. nigra cv.‘italica’ x P. nigra cv. ‘Serres’(He-K/7). While most leaf abscission occurred within 20 d fromthe start of fumigation, stem lesions (intumescences), appearedonly after 72 d. Their anatomical characteristics include theformation of lysigenous aerenchyma in the lower parts of theintumescence, the sloughing of superficial cells from the injuredarea, and the development of crystalline formations on the surfaceof the lesions. P. deltoides exhibited the least morphologicalresponse to the gases. Ethylene released from fumigated leaves was determined at thesame gas concentration of SO2 (100 nl l–1), O3 (75 nll–1) and their mixture. Leaves of P. deltoides consistentlyshowed the lowest ethylene production after the gas treatments.P. ‘italica’ production was higher but was littlealtered by the treatments. The two hybrids He-X/3 and He-K/7showed the greatest increases in ethylene evolution with time.With He-K/7 exposed to the gas mixture the production of ethylenedecreased after the initial sharp rise during days 1–2,and reflected the considerable leaf damage observed after day3. The results suggest that sensitivity to air pollution, (as shownby leaf abscission and the formation of stem intumescences)can be correlated with the level of pollutant-induced ethyleneevolution from leaves. Initially high levels could induce abscission,whilst prolonged production could be responsible for intumescenceinitiation. The discussion proposes a series of events fromSO2 and/or O3 entry into the leaf and the physiological reasonsfor the clonal differences. Key words: Sulphur dioxide, ozone, ethylene, poplar, leaf abscission, stem lesions  相似文献   

12.
Growth analysis of plants raised under controlled environments(10–5, 12, 15, 18 and 20 °C, and 21 h photoperiod)was used to examine whether varietal differences in the minimumgermination temperature of four bean cultivars persist duringgrowth at suboptimal temperatures. A method to estimate theminimum vegetative growth temperature, based on axis relativegrowth rate, was developed. In order to compensate for ontogeneticdrift, the harvests were conducted at the same stage of developmentof the plants. Axis relative growth rates, reduction rates ofthe cotyledons and other growth parameters were calculated inorder to compare the cultivars. Cultivar ‘Marschall’showed better growth potential at 12 °C than the others,‘Pergousa‘ at 15 °C, and ‘Marschall’,‘Olsok’ and ‘Pergousa’ at 18 and 20°C. The effect of temperature on axis RGR was similar for‘Marschall’, ‘Olsok’ and ‘Pergousa’(Q10 = 2·1) and more pronounced than for ‘Processor’(Q10 = 1·3). Although there were significant differencesin the growth parameters among the cultivars within each temperatureused, the differences did not correspond with the differencesduring germination at low temperatures. The minimum vegetativegrowth temperature was close to 10 °C for all the cultivarstested. Phaseolus vulgaris L., beans, suboptimum temperature, growth analysis, minimum germination temperature, minimum vegetative growth temperature  相似文献   

13.
A model is presented for growth of individual and successivemain-stem leaves of cotton, based on a series of indoor experimentsand data sets from the literature. Three variable parametersare used to describe individual leaf growth: relative growthrate of meristematic tissue (R1), relative rate of approachof final area (R2) and a ‘position parameter’ (t0.5)which governs the transition from meristematic to extensiongrowth. Final area of a leaf does not occur in the model asa deterministic quantity but it is a result of the processesduring growth. The model generates successive mainstem leavesand sympodial leaves as an integrated system. Assimilate shortagesoccurring in the plant operate on R1 leading to the characteristicchange of final leaf area along the mainstem. Gossypium hirsutumL., cotton, leaf growth, relative growth rate, meristematic tissue, extension growth, mathematical model  相似文献   

14.
In two experiments, the functioning and metabolism of nodulesof white clover, following a defoliation which removed abouthalf the shoot tissue, were compared with those of undefoliatedplants. In one experiment, the specific respiration rates of nodulesfrom undefoliated plants varied between 1160 and 1830 µmolCO2 g–1h–1, of which nodule ‘growth and maintenance’accounted for 22 ± 2 per cent, or 27 ± 3.6 percent, according to method of calculation. Defoliation reducedspecific nodule respiration and nodule ‘growth and maintenance’respiration by 60–70 per cent, and rate of N2 fixationby a similar proportion. The original rate of nodule metabolismwas re-established after about 5 d of regrowth; during regrowthnodule respiration was quantitatively related to rate of N2,fixation: 9.1 µmol CO2 µmol–1N2. With the possible exception of nodules examined 24 h after defoliation,the efficiency of energy utilization in nitrogenase functioningin both experiments was the same in defoliated and undefoliatedplants: 2.0±0.1 µmol CO2 µmol–1 C2H4;similarly, there was no change in the efficiency of nitrogenasefunctioning as rate of N2 fixation increased with plant growthfrom 1 to 22 µmol N2 per plant h–1. Exposure of nodulated white clover root systems to a 10 percent acetylene gas mixture resulted in a sharp peak in rateof ethylene production after 1.5–2.5 min; subsequently,rate of ethylene production declined rapidly before stabilisingafter 0.5–1 h at a rate about 50 per cent of that initiallyobserved. Regression of ‘peak’ rate of ethyleneproduction on rate of N2 fixation indicated a value of 2.9 µmolC2H4 µmol–1 N2, for rates of N2 fixation between1 and 22 µmol N2 per plant h–1. The relationshipsbetween nitrogenase respiration, acetylene reduction rates andN2 fixation rates are discussed. Trifolium repens, white clover, defoliation, nodule respiration, N2, fixation, nitrogenase  相似文献   

15.
The freezing tolerance of many plants, such as pea (Pisum sativum),is increased by exposure to low temperature or abscisic acidtreatment, although the physiological basis of this phenomenonis poorly understood. The freezing tolerance of pea shoot tips,root tips, and epicotyl tissue was tested after cold acclimationat 2C, dehydration/rehydration, applications of 10–4M abscisic acid (ABA), and deacclimation at 25C. Tests wereconducted using the cultivar ‘Alaska’, an ABA-deficientmutant ‘wil’, and its ‘wildtype’. Freezinginjury was determined graphically as the temperature that caused50% injury (T50) from electrical conductivity. Endogenous ABAwas measured using an indirect enzyme-linked immunosorbant assay,and novel proteins were detected using 2-dimensional polyacrylamidegel electrophoresis. The maximum decrease in T50 for root tissuewas 1C for all genotypes, regardless of treatment. For ‘Alaska’shoot tips and epicotyl tissue, exogenous ABA increased thefreezing tolerance by –1.5 to –4.0C, while coldtreatment increased the freezing tolerance by –7.5 to–14.8C. Cold treatment increased the freezing toleranceof shoot tips by –9 and –15C for ‘wil’and ‘wild-type’, respectively. Cold acclimationincreased endogenous ABA concentrations in ‘Alaska’shoot tips and epicotyls 3- to 4-fold. Immunogold labeling increasednoticeably in the nucleus and cytoplasm of the epicotyl after7 d at 2C and was greatest after 30 d at the time of maximumfreezing tolerance and soluble ABA concentration. Cold treatmentinduced the production of seven, three, and two proteins inshoot, epicotyl, and root tissue of ‘Alaska’, respectively.In ‘Alaska’ shoot tissue, five out of seven novelproteins accumulated in response to both ABA and cold treatment.However, only a 24 kDa protein was produced in ‘wil’and ‘wild-type’ shoot and epicotyl tissues aftercold treatment. Abscisic acid and cold treatment additivelyincreased the freezing tolerance of pea epicotyl and shoot tissuesthrough apparently independent mechanisms that both resultedin the production of a 24 kDa protein. Key words: Pisum sativum, cold acclimation, immuno-localization  相似文献   

16.
ERRATA     
On page 235, Table I: Equation (1) for Node 4 should read ‘A/Ac=0·840+0·0006Ac;Equation (2) for Node 4 should read ‘A=0·89Ac’and Equation (2) for Node 5–10 should read ‘A=0·813Ac’.  相似文献   

17.
Removal of the blade from the leaf subtending the first flowerbud on Cyclamen persicum ‘Swan Lake’ plants causedthe petiole of that leaf to senesce, but had no effect on thegrowth of the flower peduncle in the debladed petiole's axil.A 10 mg NAA l–1 application generally had no effect onpetiole senescence, peduncle elongation or flowering date whenapplied to the cut end of the petiole after blade removal. A25 mg GA3 l–1 application or a combination of 25 mg GA3l–1 application or a combination of 25 mg GA3 l–1plus 10 mg NAA l–1 delayed petiole senescence and enhancedpeduncle elongation and subsequent flowering. No treatment significantlyaltered peduncle length at the time of flowering. Cyclamen persicum Mill, ‘Swan Lake’, tissue receptivity, flowering, GA3, NAA  相似文献   

18.
Potential carbon-specific growth rates of phytoplankton wereestimated from a series of measurements of photosynthetic radio-carbonuptake over 4- and 24-h exposure periods in the light fieldsof three large limnetic enclosures (‘Lund Tubes’),each providing different limnological and trophic conditions.Photosynthetic behaviour and short-term, chlorophyll-specificcarbon-fixation rates conformed to well-established criteriabut, over 24 h, the net retention represented 23–82% ofthe carbon fixed during the daylight hours. Potential mean growthrates (k'p, of the photo-autotrophic community were calculatedas the net exponential rates of daily carbon-accumulation relativeto derived, instantaneous estimates of the cell carbon-content.Apparent actual community growth rates (k'D were calculatedas the sum of the exponential rates of change of each of themajor species present, corrected for probable rates of in situgrazing and sinking, and expressed relative to the fractionof total biomass for which they accounted. The correspondingvalues were only occasionally similar, k'p generally exceedingK'D by a factor of between 1 and 30 or 1 and 14, depending uponthe carbon:chlorophyll ratio used. The ratio, K'p/K'D was foundto vary inversely both to k'D and to kn, the net rate of changein phytoplankton biomass, suggesting that measured carbon fixationrates merely represent a capacity for cellular increase which,owing to other likely limitations upon growth, is seldom realized.Apparent rates of loss of whole cells do not account for theloss of carbon; that the ‘unaccounted’ loss rates(K'pK'D varied in direct proportion to K'p (i.e., losseswere least when chlorophyll-specific photosynthetic productivitywas itself limited) is best explained by physiological voidingof excess carbon (for instance, by respiration, photorespiration,excretion) prior to the formation of new cells.  相似文献   

19.
ERRATA     
Effects of coupled solute and water flow in plant roots withspecial reference to Brouwer's experiment. Edwin L. Fiscus. p. 71 Abstract: Line 3 delete ‘interval’ insert‘internal’. p. 73 Materials and Methods: line 6: delete ‘diversion’ insert ‘division’ line 9 equation should read Jv=Lp PRT(C0C1). 74 Last line of figure legend: 10–1 should read 10–11. 75 Line 11: delete ‘seems’ insert ‘seem’. le 1 column heading—106 should read 1011. 77 delete ‘...membrane in series of...’ insert ‘membranein series or...’ Delete final paragraph.  相似文献   

20.
The effects of exposure of up to 2 h with sulphur dioxide ona range of plant species was observed by measuring changes inthe rate of net photosynthesis under closely controlled environmentalconditions. Ryegrass, Lolium perenne ‘S23’ was thespecies most sensitive to SO2; significant inhibition was detectedat 200 nl l–1. Fumigations at 300 nl l–1 also inhibitedphotosynthesis in field bean (Vicia faba cv. ‘Three FoldWhite’ and ‘Blaze’) and in barley (Hordeumvulgare cv. ‘Sonja’). No effect was detected inwheat (Triticum aestivum cv. ‘Virtue’) at concentrationsup to 600 nl l–1 SO2, or in oil-seed rape (Brassica napuscv. ‘Rafal’) except at 800 nl l–1 SO2). Recoverycommenced immediately after the fumigation was terminated andwas complete within 2 h when inhibition had not exceeded 20%during the SO2 treatment. Key words: Sulphur dioxide, short-term fumigation, photosynthesis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号