首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 102 毫秒
1.
We used the yeast two-hybrid system to screen for proteins that interact with the C-terminus of the beta isoform of the thromboxane A(2) receptor (TPbeta). This screen identified receptor for activated C-kinase 1 (RACK1) as a new TPbeta-interacting protein. Here, we show that RACK1 directly binds to the C-terminus and the first intracellular loop of TPbeta. The TPbeta-RACK1 association was further confirmed by co-immunoprecipitation studies in HEK293 cells and was not modulated by stimulation of the receptor. We observed that cell surface expression of TPbeta was increased when RACK1 was overexpressed, while it was inhibited when endogenous RACK1 expression was knocked down by small interfering RNA. Confocal microscopy confirmed the impaired cell surface expression of TPbeta and suggested that the receptors remained predominantly localized in the endoplasmic reticulum (ER) in RACK1-depleted cells. Confocal microscopy also revealed that a transient TPbeta-RACK1 association takes place in the ER. The effect of RACK1 on receptor trafficking to the cell surface appears to be selective to some G protein-coupled receptors (GPCRs) because inhibition of RACK1 expression also affected cell surface targeting of the angiotensin II type 1 receptor and CXCR4 but not of beta(2)-adrenergic and prostanoid DP receptors. Our data demonstrate for the first time a direct interaction between RACK1 and a GPCR and identify a novel role for RACK1 in the regulation of the transport of a membrane receptor from the ER to the cell surface.  相似文献   

2.
Site-directed mutagenesis guided by evolutionary trace analysis revealed that substitution of V179 and W183 within a cluster of evolutionarily important residues on the surface of the fourth transmembrane domain of the β1-adrenergic receptor (β1AR) significantly reduced the propensity of the receptor to self-assemble into homodimers as assessed by bioluminescence resonance energy transfer in living cells. These results suggest that mutation of V179 and W183 result in conformational changes that reduce homodimerization either directly by interfering with the dimerization interface or indirectly by causing local misfolding that result in reduced self-assembly. However, the mutations did not cause a general misfolding of the β1AR as they did not prevent heterodimerization with the β2AR. The homodimerization-compromised mutants were significantly retained in the endoplasmic reticulum (ER) and could not be properly matured and trafficked to the cell surface. Lipophilic β-adrenergic ligands acted as pharmacological chaperones by restoring both dimerization and plasma membrane trafficking of the ER-retained dimerization-compromised β1AR mutants. These results clearly indicate that homodimerization occurs early in the biosynthetic process in the ER and that pharmacological chaperones can promote both dimerization and cell surface targeting, most likely by stabilizing receptor conformations compatible with the two processes.  相似文献   

3.
Dopamine receptors function to control many aspects of motor control and other forms of behaviour in both vertebrates and invertebrates. They can be divided into two main groups (D1 and D2) based on sequence similarity, ligand affinity and effector coupling. However, little is known about the pharmacology and functionality of dopamine receptors in the deuterostomian invertebrates, such as the cephalochordate amphioxus ( Branchiostoma floridae) which has recently been placed as the most basal of all the chordates. A bioinformatic study shows that amphioxus has at least three dopamine D1-like receptor sequences. One of these receptors, AmphiD1/β, was found to have high levels of sequence similarity to both vertebrate D1 receptors and to β-adrenergic receptors. Here, we report on the cloning of AmphiD1/β from an adult amphioxus cDNA library, and its pharmacological characterization subsequent to its expression in both mammalian cell lines and Xenopus oocytes. It was found that AmphiD1/β has a similar pharmacology to vertebrate D1 receptors, including responding to benzodiazepine ligands. The pharmacology of the receptor exhibits 'agonist-specific coupling' depending upon the second messenger pathway to which it is linked. Moreover, no pharmacological characteristics were observed to suggest that AmphiD1/β may be an amphioxus orthologue of vertebrate β-adrenergic receptors.  相似文献   

4.
5.
Abstract: In primary cultured rat glial cells, a combination of inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) stimulates production of nitrite via expression of the inducible form of nitric oxide synthase (iNOS). In these cells, simultaneous addition of endothelin (ET) decreased iNOS expression and nitrite accumulation induced by TNF-α/IL-1β. The inhibitory effect of ET on TNF-α/IL-1β-stimulated iNOS expression appears to be mediated by ETB receptors, because (1) both ET-1 and ET-3 inhibited the effects of TNF-α/IL-1β on iNOS expression and nitrite accumulation, (2) a selective ETB receptor agonist, Suc-[Glu9,Ala11,15]-ET-1 (8–21) (IRL1620), decreased the effects of TNF-α/IL-1β, and (3) a selective ETB receptor antagonist, N-cis -2,6-dimethylpiperidinocarbonyl- l -γ-methylleucyl- d -1-methoxycarbonyltryptophanyl- d -norleucine, abolished the inhibitory effects of ETs and IRL1620. Incubation of glial cells with lipopolysaccharide (LPS) caused an increase in iNOS expression. Simultaneous addition of ET-3 decreased the effects of LPS (10 and 100 ng/ml) on iNOS expression. Furthermore, cyclic AMP-elevating agents (dibutyryl cyclic AMP and forskolin) inhibited TNF-α/IL-1β-induced and LPS-induced iNOS expression and nitrite accumulation. These findings suggest that ETs can decrease TNF-α/IL-1β-induced and LPS-induced iNOS expression via ETB receptors and that cyclic AMP may be involved in this process.  相似文献   

6.
Abstract: Polyclonal antibodies were raised to the C-terminal part of the γ-aminobutyric acidA (GABAA) receptor α4-subunit. These anti-peptide α4 (517–523) antibodies specifically identified a protein with apparent molecular mass 67 kDa in rat brain membranes. This protein was enriched by immunoaffinity chromatography of brain membrane extracts on Affigel 10 coupled to the anti-peptide α4 (517–523) antibodies and could then be identified by the anti-α4-antibodies as well as by the GABAA receptor subunit-specific monoclonal antibody bd-28. This appears to indicate that the 67-kDa protein is the α4-subunit of GABAA receptors. Intact GABAA receptors appeared to be retained by the immunoaffinity column because other GABAA receptor subunit proteins like the β2/β3-subunits and the γ2-subunit were detected in the immunoaffinity column eluate. Furthermore, in addition to the 67-kDa protein, a 51-kDa protein could be detected by the antibody bd-28 and the anti-peptide α4 (517–523) antibody in the immunoaffinity column eluate. A protein with similar apparent molecular mass was identified by the α1-subunit-specific anti-peptide α1 (1–9) antibody. In contrast to the α1-subunit, the 51-kDa protein identified by the anti-α4 antibody could not be deglycosylated by N -Glycanase. The identity of the 51-kDa protein identified by the anti-α4-antibodies thus must be further investigated.  相似文献   

7.
As for all proteins, G protein-coupled receptors (GPCRs) undergo synthesis and maturation within the endoplasmic reticulum (ER). The mechanisms involved in the biogenesis and trafficking of GPCRs from the ER to the cell surface are poorly understood, but they may involve interactions with other proteins. We have now identified the ER chaperone protein calnexin as an interacting protein for both D(1) and D(2) dopamine receptors. These protein-protein interactions were confirmed using Western blot analysis and co-immunoprecipitation experiments. To determine the influence of calnexin on receptor expression, we conducted assays in HEK293T cells using a variety of calnexin-modifying conditions. Inhibition of glycosylation either through receptor mutations or treatments with glycosylation inhibitors partially blocks the interactions with calnexin with a resulting decrease in cell surface receptor expression. Confocal fluorescence microscopy reveals the accumulation of D(1)-green fluorescent protein and D(2)-yellow fluorescent protein receptors within internal stores following treatment with calnexin inhibitors. Overexpression of calnexin also results in a marked decrease in both D(1) and D(2) receptor expression. This is likely because of an increase in ER retention because confocal microscopy revealed intracellular clustering of dopamine receptors that were co-localized with an ER marker protein. Additionally, we show that calnexin interacts with the receptors via two distinct mechanisms, glycan-dependent and glycan-independent, which may underlie the multiple effects (ER retention and surface trafficking) of calnexin on receptor expression. Our data suggest that optimal receptor-calnexin interactions critically regulate D(1) and D(2) receptor trafficking and expression at the cell surface, a mechanism likely to be of importance for many GPCRs.  相似文献   

8.
Abstract: Molecular cloning has revealed that there are six classes of subunits capable of forming GABA-gated chloride channel receptors. GABAA receptors are composed of α, β, γ, δ, and ε/χ subunits, whereas GABAC receptors appear to contain ρ subunits. However, retinal cells exhibiting GABAC responses express α, β, and ρ subunits, raising the possibility that GABAC receptors may be a mixture of subunit classes. Using in vitro translated protein, we determined that human GABAA receptor subunits α1, α5, and β1 did not coimmunoprecipitate with full-length ρ1, ρ2, or the N-terminal domain of ρ1 that contains signals for ρ-subunit interaction. To explore the molecular mechanism underlying these apparently exclusive combinations, chimeric subunits were created and tested for interaction with the wild-type subunits. Transfer of the N terminus of β1 to ρ1 created a β1ρ1 chimera that coimmunoprecipitated with the α1 subunit but not with the ρ2 subunit. Furthermore, exchanging the N terminus of the ρ1 subunit with the corresponding region of β1 produced a ρ1β1 chimera that interfered with ρ1 receptor expression in Xenopus oocytes, whereas the full-length β1 subunit had no effect. Together, these results indicate that sequences in the N termini direct assembly of ρ subunits and GABAA subunits into GABAC and GABAA receptors, respectively.  相似文献   

9.
Abstract: During transient cerebral ischemia, there is a temporary and robust accumulation of extracellular GABA in the hippocampus. We examined whether the acute exposure of GABAA/benzodiazepine receptors to high concentrations of GABA early after ischemia results in receptor down-regulation as observed in vitro. Gerbils were killed 30 and 60 min following a 5-min bilateral carotid occlusion, and their brains were prepared for receptor autoradiography. The hydrophilic GABAA receptor antagonist [3H]SR-95531 and the hydrophobic benzodiazepine agonist [3H]flunitrazepam were used to distinguish between cell surface and internalized receptors. Ischemia significantly decreased [3H]SR-95531 binding in hippocampal areas CA1 and CA3 and in the dentate gyrus 30 min after ischemia. Scatchard analysis in area CA1 revealed that ischemia decreased the B max as low as 44%. The affinity of the remaining sites was increased substantially (72% decrease in K D). As expected, there were no changes in the binding of [3H]flunitrazepam to hippocampus in the early postischemic period because the benzodiazepine could bind to both internalized receptors and those on the cell surface. We hypothesize that prolonged exposure (∼30–45 min) of GABAA receptors to high concentrations of synaptic GABA in vivo causes receptor down-regulation, perhaps via receptor internalization.  相似文献   

10.
Abstract: Polyclonal antibodies were raised to synthetic peptides having amino acid sequences corresponding with the N- or C-terminal part of the γ-aminobutyric acidA (GABAA) receptor α5-subunit. These anti-peptide α5(2–10) or anti-peptide α5(427–433) antibodies reacted specifically with GABAA receptors purified from the brains of 5–10-day-old rats in an enzyme-linked immunosorbent assay and were able to dose-dependently immunoprecipitate up to 6.3 or 13.1% of the GABAA receptors present in the incubation, respectively. In immunoblots, each of these antibodies reacted with the same two protein bands with apparent molecular mass of 53 or 57 kDa. After exhaustive treatment of purified GABAA receptors with N -Glycanase, each of these antibodies identified two proteins with apparent molecular masses of 46 and 48 kDa. Additional treatment of GABAA receptors with neuraminidase and O -Glycanase resulted in an apparently single protein with molecular mass of 47 kDa, which again was identified by both the anti-peptide α5(2–10) and the anti-peptide α5(427–433) antibody. These results indicate the existence of at least two different α5-sub-units of the GABAA receptor that differ in their carbohydrate content. In contrast to other α- or β-subunits of GABAA receptors so far investigated, at least one of these two α5-subunits contains O-linked carbohydrates.  相似文献   

11.
Abstract: Angiotensin IV (Val-Tyr-Ile-His-Pro-Phe) has been reported to interact with specific high-affinity receptors to increase memory retrieval, enhance dopamine-induced stereotypy behavior, and induce c- fos expression in several brain nuclei. We have isolated a decapeptide (Leu-Val-Val-Tyr-Pro-Trp-Thr-Gln-Arg-Phe) from sheep brain that binds with high affinity to the angiotensin IV receptor. The peptide was isolated using 125I-angiotensin IV binding to bovine adrenal membranes to assay receptor binding activity. This peptide is identical to the amino acid sequence 30–39 of sheep βA- and βB-globins and has previously been named LVV-hemorphin-7. Pharmacological studies demonstrated that LVV-hemorphin-7 and angiotensin IV were equipotent in competing for 125I-angiotensin IV binding to sheep cerebellar membranes and displayed full cross-displacement. Using in vitro receptor autoradiography, 125I-LVV-hemorphin-7 binding to sheep brain sections was identical to 125I-angiotensin IV binding in its pattern of distribution and binding specificity. This study reveals the presence of a globin fragment in the sheep brain that exhibits a high affinity for, and displays an identical receptor distribution with, the angiotensin IV receptor. This globin fragment, LVV-hemorphin-7, may therefore represent an endogenous ligand for the angiotensin IV receptor in the CNS.  相似文献   

12.
13.
Abstract: The densities of β1, and β2-adrenergic receptors were determined in homogenates of cerebral cortex and cerebellum of rats between 3 and 14 mo of age. No change in either receptor population occurred in the cortex during this period. In the cerebellum, a 20–25% decrease in the density of β2, receptors and a 3509% increase in the density of β1, receptors occurred. The increase in β1 receptors in the cerebellum may be the result of a decrease in the function of the noradrenergic projections from the locus coeruleus which synapse on cerebellar Purkinje cells.  相似文献   

14.
Abstract: 5-Hydroxytryptamine elicits its physiological effects by interacting with a diverse group of receptors. Two of these receptors, the 5-HT1Dβ and the 5-HT1E receptors, are ∼60% identical in the transmembrane domains that presumably form the ligand binding site yet have very different pharmacological properties. Analysis of the pharmacological properties of a series of chimeric 5-HT1Dβ/5-HT1E receptors indicates that sequences in the sixth and seventh transmembrane domains are responsible for the differential affinity of 5-carboxamidotryptamine for these two receptors. More detailed analysis shows that two amino acid differences in the sixth transmembrane domain (Ile333 and Ser334 in the 5-HT1Dβ receptor, corresponding to Lys310 and Glu311 in the 5-HT1E receptor) are largely responsible for the differential affinities of some, but not all, ligands for the 5-HT1Dβ and 5-HT1E receptors. It is likely that these two amino acids subtly determine the overall three-dimensional structure of the receptor rather than interact directly with individual ligands.  相似文献   

15.
Abstract: Cerebrovascular amyloid β-protein (Aβ) deposition is a key pathological feature of Alzheimer's disease and hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D). Aβ1–40 containing the E22Q HCHWA-D mutation, but not wild-type Aβ1–40, potently induces several pathologic responses in cultured human cerebrovascular smooth muscle cells, including cellular degeneration and a robust increase in the levels of cellular Aβ precursor. In the present study, we show by several quantitative criteria, including thioflavin T fluorescence binding, circular dichroism spectroscopy, and transmission electron microscopic analysis, that at a concentration of 25 µ M neither HCHWA-D Aβ1–40 nor wild-type Aβ1–40 appreciably assembles into β-pleated sheet-containing fibrils in solution over a 6-day incubation period. In contrast, at the same concentrations, HCHWA-D Aβ1–40, but not wild-type Aβ1–40, selectively binds and assembles into abundant fibrils on the surfaces of cultured human cerebrovascular smooth muscle cells. The simultaneous addition of an equimolar concentration of the dye Congo red prevents the cell surface fibril assembly of HCHWA-D Aβ1–40. Moreover, Congo red effectively blocks the key pathologic responses induced by HCHWA-D Aβ1–40 in these cells. The present findings suggest that the surface of human cerebrovascular smooth muscle cells may selectively orchestrate the assembly of pathogenic Aβ fibrils and that cell surface Aβ fibril formation plays an important role in causing the pathologic responses in these cells.  相似文献   

16.
Increase in oxidative stress has been postulated to play an important role in the pathogenesis of a number of neurodegenerative diseases including Alzheimer's disease. There is evidence for involvement of amyloid-β peptide (Aβ) in mediating the oxidative damage to neurons. Despite yet unknown mechanism, Aβ appears to exert action on the ionotropic glutamate receptors, especially the N-methyl-D-aspartic acid (NMDA) receptor subtypes. In this study, we showed that NMDA and oligomeric Aβ1–42 could induce reactive oxygen species (ROS) production from cortical neurons through activation of NADPH oxidase. ROS derived from NADPH oxidase led to activation of extracellular signal-regulated kinase 1/2, phosphorylation of cytosolic phospholipase A2α (cPLA2α), and arachidonic acid (AA) release. In addition, Aβ1–42-induced AA release was inhibited by d (−)-2-amino-5-phosphonopentanoic acid and memantine, two different NMDA receptor antagonists, suggesting action of Aβ through the NMDA receptor. Besides serving as a precursor for eicosanoids, AA is also regarded as a retrograde messenger and plays a role in modulating synaptic plasticity. Other phospholipase A2 products such as lysophospholipids can perturb membrane phospholipids. These results suggest an oxidative-degradative mechanism for oligomeric Aβ1–42 to induce ROS production and stimulate AA release through the NMDA receptors. This novel mechanism may contribute to the oxidative stress hypothesis and synaptic failure that underline the pathogenesis of Alzheimer's disease.  相似文献   

17.
Abstract: Ethanol dependence and tolerance involve perturbation of GABAergic neurotransmission. Previous studies have demonstrated that ethanol treatment regulates the function and expression of GABAA receptors throughout the CNS. Conceivably, changes in receptor function may be associated with alterations of subunit composition. In the present study, a comprehensive (1–12 weeks) ethanol treatment paradigm was used to evaluate changes in GABAA receptor subunit expression in several brain regions including the cerebellum, cerebral cortex, ventral tegmental area (VTA) (a region implicated in drug reward/dependence), and the hippocampus (a region involved in memory/cognition). Expression of α1 and α5 subunits was regulated by ethanol in a region-specific and time-dependent manner. Following 2–4 weeks of administration, cortical and cerebellar α1 and α5 subunit immunoreactivity was reduced. In the VTA, levels of α1 subunit immunoreactivity were significantly decreased after 12 weeks but not 1–4 weeks of treatment. Hippocampal α1 subunit immunoreactivity and mRNA content were also significantly reduced after 12 but not after 4 weeks of treatment. In contrast, α5 mRNA content was increased in this brain region. These data indicate that chronic ethanol administration alters GABAA receptor subunit expression in the VTA and hippocampus, effects that may play a role in the abuse potential and detrimental cognitive effects of alcohol.  相似文献   

18.
Hypothalamic norepinephrine (NE) release regulates arterial pressure by altering sympathetic nervous system activity. Because angiotensin (Ang) (1–7) decreases hypothalamic NE release and this effect may be correlated with a diminished NE synthesis, we hypothesize that Ang-(1–7) down-regulates tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamines biosynthesis. We investigated the effect of Ang-(1–7) on centrally TH activity and expression. TH activity was evaluated by the release of tritiated water from 3H- l -tyrosine. TH expression and phosphorylation were determined by western blot. Hypothalami from normotensive or spontaneously hypertensive rats pre-incubated with Ang-(1–7) showed a significant decrease in TH specific activity. Ang-(1–7) caused a decrease in TH phosphorylation at Ser19 and Ser40 residues. The heptapeptide induced a decrease in TH expression that was blocked by an AT2 receptor antagonist and not by an AT1 or Mas receptor antagonist, suggesting the involvement of AT2 receptors. The proteasome inhibitor MG132 blocked the Ang-(1–7)-mediated TH reduction. In addition, Ang-(1–7) increased the amount of TH–ubiquitin complexes, indicating that the Ang-(1–7)-mediated TH degradation involves ubiquitin conjugation prior to proteasome degradation. We conclude that Ang-(1–7) down-regulates TH activity and expression centrally leading to a decrease in the central NE system activity.  相似文献   

19.
The primary molecules for mediating the innate immune response are the Toll-like family of receptors (TLRs). Recent work has established that amyloid-beta (Aβ) fibrils, the primary components of senile plaques in Alzheimer's disease (AD), can interact with the TLR2/4 accessory protein CD14. Using antibody neutralization assays and tumor necrosis factor alpha release in the human monocytic THP-1 cell line, we determined that both TLR2 and TLR4 mediated an inflammatory response to aggregated Aβ(1–42). This was in contrast to exclusive TLR ligands lipopolysaccharide (LPS) (TLR4) and tripalmitoyl cysteinyl seryl tetralysine (Pam3CSK4) (TLR2). Atomic force microscopy imaging showed a fibrillar morphology for the proinflammatory Aβ(1–42) species. Pre-treatment of the cells with 10 μg/mL of a TLR2-specific antibody blocked ∼50% of the cell response to fibrillar Aβ(1–42), completely blocked the Pam3CSK4 response, and had no effect on the LPS-induced response. A TLR4-specific antibody (10 μg/mL) blocked ∼35% of the cell response to fibrillar Aβ(1–42), completely blocked the LPS response, and had no effect on the Pam3CSK4 response. Polymyxin B abolished the LPS response with no effect on Aβ(1–42) ruling out bacterial contamination of the Aβ samples. Combination antibody pre-treatments indicated that neutralization of TLR2, TLR4, and CD14 together was much more effective at blocking the Aβ(1–42) response than the antibodies used alone. These data demonstrate that fibrillar Aβ(1–42) can trigger the innate immune response and that both TLR2 and TLR4 mediate Aβ-induced tumor necrosis factor alpha production in a human monocytic cell line.  相似文献   

20.
GABAA receptors are pentameric ligand-gated ion channels that are major mediators of fast inhibitory neurotransmission. Clinically relevant GABAA receptor subtypes are assembled from α5(1-3, 5), β1-3 and the γ2 subunit. They exhibit a stoichiometry of two α, two β and one γ subunit, with two GABA binding sites located at the α/β and one benzodiazepine binding site located at the α/γ subunit interface. Introduction of the H105R point mutation into the α5 subunit, to render α5 subunit-containing receptors insensitive to the clinically important benzodiazepine site agonist diazepam, unexpectedly resulted in a reduced level of α5 subunit protein in α5(H105R) mice. In this study, we show that the α5(H105R) mutation did not affect cell surface expression and targeting of the receptors or their assembly into macromolecular receptor complexes but resulted in a severe reduction of α5-selective ligand binding. Immunoprecipitation studies suggest that the diminished α5-selective binding is presumably due to a repositioning of the α5(H105R) subunit in GABAA receptor complexes containing two different α subunits. These findings imply an important role of histidine 105 in determining the position of the α5 subunit within the receptor complex by determining the affinity for assembly with the γ2 subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号