首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Given the critical roles of inflammation and programmed cell death in fighting infection, it is not surprising that many bacterial pathogens have evolved strategies to inactivate these defences. The causative agent of infant diarrhoea, enteropathogenic Escherichia coli (EPEC), is an extracellular, intestinal pathogen that blocks both inflammation and programmed cell death. EPEC attaches to enterocytes, remains in the gut lumen and utilizes a type III secretion system (T3SS) to inject multiple virulence effector proteins directly into the infected cell, many of which subvert host antimicrobial processes through the disruption of signalling pathways. Recently, T3SS effector proteins from EPEC have been identified that inhibit death receptor‐induced apoptosis. Here we review the mechanisms used by EPEC T3SS effectors to manipulate apoptosis and promote host cell survival and discuss the role of these activities during infection.  相似文献   

2.
3.
The mechanisms by which enteropathogenic Escherichia coli (EPEC) causes intestinal epithelial cell apoptosis remain unclear. We tested the hypothesis that apoptosis-inducing factor (AIF) is involved in apoptosis induced by EPEC. Infection of intestinal epithelial cells in vitro with EPEC led to the mitochondrial and cytosolic accumulation of AIF. This effect was partially dependent on caspase activity. Knockdown of AIF with siRNA blocked cellular apoptosis in response to EPEC infection, as assessed by poly(ADP-ribose) polymerase cleavage and oligonucleosome formation. Taken together, these data suggest that caspase-dependent mobilization of AIF contributes to EPEC-induced epithelial cell apoptosis.  相似文献   

4.
5.
In vitro organ culture (IVOC) represents a gold standard model to study enteropathogenic E. coli (EPEC) infection of human intestinal mucosa. However, the optimal examination of the bacterial–host cell interaction requires a directional epithelial exposure, without serosal or cut surface stimulation. A polarized IVOC system (pIVOC) was developed in order to overcome such limitations: apical EPEC infection produced negligible bacterial leakage via biopsy edges, resulted in enhanced colonization compared with standard IVOC, and showed evidence of bacterial detachment, as in natural rabbit EPEC infections. Examination of mucosal innate immune responses in pIVOC showed both interleukin (IL)-8 mRNA and protein levels were significantly increased after apical EPEC infection. Increased IL-8 levels mainly depended on flagellin expression as fliC -negative EPEC did not elicit a significant IL-8 response despite increased mucosal colonization compared with wild-type EPEC. In addition, apical application of purified flagella significantly increased IL-8 protein levels over non-infected controls. Immunofluorescence staining of EPEC-infected small intestinal biopsies revealed apical and basolateral distribution of Toll-like receptor (TLR) 5 on epithelium, suggesting that EPEC can trigger mucosal IL-8 responses by apical flagellin/TLR5 interaction ex vivo and does not require access to the basolateral membrane as postulated in cell culture models.  相似文献   

6.
Enteropathogenic Escherichia coli (EPEC) is an enteric human pathogen responsible for much worldwide morbidity and mortality. EPEC uses a type III secretion system to inject bacterial proteins into the cytosol of intestinal epithelial cells to cause diarrheal disease. We are interested in determining the host proteins to which EPEC translocator and effector proteins bind during infection. To facilitate protein enrichment, we created fusions between GST and EPEC virulence proteins, and expressed these fusions individually in Saccharomyces cerevisiae. The biology of S. cerevisiae is well understood and often employed as a model eukaryote to study the function of bacterial virulence factors. We isolated the yeast proteins that interact with individual EPEC proteins by affinity purifying against the GST tag. These complexes were subjected to ICAT combined with ESI-MS/MS. Database searching of sequenced peptides provided a list of proteins that bound specifically to each EPEC virulence protein. The dataset suggests several potential mammalian targets of these proteins that may guide future experimentation.  相似文献   

7.
Proteomic analysis of the cell envelope fraction of Escherichia coli   总被引:4,自引:0,他引:4  
We applied proteomics technologies to analyze a membrane preparation of Escherichia coli, wild type strain and of transformants expressing human cytochrome P450s. The proteins were analyzed by two-dimensional electrophoresis and identified by matrix-assisted laser desorption ionization mass spectrometry. The membrane proteins were solubilized with both mild detergents such as CHAPS and strong detergents, such as sodium and lithium dodecyl sulfate, sodium cholate and sodium deoxycholate. In the E. colimembrane fraction, 394 different gene products were identified. Approximately 28% of them were predicted to be integral membrane proteins, of which 100 proteins have been predicted to carry one transmembrane region, ten proteins to carry two, and two proteins to include three transmembrane domains. The remaining are probably membrane-associated and cytosolic proteins. Cytochrome P450s did not enter the immobilized pH gradient strips but were efficiently analyzed in a two-dimensional, two-detergent system. Use of strong solubilizing agents resulted in the detection of about 20 membrane proteins, which were not detected following extraction with mild detergents and chaotropes. The present database is one of the largest for membrane proteins.  相似文献   

8.
9.
Diffusely adhering Escherichia coli (DAEC) strains have been implicated in epidemiological studies as a cause of diarrhoea in children. However, the molecular interactions of these pathogens with target cells have remained largely obscure. We found that some DAEC strains contain homologues of the locus of enterocyte effacement (LEE) pathogenicity island and secrete EspA, EspB and EspD proteins necessary for the formation of the attaching and effacing (A/E) lesions. To characterize the function of the EspD protein further, we cloned and sequenced the espD genes of two DA-EPEC strains and compared their deduced amino-acid sequences with known EspD sequences. A pattern of two conserved transmembrane regions and one conserved coiled-coil region is predicted in EspD and also in the type III system secreted proteins YopB, PopB, IpaB and SipB of Yersinia, Pseudomonas, Shigella and Salmonella respectively. The EspD protein is inserted into a trypsin-sensitive location in the HeLa cell membrane at sites of bacterial contact, but is not translocated into the cytoplasm. Secretion of EspD increases upon contact with host cells. We propose that the membrane-located EspD protein is part of the translocation apparatus for Esp proteins into the target host cell performing functions similar to YopB in Yersinia.  相似文献   

10.
Urinary tract infections (UTIs) are among the most common of bacterial infections in humans. Although a number of Gram-negative bacteria can cause UTIs, most cases are due to infection by uropathogenic E. coli (UPEC). Genomic studies have shown that UPEC encode a number of specialized activities that allow the bacteria to initiate and maintain infections in the environment of the urinary tract. Proteomic analyses have complemented the genomic data and have documented differential patterns of protein synthesis for bacteria growing ex vivo in human urine or recovered directly from the urinary tracts of infected mice. These studies provide valuable insights into the molecular basis of UPEC pathogenesis and have aided the identification of putative vaccine targets. Despite the substantial progress that has been achieved, many future challenges remain in the application of proteomics to provide a comprehensive view of bacterial pathogenesis in both acute and chronic UTIs.  相似文献   

11.
Enteropathogenic Escherichia coli (EPEC) virulence requires a type III secretion system (TTSS) to deliver effector molecules in host cells. Although the TTSS is crucial to EPEC pathogenesis, its function in EPEC-induced inflammation is not known. The aim of this study was to investigate the role of the TTSS in EPEC-induced inflammation. HT-29 intestinal epithelial cells were infected with wild-type (WT) EPEC or select mutant strains or exposed to corresponding filter-sterilized supernatants (SN), and interleukin-8 (IL-8) secretion was determined by ELISA. EPEC SN stimulated significantly greater IL-8 production than EPEC organisms. Flagellin, as well as a TTSS-independent >50-kDa nonflagellin protein, was found to significantly contribute to this response. Dose-response studies showed that increasing concentrations of WT SN proportionally increased IL-8, whereas increasing multiplicity of infection of EPEC inversely correlated with IL-8 secretion, suggesting that EPEC dampens this host response. Infection with DeltaescN (nonfunctional TTSS) markedly increased IL-8 compared with WT, indicating that a functional TTSS is required for this anti-inflammatory property; complementation of escN restored the attenuated response. Mutation of espB also enhanced the IL-8 response, and complementation returned IL-8 to near WT levels, suggesting involvement of this effector. The anti-inflammatory effect extends to both bacterial and host-derived proinflammatory stimuli, since prior infection with EPEC suppressed the IL-8 response to tumor necrosis factor-alpha, IL-1beta, and enterohemorrhagic E. coli flagellin. These findings indicate that EPEC-induced inflammation is a balance between pro- and anti-inflammatory proteins; extracellular factors, including flagellin and an unidentified TTSS-independent, >50-kDa protein, trigger inflammation while intracellular TTSS-dependent factors, including EspB, attenuate this response.  相似文献   

12.
Enteropathogenic Escherichia coli (EPEC) causes diarrhoea in young children. EPEC induces the formation of actin pedestal in infected epithelial cells. A type III protein secretion system and several proteins that are secreted by this system, including EspB, are involved in inducing the formation of the actin pedestals. We have demonstrated that contact of EPEC with HeLa cells is associated with the induction of production and secretion of EspB. Shortly after infection, EPEC initiates translocation of EspB, and EspB fused to the CyaA reporter protein (EspB–CyaA), into the host cell. The translocated EspB was distributed between the membrane and the cytoplasm of the host cell. Translocation was strongly promoted by attachment of EPEC to the host cell, and both attachment factors of EPEC, intimin and the bundle-forming pili, were needed for full translocation efficiency. Translocation and secretion of EspB and EspB–CyaA were abolished in mutants deficient in components of the type III protein secretion system, including sepA and sepB mutants. EspB–CyaA was secreted but not translocated by an espB mutant. These results indicate that EspB is both translocated and required for protein translocation by EPEC.  相似文献   

13.
Given recent evidence suggesting that the heat-labile enterotoxin (LT) provides a colonization advantage for enterotoxigenic Escherichia coli (ETEC) in vivo, we hypothesized that LT preconditions the host intestinal epithelium for ETEC adherence. To test this hypothesis, we used an in vitro model of ETEC adherence to examine the role of LT in promoting bacterium-host interactions. We present data demonstrating that elaboration of LT promotes a significant increase in E. coli adherence. This phenotype is primarily dependent on the inherent ADP-ribosylation activity of this toxin, with a secondary role observed for the receptor-binding LT-B subunit. Rp-3′,5′-cyclic AMP (cAMP), an inhibitor of protein kinase A, was sufficient to abrogate LT's ability to promote subsequent bacterial adherence. Increased adherence was not due to changes in the surface expression of the host receptor for the K88ac adhesin. Evidence is also presented for a role for bacterial sensing of host-derived cAMP in promoting adherence to host cells.  相似文献   

14.
Adhesion of enteropathogenic Escherichia coli to host cells   总被引:9,自引:1,他引:8  
Enteropathogenic Escherichia coli (EPEC) adhere to the intestinal mucosa and to tissue culture cells in a distinctive fashion, destroying microvilli, altering the cytoskeleton and attaching intimately to the host cell membrane in a manner termed the attaching and effacing effect. Typical EPEC strains also form three-dimensional microcolonies in a pattern termed localized adherence. Attaching and effacing, and in particular intimate attachment requires an outer membrane adhesin called intimin, which binds to the translocated intimin receptor, Tir. Tir is produced by the bacteria and delivered to the host cell via a type III secretion system. In addition to this well-established adhesin-receptor pair, numerous other adhesin interactions between EPEC and host cells have been described including those between intimin and cellular receptors and those involving a bundle-forming pilus and flagella and unknown receptors. Much additional work is needed before a full understanding of EPEC adhesion to host cells comes to light.  相似文献   

15.
Outer membrane proteins (OMPs) of Gram-negative bacteria are key molecules that interface the cell with the environment. Traditional biochemical and genetic approaches have yielded a wealth of knowledge relating to the function of OMPs. Nonetheless, with the completion of the Escherichia coli genome sequencing project there is the opportunity to further expand our understanding of the organization, expression and function of the OMPs in this Gram-negative bacterium. In this report we describe a proteomic approach which provides a platform for parallel analysis of OMPs. We propose a rapid method for isolation of bacterial OMPs using carbonate incubation, purification and protein array by two-dimensional electrophoresis, followed by protein identification using mass spectrometry. Applying this method to examine E. coli K-12 cells grown in minimal media we identified 21 out of 26 (80%) of the predicted integral OMPs that are annotated in SWISS-PROT release 37 and predicted to separate within the range of pH 4-7 and molecular mass 10-80 kDa. Five outer membrane lipoproteins were also identified and only minor contamination by nonmembrane proteins was observed. Importantly, this research readily demonstrates that integral OMPs, commonly missing from 2D gel maps, are amenable to separation by two-dimensional electrophoresis. Two of the identified OMPs (YbiL, YeaF) were previously known only from their ORFs, and their identification confirms the cognate genes are transcribed and translated. Furthermore, we show that like the E. coli iron receptors FhuE and FhuA, the expression of YbiL is markedly increased by iron limitation, suggesting a putative role for this protein in iron transport. In an additional demonstration we show the value of parallel protein analysis to document changes in E. coli OMP expression as influenced by culture temperature.  相似文献   

16.
17.
Kwon S  Jung Y  Lim D 《BMB reports》2008,41(2):108-111
Some proteins of E. coli are stable at temperatures significantly higher than 49 degrees C, the maximum temperature at which the organism can grow. The heat stability of such proteins would be a property which is inherent to their structures, or it might be acquired by evolution for their specialized functions. In this study, we describe the identification of 17 heat-stable proteins from E. coli. Approximately one-third of these proteins were recognized as having functions in the protection of other proteins against denaturation. These included chaperonin (GroEL and GroES), molecular chaperones (DnaK and FkpA) and peptidyl prolyl isomerases (trigger factor and FkpA). Another common feature was that five of these proteins (GroEL, GroES, Ahpc, RibH and ferritin) have been shown to form a macromolecular structure. These results indicated that the heat stability of certain proteins may have evolved for their specialized functions, allowing them to cope with harsh environments, including high temperatures.  相似文献   

18.
19.
Abstract The silkworm, Bombyx mori, is an economically important insect with a 5 000‐year history of domestication. During evolution, the silkworm has developed highly effective defenses against invasion and parasitization by microorganisms. In this study, two microorganisms Escherichia coli and Bacillus bombyseptieus were orally infected to silkworm larvae. After infection with E. coli and B. bombyseptieus for 24 h, we investigated the polypeptide changes in the hemolymph, midgut and integument using two‐dimensional gel electrophoresis and matrix‐assisted laser desorption ionization time of flight mass spectrometry. Forty‐seven differentially expressed proteins were identified in these tissues. They belonged to a variety of functional classes, including immune proteins, metabolic proteins and structural proteins. Compared with controls, E. coli‐infected silkworms showed 21 up‐regulated proteins, 25 down‐regulated proteins and lost one protein. After infection with B. bombyseptieus, silkworms showed 15 up‐regulated proteins, 27 down‐regulated proteins, lost three proteins and retained two proteins unchanged. We speculate that all these proteins may play a role in the silkworm immune response, although it is unclear why and how the two kinds of bacteria can so markedly alter expression of these proteins. These results offer valuable insights for measuring the proteomic responses of the silkworm innate immune mechanism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号