首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The integrase encoded by human immunodeficiency virus type 1 (HIV-1) is required for integration of viral DNA into the host cell chromosome. In vitro, integrase mediates a concerted cleavage-ligation reaction (strand transfer) that results in covalent attachment of viral DNA to target DNA. With a substrate that mimics the strand transfer product, integrase carries out disintegration, the reverse of the strand transfer reaction, resolving this integration intermediate into its viral and target DNA parts. We used a set of disintegration substrates to study the catalytic mechanism of HIV-1 integrase and the interaction between the protein and the viral and target DNA sequence. One substrate termed dumbbell consists of a single oligonucleotide that can fold to form a structure that mimics the integration intermediate. Kinetic analysis using the dumbbell substrate showed that integrase turned over, establishing that HIV-1 integrase is an enzyme. Analysis of the disintegration activity on the dumbbell substrate and its derivatives showed that both the viral and target DNA parts of the molecule were required for integrase recognition. Integrase recognized target DNA asymmetrically: the target DNA upstream of the viral DNA joining site played a much more important role than the downstream target DNA in protein-DNA interaction. The site of transesterification was determined by both the DNA sequence of the viral DNA end and the structure of the branched substrate. Using a series of disintegration substrates with various base modifications, we found that integrase had relaxed structural specificity for the hydroxyl group used in transesterification and could tolerate distortion of the double-helical structure of these DNA substrates.  相似文献   

2.
We demonstrate that the site-specific integrase encoded by phage TP901-1 of Lactococcus lactis subsp. cremoris has potential as a tool for engineering mammalian genomes. We constructed vectors that express this integrase in Escherichia coli and in mammalian cells and developed a simple plasmid assay to measure the frequency of intramolecular integration mediated by the integrase. We used the assay to document that the integrase functions efficiently in E. coli and determined that for complete reaction in E. coli, the minimal sizes of attB and attP are 31 and 50 bp, respectively. We carried out partial purification of TP901-1 integrase protein and demonstrated its functional activity in vitro in the absence of added cofactors, characterizing the time course and temperature optimum of the reaction. Finally, we showed that when expressed in human cells, the TP901-1 integrase carries out efficient intramolecular integration on a transfected plasmid substrate in the human cell environment. The TP901-1 phage integrase thus represents a new reagent for manipulating DNA in living mammalian cells.  相似文献   

3.
Integration of the human immunodeficiency virus type 1 (HIV-1) cDNA into the genome of a human cell is an essential step in the viral replication cycle. Understanding of the integration process has been facilitated by the development of in vitro assays using specific oligonucleotides and recombinant integrase. However, understanding of the biology of retroviral integration will require in vitro and in vivo model systems using long DNA substrates that mimic the HIV cDNA. We have now studied the activity of recombinant HIV-1 integrase on a linear 4.7 kb double-stranded DNA, containing flanking regions of approximately 200 bp that represent the intact ends of the HIV-1 long terminal repeat (LTR) sequences (mini-HIV). The strand transfer products of the integration reaction can be directly visualized after separation in agarose gels by ethidium bromide staining. The most prominent reaction product resulted from integration of one LTR end into another LTR end (U5 into U5 and U5 into U3). Sequence analysis of the reaction products showed them to be products of legitimate integration preceded by correct processing of the viral LTR ends. Hotspots for integration were detected. Electron microscopy revealed the presence of a range of reaction products resulting from single or multiple integration events. The binding of HIV-1 integrase to mini-HIV DNA was visualized. Oligomers of integrase seem to induce DNA looping whereby the enzyme often appears to be bound to the DNA substrate that adopts the structure of a three-site synapsis that is reminiscent of the Mu phage transposase complex.  相似文献   

4.
The gene encoding an integrase of Mason-Pfizer monkey virus (M-PMV) is located at the 3'-end of the pol open reading frame. The M-PMV integrase has not been previously isolated and characterized. We have now cloned, expressed, isolated, and characterized M-PMV integrase and compared its activities and primary structure with those of HIV-1 and other retroviral integrases. M-PMV integrase prefers untranslated 3'-region-derived long-terminal repeat sequences in both the 3'-processing and the strand transfer activity assays. While the 3'-processing reaction catalyzed by M-PMV integrase was significantly increased in the presence of Mn(2+) and Co(2+) and was readily detectable in the presence of Mg(2+) and Ni(2+) cations, the strand transfer activity was strictly dependent only on Mn(2+). M-PMV integrase displays more relaxed substrate specificity than HIV-1 integrase, catalyzing the cleavage and the strand transfer of M-PMV and HIV-1 long-terminal repeat-derived substrates with similar efficiency. The structure-based sequence alignment of M-PMV, HIV-1, SIV, and ASV integrases predicted critical amino acids and motifs of M-PMV integrase for metal binding, interaction with nucleic acids, dimerization, protein structure maintenance and function, as well as for binding of human immunodeficiency virus type 1 and Rous avian sarcoma virus integrase inhibitors 5-CI-TEP, DHPTPB and Y-3.  相似文献   

5.
Although there have been a few reports that the HIV-1 genome can be selectively integrated into the genomic DNA of cultured host cell, the biochemistry of integration selectivity has not been fully understood. We modified the in vitro integration reaction protocol and developed a reaction system with higher efficiency. We used a substrate repeat, 5'-(GTCCCTTCCCAGT)(n)(ACTGGGAAGGGAC)(n)-3', and a modified sequence DNA ligated into a circular plasmid. CAGT and ACTG (shown in italics in the above sequence) in the repeat units originated from the HIV-1 proviral genome ends. Following the incubation of the HIV-1 genome end cDNA and recombinant integrase for the formation of the pre-integration (PI) complex, substrate DNA was reacted with this complex. It was confirmed that the integration selectively occurred in the middle segment of the repeat sequence. In addition, integration frequency and selectivity were positively correlated with repeat number n. On the other hand, both frequency and selectivity decreased markedly when using sequences with deletion of CAGT in the middle position of the original target sequence. Moreover, on incubation with the deleted DNAs and original sequence, the integration efficiency and selectivity for the original target sequence were significantly reduced, which indicated interference effects by the deleted sequence DNAs. Efficiency and selectivity were also found to vary discontinuously with changes in manganese dichloride concentration in the reaction buffer, probably due to its influence on the secondary structure of substrate DNA. Finally, integrase was found to form oligomers on the binding site and substrate DNA formed a loop-like structure. In conclusion, there is a considerable selectivity in HIV-integration into the specified sequence; however, similar DNA sequences can interfere with the integration process, and it is therefore difficult for in vivo integration to occur selectively in the actual host genome DNA.  相似文献   

6.
The retroviral integrase catalyzes two successive chemical reactions essential for integration of the retroviral genome into a host chromosome: 3' end processing, in which a dinucleotide is cleaved from each 3' end of the viral DNA; and the integration reaction itself, in which the resulting recessed 3' ends of the viral DNA are joined to the host DNA. We have examined the stereospecificity of human immunodeficiency virus type 1 integrase for phosphorothioate substrates in these reactions and in a third reaction, disintegration, which is macroscopically the reverse of integration. Integrase preferentially catalyzed end processing and integration of a substrate with the (R(p))-phosphorothioate stereoisomer at the reaction center and disintegration of a substrate with an (S(p))-phosphorothiate at the reaction center. These results suggest a model for the architecture of the active site of integrase, and its interactions with key features of the viral and target DNA.  相似文献   

7.
Integration of the HIV-1 cDNA into the human genome is catalyzed by the viral integrase (IN) protein. Several studies have shown the importance of cellular cofactors that interact with integrase and affect viral integration and infectivity. In this study, we produced a stable complex between HIV-1 integrase, viral U5 DNA, the cellular cofactor LEDGF/p75 and the integrase binding domain of INI1 (INI1-IBD), a subunit of the SWI/SNF chromatin remodeling factor. The stoichiometry of the IN/LEDGF/INI1-IBD/DNA complex components was found to be 4/2/2/2 by mass spectrometry and Fluorescence Correlation Spectroscopy. Functional assays showed that INI1-IBD inhibits the 3′ processing reaction but does not interfere with specific viral DNA binding. Integration assays demonstrate that INI1-IBD decreases the amount of integration events but inhibits by-product formation such as donor/donor or linear full site integration molecules. Cryo-electron microscopy locates INI1-IBD within the cellular DNA binding site of the IN/LEDGF complex, constraining the highly flexible integrase in a stable conformation. Taken together, our results suggest that INI1 could stabilize the PIC in the host cell, by maintaining integrase in a stable constrained conformation which prevents non-specific interactions and auto integration on the route to its integration site within nucleosomes, while LEDGF organizes and stabilizes an active integrase tetramer suitable for specific vDNA integration. Moreover, our results provide the basis for a novel type of integrase inhibitor (conformational inhibitor) representing a potential new strategy for use in human therapy.  相似文献   

8.
IntI1 integrase is a member of the prokaryotic DNA integrase superfamily. It is responsible for mobility of antibiotic resistance cassettes found in integrons. IntI1 protein, as well as IntI1-COOH, a truncated form containing its carboxy-terminal domain, has been purified. Electrophoretic mobility shift assays were carried out to study the ability of IntI1 to bind the integrase primary target sites attI and aadA1 attC. When using double-stranded DNA as a substrate, we observed IntI1 binding to attI but not to attC. IntI1-COOH did not bind either attI or attC, indicating that the N-terminal domain of IntI1 was required for binding to double-stranded attI. On the other hand, when we used single-stranded (ss) DNA substrates, IntI1 bound strongly and specifically to ss attC DNA. Binding was strand specific, since only the bottom DNA strand was bound. Protein IntI1-COOH bound ss attC as well as did the complete integrase, indicating that the ability of the protein to bind ss aadA1 attC was contained in the region between amino acids 109 and 337 of IntI1. Binding to ss attI DNA by the integrase, but not by IntI1-COOH, was also observed and was specific for the attI bottom strand, indicating similar capabilities of IntI1 for binding attI DNA in either double-stranded or ss conformation. Footprinting analysis showed that IntI1 protected at least 40 bases of aadA1 attC against DNase I attack. The protected sequence contained two of the four previously proposed IntI1 DNA binding sites, including the crossover site. Preferential ssDNA binding can be a significant activity of IntI1 integrase, which suggests the utilization of extruded cruciforms in the reaction mechanisms leading to cassette excision and integration.  相似文献   

9.
10.
The specific DNA-binding protein integration host factor (IHF) of Escherichia coli stimulates the site-specific recombination reaction between the attP site of bacteriophage HP1 and the attB site of its host, Haemophilus influenzae, in vitro and also appears to regulate the expression of HP1 integrase. IHF interacts specifically with DNA segments containing the att sites and the integrase regulatory region, as judged by IHF-dependent retardation of relevant DNA fragments during gel electrophoresis. The locations of the protein-binding sites were identified by DNase I protection experiments. Three sites in the HP1 attP region bound IHF, two binding sites were present in the vicinity of the attB region, and one region containing three partially overlapping sites was present in the HP1 integrase regulatory segment. The binding sites defined in these experiments all contained sequences which matched the consensus IHF binding sequences first identified in the lambda attP region. An activity which stimulated the HP1 site-specific integration reaction was found in extracts of H. influenzae, suggesting that an IHF-like protein is present in this organism.  相似文献   

11.
HIV-1 integrase is responsible for one of the key stages in virus replication, namely, integration of viral cDNA into the host cell genome. Integration inhibition leads to a complete block of the virus replication. We studied the integration inhibition by dimeric bisbenzimidazoles DBBI(7) with heptamethylene and DBBI(8) with tri(ethylene glycol) spacers and found that IC50 for DBBI(7) was approximately 0.03 μM and for DBBI(8) it was approximately 10 μM. Cross-linking assays demonstrated that both compounds interfered with a proper positioning of the DNA substrate in the active centre of integrase. To clarify the inhibition mechanism, dissociation constants were determined for the complexes between DBBI and integrase DNA substrate. Calculated K d values for the complexes formed by DBBI(7) and DBBI(8) were 270 and 140 nM, respectively. Thus, the integration inhibition is not directly connected with DBBI binding to DNA. The dependence of initial enzymatic reaction rate on DNA substrate concentration in the presence of different concentrations of inhibitors was found, and inhibition constants were determined. These data suggest that different inhibition activity of DBBI(7) and DBBI (8) is determined by different mechanisms underlying their action, namely, competitive inhibition of integrase by DBBI(7) and a more complex mechanism assumed for DBBI(8).  相似文献   

12.
Characterization of recombinant murine leukemia virus integrase.   总被引:6,自引:6,他引:0       下载免费PDF全文
Retroviral integration involves two DNA substrates that play different roles. The viral DNA substrate is recognized by virtue of specific nucleotide sequences near the end of a double-stranded DNA molecule. The target DNA substrate is recognized at internal sites with little sequence preference; nucleosomal DNA appears to be preferred for this role. Despite this apparent asymmetry in the sequence, structure, and roles of the DNA substrates in the integration reaction, the existence of distinct binding sites for viral and target DNA substrates has been controversial. In this report, we describe the expression in Escherichia coli and purification of Moloney murine leukemia virus integrase as a fusion protein with glutathione S-transferase, characterization of its activity by using several model DNA substrates, and the initial kinetic characterization of its interactions with a model viral DNA substrate. We provide evidence for functionally and kinetically distinct binding sites for viral and target DNA substrates and describe a cross-linking assay for DNA binding at a site whose specificity is consistent with the target DNA binding site.  相似文献   

13.
14.
15.
To achieve productive infection, the reverse transcribed cDNA of human immunodeficiency virus type 1 (HIV-1) is inserted in the host cell genome. The main protein responsible for this reaction is the viral integrase. However, studies indicate that the virus is assisted by cellular proteins, or co-factors, to achieve integration into the infected cell. The barrier-to-autointegration factor (BAF) might prevent autointegration. Its ability to bridge DNA and the finding that the nuclear lamina-associated polypeptide-2alpha interacts with BAF suggest a role in nuclear structure organization. Integrase interactor 1 was found to directly interact with HIV-1 integrase and to activate its DNA-joining activity, and the high mobility group chromosomal protein A1 might approximate both long terminal repeat (LTR) ends and facilitate integrase binding by unwinding the LTR termini. Furthermore, the lens-epithelium-derived growth factor (LEDGF; also known as p75) seems to tether HIV-1 integrase to the chromosomes. Although a direct role in integration has only been demonstrated for LEDGF/p75, to date, each validated cellular co-factor for HIV-1 integration could constitute a promising new target for antiviral therapy.  相似文献   

16.
17.
Kamadurai HB  Foster MP 《Biochemistry》2007,46(49):13939-13947
Bacteriophage lambda integrase (lambda-Int), a phage-encoded DNA recombinase, cleaves its substrate DNA to facilitate the formation and later resolution of a Holliday junction intermediate during recombination. The core-binding and catalytic domains of lambda-Int constitute a bipartite enzyme that mediates site-specific DNA cleavage through their interactions with opposite sides of the recognition sequence. Despite minimal direct contact between the domains, the core-binding domain has been shown to facilitate site-specific DNA cleavage when provided in trans, indicating that it plays a role beyond enhancing binding affinity. Biophysical characterization of the core-binding domain and its interactions with DNA reveal that the domain is poorly structured in its free form and folds upon binding to DNA. Folding of the protein is accompanied by induced-fit structural changes in the DNA ligand. These data support a model by which the core-binding domain plays a catalytic role by reshaping the substrate DNA for effective cleavage by the catalytic domain.  相似文献   

18.
The only tyrosine recombinase so far studied in archaea, the SSV1 integrase, harbors several changes in the canonical residues forming the catalytic pocket of this family of recombinases. This raised the possibility of a different mechanism for archaeal tyrosine recombinase. The residues of Int(SSV) tentatively involved in catalysis were modified by site-directed mutagenesis, and the properties of the corresponding mutants were studied. The results show that all of the targeted residues are important for activity, suggesting that the archaeal integrase uses a mechanism similar to that of bacterial or eukaryotic tyrosine recombinases. In addition, we show that Int(SSV) exhibits a type IB topoisomerase activity because it is able to relax both positive and negative supercoils. Interestingly, in vitro complementation experiments between the inactive integrase mutant Y314F and all other inactive mutants restore in all cases enzymatic activity. This suggests that, as for the yeast Flp recombinase, the active site is assembled by the interaction of the tyrosine from one monomer with the other residues from another monomer. The shared active site paradigm of the eukaryotic Flp protein may therefore be extended to the archaeal tyrosine recombinase Int(SSV).  相似文献   

19.
Reverse gyrase is a type I-5' topoisomerase, which catalyzes a positive DNA supercoiling reaction in vitro. To ascertain how this reaction takes places, we looked at the DNA sequences recognized by reverse gyrase. We used linear DNA fragments of its preferred substrate, the viral SSV1 DNA, which has been shown to be positively supercoiled in vivo. The Sulfolobus shibatae B12 strain, an SSV1 virus host, was chosen for production of reverse gyrase. This naturally occurring system (SSV1 DNA-S. shibatae reverse gyrase) allowed us to determine which SSV1 DNA sequences are bound and cleaved by the enzyme with particularly high selectivity. We show that the presence of ATP decreases the number of cleaved complexes obtained whereas the non-hydrolyzable ATP analog adenosine 5'-[beta, gamma-imido]triphosphate increases it without changing the sequence specificity.  相似文献   

20.
The integrase encoded by the temperate phage HP1 promotes the site-specific recombination between DNA sites on its genome (the attP site) and on the genome of the host Haemophilus influenzae (the attB site). The protein has been overproduced in Escherichia coli , and purified to apparent homogeneity. HP1 integrase promotes recombination of supercoiled attP -containing molecules with linear segments with attB sites. Reaction was enhanced by spermidine and by the bacterial DNA-bending protein integration host factor. The rate of recombination showed complex and related dependence upon the integrase concentration and the concentration of the supercoiled attP substrate. These relationships probably originate from the need to assemble a multi-protein complex on the attP DNA. The reaction promoted by HP1 integrase produced a four-stranded initial reaction product in which one pair of DNA strands had undergone transfer while the other pair remained intact. This four-stranded component was produced more rapidly than any product, and its steady-state level was proportional to the overall rate of reaction. This component had the kinetic and structural properties of an intermediate in the recombination reaction. The existence of this intermediate was used to determine that the two strand exchanges required for recombination of the duplex substrates proceed in a defined order.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号