首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S R Sampson  R A Jaffe 《Life sciences》1974,15(12):2157-2165
5-hydroxytryptamine (5-HT), phenyl diguanide (PDG) and veratridine, injected into the common carotid artery in doses of 5–10 μg, caused action potentials to be generated in small bundles dissected from the infranodose vagus nerve of cat. These excitatory effects persisted following transection of the supranodose vagus nerve. 5-HT and PDG also produced action potentials in fibers dissected from the supranodose vagus, before and after transection of the cervical vagus nerve; veratridine was not tested on these fibers. Not all infranodose or supranodose fibers were excited by these drugs in the doses used. Susceptibility of the fibers to 5-HT, PDG or veratridine did not appear to be related to the type of sensory modality transmitted by the fibers, as fibers subserving different modalities were excited. Pentobarbital, 1–4 mg/kg injected intravenously, depressed responses to 5-HT (responses that the reflexes produced by 5-HT, PDG and veratridine through an action on the nodose ganglion probably result from direct excitatory effects of these drugs on sensory ganglion cells.  相似文献   

2.
M Fujiwara  K Kurahashi 《Life sciences》1976,19(8):1175-1180
The superior cervical ganglion was reinnervated by vagal afferent fibers following heterologous cross anastomosis between the superior cervical preganglionic trunk and the vagal trunk at the level of the supranodose ganglion in cats. The contractions of the nictitating membrane and the postganglionic action potentials from the external carotid sinus nerve in response to electrical stimulation of the vagal artificial preganglionic trunk in these operated cats were inhibited by treatment with tetraethylammonium and atropine. The choline acetyltransferase activities were measured by the radiometric method. The activities in cross anastomosed superior cervical ganglion were lower than those of normal superior cervical ganglion, but higher than those of chronically decentralized superior cervical ganglion. The activities in cross anastomosed nodose ganglion were lower than those of normal nodose ganglion, but higher than those of chronically decentralized superior cervical ganglion. These results further support the view that the primary afferent vagus artificially synapsed in the superior cervical ganglion is cholinergic.  相似文献   

3.
The vanilloid receptor VR1 is a nonselective cation channel activated by capsaicin as well as increases in temperature and acidity, and can be viewed as molecular integrator of chemical and physical stimuli that elicit pain. The distribution of VR1 receptors in peripheral and central processes of rat primary vagal afferent neurons innervating the gastrointestinal tract was investigated by immunohistochemistry. Forty-two percent of neurons in the nodose ganglia retrogradely labeled from the stomach wall expressed low to moderate VR1 immunoreactivity (VR1-IR). VR1-IR was considerably lower in the nodose ganglia as compared to the jugular and dorsal root ganglia. In the vagus nerve, strongly VR1-IR fibers ran in separate fascicles that supplied mainly cervical and thoracic targets, leaving only weakly VR1-IR fibers in the subdiaphragmatic portion. Vagal afferent intraganglionic laminar endings (IGLEs) in the gastric and duodenal myenteric plexus did not express VR1-IR. Similarly, VR1-IR was contained in fibers running in perfect register with vagal afferents, but was not colocalized with horseradish peroxidase in the same varicosities of intramuscular arrays (IMAs) and vagal afferent fibers in the duodenal submucosa anterogradely labeled from the nodose ganglia. Only in the gastric mucosa did we find evidence for colocalization of VR1-IR in vagal afferent terminals. In contrast, many nerve fibers coursing through the myenteric and submucosal plexuses contained detectable VR1-IR, the majority of which colocalized calcitonin gene-related peptide immunoreactivity. In the dorsal medulla there was a dense plexus of VR1-IR varicose fibers in the commissural, dorsomedial and gelatinosus subnuclei of the medial NTS and the lateral aspects of the area postrema, which was substantially reduced, but not eliminated on the ipsilateral side after supranodose vagotomy. It is concluded that about half of the vagal afferents innervating the gastrointestinal tract express low levels of VR1-IR, but that presence in most of the peripheral terminal structures is below the immunohistochemical detection threshold.  相似文献   

4.
The superior cervical ganglion (SCG) was reinnervated by vagal afferent fibers by cross anastomosis between the cranial end of nodose ganglion and the caudal end of SCG in cats. Formation of functional synapses was evidenced by unilateral mydriasis and contraction of the nictitating membrane in response to inflation of the stomach with a balloon or to electrical stimulation of the afferent vagus. The acetylcholine (ACh) content in the cross-anastomosed SCG (reinnervated by vagal afferent fibers) was measured. In anastomosed SCG, the ACh content was about half of normal SCG, but significantly higher than chronically decentralized SCG. Also the ACh content in nodose ganglion (NDG) was investigated in situations in which there was anastomosis, chronic supra, infra, or supra-/infranodose vagotomy. The ACh content of anastomosed NDG was near that of supranosdose vagotomized ganglion. The ACh content of supra-/infranodose vagotomized NDG, which can be considered the NDG itself, was as much as that of normal intact NDG. It was found that the ACh content of infranodose vagotomized NDG was increased, possibly the result of vagal efferent axonal flow or transport. The ACh content of vagal trunk with or without infranodose vagotomy was also measured. The ACh content of vagal trunk with infranodose vagotomy was smaller than that of the normal trunk, but there was still a considerable quantity of ACh. There was no significant change in wet weight of the SCG and NDG before or after the operations. From these results we have concluded that the transmission of the cross-anastomosed SCG (reinnervated with vagal afferent nerve) was cholinergic; and that the vagal afferent nerve have afferent cell bodies not only in NDG but also in peripheral vagal trunks (infranodose portion). These results strongly suggest that vagal afferent fibers are in part cholinergic.  相似文献   

5.
Summary The number and caliber of myelinated and non-myelinated fibers of entire and sensory vagal nerves of cats were studied by means of light and electron microscopy. The results obtained with electron microscopy show that the non-myelinated component is particularly rich (about 40,000 elements at the cervical level), with clearly higher numbers of fibers than demonstrated thus far with light microscopy. The ratio of myelinated to non-myelinated fibers is on the average 1 4 for the total vagi and only 1 8 for the sensory vagal component. The comparison of the nerve above and below the level of the nodose ganglion shows that (1) mean fiber diameter is usually greater at the infranodose than at the supranodose level, and (2) some myelinated fibers of small diameter occurring below the nodose ganglion become non-myelinated above it. Additionally, the number of non-myelinated fibers per Schwann cell is greater at the supranodose than at the infranodose level; this speaks in favor of a reorganization of the C-fiber population from one level to the other.  相似文献   

6.
The chicken carotid body receives numerous branches from the vagus nerve, especially distal (nodose) ganglion, and the recurrent laryngeal nerve. Dense networks of peptidergic nerve fibers immunoreactive for substance P, calcitonin gene-related peptide (CGRP), galanin, vasoactive intestinal peptide (VIP) and neuropeptide Y are distributed in and around the carotid body. Substance-P- and CGRP-immunoreactive fibers projecting to the chicken carotid body mainly come from the vagal ganglia. In the present study, various types of denervation experiments were performed in order to clarify the origins of VIP-, galanin- and neuropeptide-Y-immunoreactive fibers in the chicken carotid bodies. After nodose ganglionectomy, midcervical vagotomy or excision of the recurrent laryngeal nerve, VIP-, galanin- and neuropeptide-Y-immunoreactive fibers were unchanged in the carotid body region. Furthermore, these peptidergic fibers remained unaffected even by removal of the nodose ganglion in conjunction with severance of the recurrent laryngeal nerve that induced a marked decrease in TuJ1-immunoreactive fibers in the carotid body region. VIP-, galanin- and neuropeptide-Y-immunoreactive fibers are densely distributed around the arteries supplying the carotid body in normal chickens. The peptidergic fibers around the arteries were also unaffected after the denervation experiments. However, after removal of the 14th cervical ganglion of the sympathetic trunk, which lies close to the vertebral artery on the root of the brachial plexus and issues prominent branches to the artery, VIP-, galanin- and neuropeptide-Y-immunoreactive fibers almost disappeared in the carotid body region. The ganglion contained many VIP-, galanin- and neuropeptide-Y-immunoreactive neurons. Thus it is clear that VIP-, galanin- and neuropeptide-Y-immunoreactive fibers in the chicken carotid body region are mainly derived from the 14th cervical sympathetic ganglion via the vertebral artery.  相似文献   

7.
Neurocalcin-like immunoreactivity in the rat esophageal nervous system   总被引:1,自引:0,他引:1  
Neurocalcin is a newly identified neuronal calcium-binding protein. We tried here to investigate the immunohistochemical distribution of neurocalcin in the rat esophagus. Nerve cell bodies having neurocalcin immunoreactivity were found throughout the myenteric plexus. In the myenteric ganglia, two types of nerve terminals showed neurocalcin immunoreactivity. One was varicose terminals containing numerous small clear vesicles and forming a synapse with nerve cells. The other terminals were characterized by laminar or pleomorphic structure and many mitochondria. These laminar terminals were supposed to be sensory receptors of the esophageal wall. In the motor endplates of the striated muscles, nerve terminals containing many small clear vesicles and mitochondria also had neurocalcin immunoreactivity. After left vagus nerve cutting under the nodose ganglia, the number of immunopositive thick nerve fibers, laminar endings and nerve terminals on the striated muscles decreased markedly. Retrograde tracing experiments using Fast Blue showed extrinsic innervation of esophagus from ambiguus nucleus, dorsal motor nucleus of vagus, superior cervical ganglia, celiac ganglia, nodose ganglia and dorsal root ganglia. In the celiac ganglia, nodose ganglia and dorsal root ganglia, retrogradely labeled nerve cells were neurocalcin-immunoreactive. Neurons in the celiac ganglia may project varicose terminals, while nodose and dorsal root neurons project laminar terminals. Although cell bodies of motoneurons in the ambiguus nucleus lacked neurocalcin immunoreactivity, these neurons may contain neurocalcin only in the nerve terminals in the motor endplates. Neurocalcin immunoreactivity is distributed in many extrinsic and intrinsic neurons in the esophagus and this protein may play important roles in regulating calcium signaling in the neurons.  相似文献   

8.

Background

Electrical stimulation of the vagus nerve suppresses intestinal inflammation and normalizes gut motility in a mouse model of postoperative ileus. The exact anatomical interaction between the vagus nerve and the intestinal immune system remains however a matter of debate. In the present study, we provide additional evidence on the direct and indirect vagal innervation of the spleen and analyzed the anatomical evidence for neuroimmune modulation of macrophages by vagal preganglionic and enteric postganglionic nerve fibers within the intestine.

Methods

Dextran conjugates were used to label vagal preganglionic (motor) fibers projecting to the small intestine and spleen. Moreover, identification of the neurochemical phenotype of the vagal efferent fibers and enteric neurons was performed by immunofluorescent labeling. F4/80 antibody was used to label resident macrophages.

Results

Our anterograde tracing experiments did not reveal dextran-labeled vagal fibers or terminals in the mesenteric ganglion or spleen. Vagal efferent fibers were confined within the myenteric plexus region of the small intestine and mainly endings around nNOS, VIP and ChAT positive enteric neurons. nNOS, VIP and ChAT positive fibers were found in close proximity of intestinal resident macrophages carrying α7 nicotinic receptors. Of note, VIP receptors were found on resident macrophages located in close proximity of VIP positive nerve fibers.

Conclusion

In the present study, we show that the vagus nerve does not directly interact with resident macrophages in the gut or spleen. Instead, the vagus nerve preferentially interacts with nNOS, VIP and ChAT enteric neurons located within the gut muscularis with nerve endings in close proximity of the resident macrophages.  相似文献   

9.
In this study, we evaluated the vagal afferent response to secretin at physiological concentrations and localized the site of secretin's action on vagal afferent pathways in the rat. The discharge of sensory neurons supplying the gastrointestinal tract was recorded from nodose ganglia. Of 91 neurons activated by electrical vagal stimulation, 19 neurons showed an increase in firing rate in response to intestinal perfusion of 5-HT (from 1.5 +/- 0.2 to 25 +/- 4 impulses/20 s) but no response to intestinal distension. A close intra-arterial injection of secretin (2.5 and 5.0 pmol) elicited responses in 15 of these 19 neurons (from 1.5 +/- 0.2 impulses/20 s at basal to 21 +/- 4 and 43 +/- 5 impulses/20 s, respectively). Subdiaphragmatic vagotomy and perivagal application of capsaicin, but not supranodose vagotomy, completely abolished the secretin-elicited vagal nodose neuronal response. In a separate study, 9 tension receptor afferents among 91 neurons responded positively to intestinal distension but failed to respond to luminal 5-HT. These nine neurons also showed no response to administration of secretin. As expected, immunohistochemical studies showed that secretin administration significantly increased the number of Fos-positive neurons in vagal nodose ganglia. In conclusion, we demonstrated for the first time that vagal sensory neurons are activated by secretin at physiological concentrations. A subpopulation of secretin-sensitive vagal afferent fibers is located in the intestinal mucosa, many of which are responsive to luminal 5-HT.  相似文献   

10.
Summary Projections and peptide neurotransmitter/neuromodulator content of autonomic and visceral afferent neurons of the guinea pig were studied after application of the subunit B of cholera toxin (CTB) with or without horseradish peroxidase (HRP) as retrograde and anterograde tracers and subsequent immunohistochemical processing for double staining using antibodies raised to CTB, HRP and various neuropeptides. The results demonstrate that substance P (SP)- and calcitonin gene-related peptide (CGRP)-containing dorsal root ganglion cells project to the pylorus as well as to the celiac superior mesenteric and stellate ganglia as demonstrated with both retrograde and anterograde transport methodology. Binding studies revealed that a small number of the CTB-binding dorsal root ganglion cells contains immunoreactivity to SP and CGRP. The majority of the CTB-binding cells is SP- and CGRP-negative and terminate in the deeper parts of the dorsal horn. After injection of CTB conjugated to HRP (B-HRP) into the nodose ganglion, both motor and sensory elements were labeled in the medulla oblongata. Some of the CTB labeled vagal sensory nerve fibers in the nucleus tractus solitarii (NTS) were also found to contain immunoreactivity to SP or CGRP. The tracer was also transported through the peripheral branch of the nodose ganglion cells and labeled terminals in the esophagus.  相似文献   

11.
We studied the influence of unilateral vagal stimulation on intrapulmonary neuroepithelial bodies (NEB) in rabbits. The left vagus nerve was cut and electrically stimulated for 10 min. Animals were killed and the lungs studied with fluorescence and electron microscopy. Intensity of formaldehyde-induced fluorescence, which reflects the serotonin content in NEB, was higher on the stimulated side than on the nonstimulated side (118 +/- 7 vs. 100%, n = 8, P less than 0.001). The latter difference was found to correlate with the stimulus amplitude (r = 0.9, P less than 0.05). Ultrastructurally a decrease in the number of exocytotic dense-cored vesicle (DCV) profiles at the level of the NEB basal epithelial cell membrane was found on the stimulated side (0.32 +/- 0.10 vs. 0.45 +/- 0.16 DCV/micron of basal epithelial cell membrane, n = 8, P less than 0.05). Section of the left vagus nerve without electrical stimulation affected neither the fluorescence intensity nor the number of exocytotic DCV profiles. In animals with supranodosal or infranodosal chronic vagotomy the observed effects of unilateral vagal stimulation were no longer present. We conclude that 1) vagal stimulation increases the serotonin content of NEB; 2) it decreases the number of exocytotic DCV profiles; 3) this effect depends on the amplitude of the stimulus; 4) it is obtained through efferent vagal fibers; 5) these results are the opposite of the effects seen after exposing normal NEB to acute hypoxia; and 6) these physiological experiments corroborate a vagal innervation of NEB, which may play an important role in modulating the sensitivity and reaction of NEB to various stimuli.  相似文献   

12.
Vasodepressor reactions were induced in 27 rats by a combination of inferior vena caval occlusion and an infusion of isoproterenol. A vasodepressor reaction was defined as paradoxical heart rate slowing during inferior vena caval occlusion. The R-R intervals were measured at 5-s intervals before, during, and after 60 s of inferior vena caval occlusion. The purpose of this study was to examine the role of the right and left vagus nerve and the right and left stellate ganglia in this reflex. Under control conditions inferior vena caval occlusion accelerated the rate (R-R, -15.9 +/- 0.9 ms). During an infusion of isoproterenol (0.5-1.0 micrograms.min-1), inferior vena caval occlusion produced paradoxical rate slowing, i.e., a vasodepressor reaction (R-R, +75.0 +/- 2.2 ms). The vasodepressor reaction was examined during inferior vena caval occlusion and isoproterenol under the following additional states: atropine methyl bromide or right vagotomy did not alter the reaction; left vagotomy eliminated the reaction; and right or left stellectomy greatly reduced the vasodepressor reaction. We conclude the following: (1) left vagal afferents mediate the vasodepressor reaction; (2) cardiac sympathetic fibers participate in the vasodepressor reaction by withdrawing efferent tone through the right stellate ganglion, and by generating the afferent signal, which triggers the vasodepressor reaction through the left stellate ganglion.  相似文献   

13.
Previous anatomical studies demonstrated vagal innervation to the ovary and distal colon and suggested the vagus nerve has uterine inputs. Recent behavioral and physiological evidence indicated that the vagus nerves conduct sensory information from the uterus to the brainstem. The present study was undertaken to identify vagal sensory connections to the uterus. Retrograde tracers, Fluorogold and pseudorabies virus were injected into the uterus and cervix. DiI, an anterograde tracer, was injected into the nodose ganglia. Neurectomies involving the pelvic, hypogastric, ovarian and abdominal vagus nerves were performed, and then uterine whole-mounts examined for sensory nerves containing calcitonin gene-related peptide. Nodose ganglia and caudal brainstem sections were examined for the presence of estrogen receptor-containing neurons in ”vagal locales." Labeling of uterine-related neurons in the nodose ganglia (Fluorogold and pseudorabies virus) and in the brainstem nuclei (pseudorabies virus) was obtained. DiI-labeled nerve fibers occurred near uterine horn and uterine cervical blood vessels, in the myometrium, and in paracervical ganglia. Rats with vagal, pelvic, hypogastric and ovarian neurectomies exhibited a marked decrease in calcitonin gene-related peptide-immunoreactive nerves in the uterus relative to rats with pelvic, hypogastric, and ovarian neurectomies with intact vagus nerves. Neurons in the nodose ganglia and nucleus tractus solitarius were immunoreactive for estrogen receptors. These results demonstrated: (1) the vagus nerves serve as connections between the uterus and CNS, (2) the nodose ganglia contain uterine-related vagal afferent neuron cell bodies, and (3) neurons in vagal locales contain estrogen receptors.  相似文献   

14.
The cricothyroid muscle in dogs received branches from two independent nerves, namely the external ramus of the cranial laryngeal nerve and the pharyngeal branch of the vagus. Classical spindles are infrequent in the muscle. Atypical forms of sensory endings were identified. Two end-plates were frequently met with on a single extrafusal fibre. Sectioning of the external ramus of the cranial laryngeal nerve was followed by degeneration of spindles. Intact axons detected up to 6 months after operation are probably derived from the pharyngeal branch of the vagus. Chromatolytic changes occurred in the ipsilateral dorsal vagal nucleus and the capsulated ganglion at the entry of the nerve into the muscle. Chromatolysis occurred in the intramuscular ganglion cell rows and in neurons of the ipsilateral nodose ganglion. Morphological alterations were more pronounced in the ipsilateral medial column of the nucleus ambiguus. No changes were observed in the somata of the mesencephalic nucleus.  相似文献   

15.
Anterograde and retrograde transport of horseradish peroxidase was used to examine the afferent and efferent projections of the glossopharyngeal and vagal nerves in the lamprey, Lampetra japonica. Except for the ganglion cells and motoneurons, the distribution patterns of HRP-positive elements differed little between the two nerves. Afferent fibers mainly terminated in the ipsilateral cerebellar area, medial octavolateralis nucleus, and between the ventral octavolateralis nucleus and descending tract and nucleus of the trigeminal nerve (dV). In the cerebellar area, most of the labeled fibers were located in the molecular zone, but some penetrated into the granular zone. In the rostral part of the medial octavolateralis nucleus, labeled fibers coursed from the middle to the lateral area, and in the caudal part, they were localized in the dorsal area of the nucleus. In the area between the dV and ventral octavolateralis nucleus, labeled fibers coursed near the dorsal margin of the rostral part of the dV, and in the caudal part, they shifted dorsally. Ganglion cells and motoneurons of each nerve were also labeled.  相似文献   

16.
To further elucidate the functional anatomy of canine cardiac innervation as well as to assess the feasibility of producing regional left ventricular sympathetic denervation, the chronotropic and (or) regional left ventricular inotropic responses produced by stellate or middle cervical ganglion stimulation were investigated in 22 dogs before and after sectioning of individual major cardiopulmonary or cardiac nerves. Sectioning the right or left subclavian ansae abolished all cardiac responses produced by ipsilateral stellate ganglion stimulation. Sectioning a major sympathetic cardiopulmonary nerve, other than the right interganglionic nerve, usually reduced, but seldom abolished, regional inotropic responses elicited by ipsilateral middle cervical ganglion stimulation. Sectioning the dorsal mediastinal cardiac nerves consistently abolished the left ventricular inotropic responses elicited by right middle cervical ganglion stimulation but minimally affected those elicited by left middle cervical ganglion stimulation. In contrast, cutting the left lateral cardiac nerve decreased the inotropic responses in lateral and posterior left ventricular segments elicited by left middle cervical ganglion stimulation but had little effect on the inotropic responses produced by right middle cervical ganglion stimulation. In addition, the ventral mediastinal cardiac nerve was found to be a significant sympathetic efferent pathway from the left-sided ganglia to the left ventricle. These results indicate that the stellate ganglia project axons to the heart via the subclavian ansae and thus effective sympathetic decentralization can be produced by cutting the subclavian ansae; the right-sided cardiac sympathetic efferent innervation of the left ventricle converges intrapericardially in the dorsal mediastinal cardiac nerves; and the left-sided cardiac sympathetic efferent innervation of the left ventricle diverges to innervate the left ventricle by a number of nerves including the dorsal mediastinal, ventral mediastinal, and left lateral cardiac nerves. Thus consistent denervation of a region of the left ventricle can not be accomplished by sectioning an individual cardiopulmonary or cardiac nerve because of the functional and anatomical variability of the neural components in each nerve, as well as the fact that overlapping regions of the left ventricle are innervated by these different nerves.  相似文献   

17.
This study combined single and transneuronal labeling to define the origin of midline-crossing vagal fibers projecting to the rat's lungs. Injections of the beta-subunit of cholera toxin (CT-beta) into the lungs labeled similar numbers of neuronal somata in the nucleus ambiguus and dorsal motor nucleus of the vagus on both sides of the medulla, even though vagal stimulation increased lung resistance 50% less in the contralateral than in the ipsilateral lung. Unilateral cervical vagotomy prevented CT-beta labeling of ipsilateral neuronal somata and sensory fibers, indicating that lung-bound vagal fibers undergo decussation only inside the thorax. Injections of CT-beta and FluoroGold into opposite main stem bronchi double labeled 30% and 11% of all neuronal somata immunoreactive for CT-beta and FluoroGold, respectively, showing that one single vagal motoneuron can innervate airways on both sides. Injections of pseudorabies virus into the right lung revealed a bilateral network of infected neurons, even after unilateral vagotomy. The latter did not prevent infection of the ipsilateral vagal nuclei. These findings demonstrate that vagal motoneurons that project to the lungs receive contralateral inputs from the airway premotor network and vagal bronchomotor centers.  相似文献   

18.
R C Speth  T T Dinh  S Ritter 《Peptides》1987,8(4):677-685
Angiotensin II (Ang II) receptor binding sites in the dorsomedial medulla of intact and unilaterally nodose ganglionectomized rats were identified and characterized using 125I-sarcosine,isoleucine Ang II. This radioligand bound saturably and with high affinity to rat brain homogenates and to sections of rat brainstem. Specific (1 microM angiotensin II displaceable) binding of 125I-sarcosine,isoleucine Ang II was displaced by angiotensin analogues with a potency order similar to that described for angiotensin II receptors. Unilateral nodose ganglionectomy caused a reduction in Ang II receptor binding in the medial solitary tract nucleus, dorsal motor nucleus of the vagus, and area postrema ipsilateral to the lesioned ganglion. This observation suggests that Ang II receptors in the dorsomedial medulla may be located on axon terminals of vagal afferents and cell bodies of vagal efferents.  相似文献   

19.
A combination of neuroanatomic techniques was used to examine the origin and neuropeptide content of nerve fibers in the airway epithelium of adult cats. By the use of immunocytochemical methods, the peptides substance P (SP) and calcitonin gene-related peptide (CGRP) were colocalized in airway epithelial nerve fibers. Two days after wheat germ agglutinin (WGA) was injected into the nodose ganglion, fibers containing WGA immunoreactivity (IR) were detected in the airway epithelium. SP-like immunoreactivity (LI) and CGRP-LI were demonstrated separately in the WGA-IR fibers, establishing their origin from nerve cell bodies of nodose ganglion. Vagal transection inferior to the nodose ganglion reduced the number of SP- and CGRP-IR fibers by greater than 90% in ipsilateral airways. In contralateral airways, SP-IR fibers were substantially reduced, whereas the effect on CGRP-IR fibers was not statistically significant. Vagotomy superior to the nodose ganglion did not alter the density of peptide-IR fibers. The results prove that SP- and CGRP-IR nerve fibers of cat airway epithelium originate from nerve cell bodies in the nodose ganglion and that SP- and CGRP-like peptides may be stored together in some nerve fibers of the airway epithelium.  相似文献   

20.
Using multiple-site optical recording with the voltage-sensitive dye, NK2761, we found that vagus nerve stimulation in the embryonic chick brainstem elicits postsynaptic responses in an undefined region on the contralateral side. The characteristics of the contralateral optical signals suggested that they correspond to the monosynaptic response that is related to the vagal afferent fibers. The location of the contralateral response was different from the vagal motor nucleus (the dorsal motor nucleus of the vagus nerve) and sensory nucleus (the nucleus of the tractus solitarius), and other brainstem nuclei that receive primary vagal projection. These results show that the vagus nerve innervates and makes functional synaptic connections in a previously unreported region of the brainstem, and suggest that sensory information processing mediated by the vagus nerve is more complex than expected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号