首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R Leventis  T Diacovo  J R Silvius 《Biochemistry》1987,26(12):3267-3276
We have prepared a series of novel double-chain amphiphiles with protonatable head groups, including acylated derivatives of various 2-substituted palmitic acids, amino acid conjugates of these species, and 1,2-dioleoyl-3-succinylglycerol. These species can be combined with phosphatidylethanolamine (PE) to prepare reverse-phase evaporation vesicles that are stable and trap hydrophilic solutes at pH 7. At weakly acidic pH values (as high as 6.5, depending on the titratable amphiphilic component), these pH-sensitive vesicles exhibit fusion, with a limited extent of contents mixing and extensive mixing of lipids, accompanied by leakage of aqueous contents. Protons and divalent cations show strong synergistic effects in promoting mixing of both lipids and aqueous contents between pH-sensitive vesicles prepared with any of a variety of double-chain titratable amphiphiles. Calorimetric results indicate that the relative stabilities of different types of pH-sensitive liposomes at low pH cannot be simply correlated with the propensity of the lipids to form a hexagonal II phase under these conditions. Fluorescence measurements demonstrate that single-chain fatty acids, but not double-chain titratable amphiphiles such as N-acyl-2-aminopalmitic acids, are rapidly removed from pH-sensitive vesicles in the presence of other lipid vesicles, serum albumin, or serum. Additionally, pH-sensitive liposomes containing double-chain titratable amphiphiles retain their aqueous contents better than do those containing single-chain amphiphiles in the presence of lipid membranes or albumin. Surprisingly, however, pH-sensitive vesicles of either type show retention of contents in the presence of serum that is comparable to that observed with vesicles composed purely of phospholipids. A model is proposed to explain these latter findings.  相似文献   

2.
By combining dioleoylphosphatidylethanolamine (DOPE) with oleic acid (OA), palmitoylhomocysteine (PHC) or dipalmitoylsuccinylglycerol (DPSG) we have prepared pH-sensitive liposomes with different acid sensitivities. DOPE/OA liposomes are the most acid sensitive, while DOPE/DPSG liposomes are the least acid sensitive. Incubation of DOPE/OA liposomes with mouse L929 cells reduces the pH-sensitivity of these liposomes by altering the lipid composition. Using diphtheria toxin fragment A as a marker for cytoplasmic delivery, we find that the delivery kinetics of pH-sensitive immunoliposomes closely correlates with the modified acid sensitivities of the liposomes. Immunoliposomes encounter pH 6-6.2 with a t1/2 of 5-15 min after internalization. By contrast, acidification of the endosomes to pH 5.0 takes longer (t1/2 approximately 25 min). We also used a whole cell null point technique (Yamishiro and Maxfield (1987) J. Cell Biol. 105, 2713-2721) to directly determine the average pH encountered by the endocytosed immunoliposomes. We find that acidification determined by the null point method proceeds less rapidly than that estimated from DTA delivery data. This is likely due to the fact that the measured DTA delivery is done by those liposomes which first arrive at the endosomes with sufficient acidity. Our data suggests that DOPE/PHC immunoliposomes deliver at the early endosome while DOPE/DPSG immunoliposomes deliver at the late endosomes. The DOPE/OA immunoliposomes, with the altered composition and acid sensitivity, deliver with a kinetics intermediate between the other two immunoliposomes. Thus, pH-sensitive liposomes represent useful probes for studying the kinetics of endosome acidification.  相似文献   

3.
Abstract

Avoidance of lysosomal degradation of drugs entrapped in liposomes has been one of the major efforts in liposome research. The achievement of high drug deliver}' efficiency using pH-sensitive liposomes over the pH-insensitive liposomes has greatly influenced our strategies in liposome drug delivery. The success of pH-sensitive liposomes in delivering compounds such as fluorescence dye, anti-cancer reagents, toxins and DNA to target cells with high efficiency in vitro shows a great potential to apply the same strategy to in vivo systems. Using human plasma as a simplified model for blood, we have systematically examined the interaction of pH-sensitive liposomes composed of dioleoylphosphatidyl-ethanolamine (DOPE) and oleic acid (OA) with plasma components. Our results show that the bilayer structure of liposomes in plasma depends on their sizes. Small liposomes (d<200nm) were stabilized by plasma components while the larger ones (d>600nm) were rapidly lysed upon the exposure to plasma. Such differences in their stability in plasma may derive from their differences in lipid packing which determines the surface pressure of the membrane. Using purified serum proteins, we found that albumin such as bovine serum albumin (BSA) lyse liposomes by extracting OA from the bilayer. However, BSA induced lysis could be blocked by lipoproteins including HDL, LDL and VLDL, but not by immunoglobulins. Further studies with purified components of HDL demonstrated that apoAl, not the lipids of the HDL, contains the stabilization activity. The extraction of OA from liposomes and the insertion of plasma components into the bilayer modified the bilayer properties such that plasma stabilized liposomes were no longer pH sensitive. Using dipalmitoylsuccinylglycerol (DPSG), a double-chain pH senser for DOPE liposomes, we could preserve 50% pH sensitivity after plasma treatment. The potential application of such liposomes and other essential properties of pH-sensitive liposomes for drug delivery in vivo are also discussed.  相似文献   

4.
Phosphatidylethanolamine-based pH-sensitive liposomes of various compositions have been described as efficient systems for cytoplasmic delivery of molecules into cells. Incorporation of an amphiphile of appropriate structure is needed for the stabilization and performance of these vesicles. Among the wide variety of interesting activities displayed by Pseudomonas aeruginosa dirhamnolipids (diRL), is their capacity to stabilize bilayer structures in phosphatidylethanolamine systems. In this work, X-ray scattering, dynamic light scattering, fluorescence spectroscopy and fluorescence microscopy have been used to study the structure and pH-dependent behaviour of phosphatidylethanolamine/diRL liposomes. We show that diRL, in combination with dioleoylphosphatidylethanolamine (DOPE), forms stable multilamellar and unilamellar liposomes. Acidification of DOPE/diRL vesicles leads to membrane destabilization, fusion, and release of entrapped aqueous vesicle contents. Finally, DOPE/diRL pH-sensitive liposomes act as efficient vehicles for the cytoplasmic delivery of fluorescent probes into cultured cells. It is concluded that DOPE/diRL form stable pH-sensitive liposomes, and that these liposomes are incorporated into cultured cells through the endocytic pathway, delivering its contents into the cytoplasm, which means a potential use of these liposomes for the delivery of foreign substances into living cells. Our results establish a new application of diRL as a bilayer stabilizer in phospholipid vesicles, and the use of diRL-containing pH-sensitive liposomes as delivery vehicles.  相似文献   

5.
We have examined the ability of biotinylated phosphatidylethanolamine and similar lipids to stabilize the bilayer phase of polymorphic dioleoylphosphatidylethanolamine (DOPE). Sonicated lipid mixtures were characterized in terms of their aggregation state, size and ability to encapsulate and retain the fluorescent dye, calcein. Titration of DOPE with N-biotinyl-PE indicated that stable liposomes could be produced by sonication of DOPE based dispersions containing N-biotinyl-PE at concentrations greater than 8 mol%. These liposomes were relatively small, could efficiently encapsulate calcein, and showed minimal leakage upon prolonged storage at 4 degrees C. Maleimido-4-(p-phenylbutyrate)-PE (MPB-PE) was equally effective at stabilizing the bilayer phase of DOPE whereas N-dinitrophenyl-PE and N-(dinitrophenyl-caproyl)-PE were relatively poor stabilizers, requiring at least 15 mol% for stabilization at pH 7.4. Differential scanning calorimetry of dielaidoylphosphatidylethanolamine (DEPE)/N-biotinyl-PE mixtures indicated that stabilizer concentrations as low as 2 mol% could abolish the L alpha/HII phase transition of DEPE.  相似文献   

6.
A Tari  L Huang 《Biochemistry》1989,28(19):7708-7712
Differential scanning calorimetry was used to examine the structure-function relationship of the phospholipids on the L alpha-phase stabilization of phosphatidylethanolamine (PE). Phosphatidylglycerol (PG) was chosen as a model stabilizer. Dielaidoylphosphatidylethanolamine (DEPE) was mixed with various PGs to study the effects of (i) chain length, (ii) chain unsaturation, and (iii) chain number of the stabilizer on the L alpha-phase stabilization. At low concentrations of stabilizer, both bilayer stabilization and destabilization were observed. Phase separations also were seen, as revealed by split peaks of the L beta----L alpha transition; these were particularly prone to occur in the destabilization cases. When saturated PGs were compared, shorter chains (C12:0 and C14:0) promoted bilayer stabilization whereas longer chains (C16:0 and C18:0) promoted bilayer destabilization. Unsaturated PG with larger hydrophobic volumes (C18:2) favored bilayer destabilization, relative to unsaturated PG with smaller hydrophobic volumes (C18:1). Lyso-PG (C14:0) showed higher bilayer stabilization activity than their double-chain counterparts. Thus, at low concentrations of stabilizer, the acyl chain composition plays a vital role in bilayer-phase stabilization. However, at higher concentrations (greater than or equal to 8 mol %), all PGs become active bilayer stabilizers. This is probably because the increased head-group hydration becomes the dominant factor in the stabilization. The effect of acyl chain composition of the stabilizer was also studied by using small unilamellar vesicles composed of dioleoylphosphatidylethanolamine (DOPE). Fluorescence quenching of calcein entrapped in liposomes was used to monitor the stability of the liposomes. Similar acyl chain effects on liposomal stabilization were obtained.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Dioleoylphosphatidylethanolamine (DOPE)-containing liposomes that demonstrated pH-dependent release of their contents were stabilized in the bilayer form through the addition of a cleavable lipid derivative of polyethylene glycol (PEG) in which the PEG was attached to a lipid anchor via a disulfide linkage (mPEG-S-S-DSPE). Liposomes stabilized with either a non-cleavable PEG (mPEG-DSPE) or mPEG-S-S-DSPE retained an encapsulated dye at pH 5.5, but treatment at pH 5.5 of liposomes stabilized with mPEG-S-S-DSPE with either dithiothreitol or cell-free extracts caused contents release due to cleavage of the PEG chains and concomitant destabilization of the DOPE liposomes. While formulations loaded with doxorubicin (DXR) were stable in culture media, DXR was rapidly released in human plasma. pH-Sensitive liposomes, targeted to the CD19 epitope on B-lymphoma cells, showed enhanced DXR delivery into the nuclei of the target cells and increased cytotoxicity compared to non-pH-sensitive liposomes. Pharmacokinetic studies suggested that mPEG-S-S-DSPE was rapidly cleaved in circulation. In a murine model of B-cell lymphoma, the therapeutic efficacy of an anti-CD19-targeted pH-sensitive formulation was superior to that of a stable long-circulating formulation of targeted liposomes despite the more rapid drug release and clearance of the pH-sensitive formulation. These results suggest that targeted pH-sensitive formulations of drugs may be able to increase the therapeutic efficacy of entrapped drugs.  相似文献   

8.
Lipidic amphiphiles equipped with the trans-2-aminocyclohexanol (TACH) moiety are promising pH-sensitive conformational switches (“flipids”) that can trigger a lipid bilayer perturbation in response to increased acidity. Because pH-sensitivity was shown to improve the efficiency of several gene delivery systems, we expected that such flipids could significantly enhance the gene transfection by lipoplexes. Thus a series of novel lipids with various TACH-based head groups and hydrocarbon tails were designed, prepared and incorporated into lipoplexes that contain the cationic lipid 1,2-dioleoyl-3-trimethylammonio-propane (DOTAP) and plasmid DNA encoding a luciferase gene. B16F1 and HeLa cells were transfected with such lipoplexes in both serum-free and serum-containing media. The lipoplexes consisting of TACH-lipids exhibited up to two orders of magnitude better transfection efficiency and yet similar toxicity compared to the ones with the conventional helper lipids 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) or cholesterol. Thus, the TACH-lipids can be used as novel helper lipids for efficient gene transfection with low cytotoxicity.  相似文献   

9.
Three novel polycationic gemini amphiphiles with different spacers were developed and evaluated in terms of their physiochemical properties and transfection efficiencies. Cationic liposomes formed by these amphiphiles and the helper lipid DOPE were able to successfully condense DNA, as shown by gel mobility shift and ethidium bromide intercalation assays. Transfection activity of the liposomes was superior to Lipofectamine® 2000 and was dependent on spacer structure, hydrophobicity, and nucleic acid type (pDNA or siRNA). We demonstrated that the cationic liposomes 2X6/DOPE and 2X7/DOPE are potential non-toxic vehicles for gene delivery.  相似文献   

10.
The structural preferences of the pH-sensitive phospholipid, N-succinyldioleoylphosphatidylethanolamine (N-succinyl-DOPE), have been examined alone and in mixtures with DOPE by 31P-NMR, fluorescence energy transfer, and freeze-fracture techniques. The basic polymorphic behavior of pure N-succinyl-DOPE and DOPE/N-succinyl-DOPE lipid systems and the influence of calcium and pH were investigated. It is shown that, similar to other negatively charged acidic phospholipids, N-succinyl-DOPE adopts the bilayer organization upon hydration. This structure is maintained at both pH 7.4 and 4.0 in the presence or absence of calcium. In the mixed lipid system, N-succinyl-DOPE can stabilize the non-bilayer lipid, DOPE, into a bilayer structure at both pH 7.4 and 4.0 at more than 10 mol% N-succinyl-DOPE, although a narrow 31P-NMR lineshape is observed at acidic pH values. This corresponds to the presence of smaller vesicles as shown by quasi-elastic light scattering measurements. Addition of equimolar calcium (with respect to N-succinyl-DOPE) to the DOPE/N-succinyl-DOPE systems induces the hexagonal HII phase at both pH values. In unilamellar systems with similar lipid composition the addition of Ca2+ results in membrane fusion as indicated by fluorescence energy-transfer experiments. These findings are discussed with regard to the molecular mechanism of the bilayer to hexagonal HII phase transition and membrane fusion and the utility of N-succinyl-DOPE containing pH-sensitive vesicles as drug-delivery vehicles.  相似文献   

11.
H Ellens  J Bentz  F C Szoka 《Biochemistry》1986,25(2):285-294
We have examined whether there is a relationship between the lamellar-hexagonal phase transition temperature, TH, and the initial kinetics of H+- and Ca2+-induced destabilization of phosphatidylethanolamine (PE) liposomes. The liposomes were composed of dioleoylphosphatidylethanolamine, egg phosphatidylethanolamine (EPE), or phosphatidylethanolamine prepared from egg phosphatidylcholine by transesterification (TPE). These lipids have well-spaced lamellar-hexagonal phase transition temperatures (approximately 12, approximately 45, and approximately 57 degrees C) in a temperature range that allows us to measure the initial kinetics of bilayer destabilization, both below and above TH. The liposomes were prepared at pH 9.5. The TH of EPE and TPE was measured by using differential scanning calorimetry, and it was found that the TH was essentially the same at low pH or at high pH in the presence of 20 mM Ca2+. At temperatures well below TH, either at pH 4.5 or at pH 9.5 in the presence of Ca2+, the liposomes aggregate, leak, and undergo lipid mixing and mixing of contents. We show that liposome/liposome contact is involved in the destabilization of the PE liposomes. The temperature dependence of leakage, lipid mixing, and mixing of contents shows that there is a massive enhancement in the rate of leakage when the temperature approaches the TH of the particular PE and that lipid mixing appears to be enhanced. However, the fusion (mixing of aqueous contents) is diminished or even abolished at temperatures above TH. At and above the TH, a new mechanism of liposome destabilization arises, evidently dependent upon the ability of the PE molecules to adapt new morphological structures at these temperatures. We propose that this destabilization demarks the first step in the pathway to the eventual formation of the HII phase. Thus, the polymorphism accessible to PE is a powerful agent for membrane destabilization, but additional factors are required for fusion.  相似文献   

12.
The aim of this study was to investigate the fusogenic properties of poly(ethylene glycol) (PEG)ylated dioleoylphosphatidylethanolamine/cholesteryl hemisuccinate (DOPE/CHEMS) liposomes. These pH-sensitive liposomes were prepared by incorporating two different PEG lipids: distearoylphosphatidylethanolamine (DSPE)-PEG???? was mixed with the liposomal lipids using the conventional method, whereas sterol-PEG???? was inserted into the outer monolayer of preformed vesicles. Both types of PEGylated liposomes were characterized and compared for their entrapment efficiency, zeta potential and size, and were tested in vitro for pH sensitivity by means of proton-induced leakage and membrane fusion activity. To mimic the routes of intracellular delivery, fusion between pH-sensitive liposomes and liposomes designed to simulate the endosomal membrane was studied. Our investigations confirmed that DOPE/CHEMS liposomes were capable of rapidly releasing calcein and of fusing upon acidification. However, after incorporation of DSPE-PEG???? or sterol-PEG???? into the membrane, pH sensitivity was significantly reduced; as the mol ratio of PEG-lipid was increased, the ability to fuse was decreased. Comparison between two different PEGylated pH-sensitive liposomes showed that only vesicles containing 0.6 mol% sterol-PEG???? in the outer monolayer were still capable of fusing with the endosome-like liposomes and showing leakage of calcein at pH 5.5.  相似文献   

13.
We investigated the molecular mechanisms by which pH-sensitive liposomes surpass the cytoplasmic and endosomal membranes to deliver their aqueous contents into the cytoplasm. Various liposome formulations were evaluated for their efficacy to mediate intracellular delivery of encapsulated material, including a novel sterically stabilized pH-sensitive formulation ((DOPE:CHEMS:DSPE-PEG(2000) (6:4:0.3)) that was previously developed in our laboratories. In an attempt to fully characterize the nature of liposome-cell interactions different approaches based on a dual-labeling fluorescence assay were used. Our results indicate that the efficacy of interaction of pH-sensitive liposomes, both plain and sterically stabilized, with cells is strongly determined by the inclusion of DOPE in their composition, independently of the type of the amphiphilic stabilizer used. In fact, DOPE-containing liposomes shown to be non-pH sensitive by biophysical assays, mediated cytoplasmic delivery of their contents as efficiently as well known pH-sensitive formulations (e.g. DOPE:CHEMS). However, among the different formulations studied, DOPE:CHEMS liposomes were those exhibiting the highest extent of cell association. Moreover, our results with cells pretreated with metabolic inhibitors or lysosomotropic agents clearly indicate that DOPE-containing liposomes are internalized essentially by endocytosis and that acidification of the endosomes is not the only mechanism involved in the destabilization of the liposomes inside the cell.  相似文献   

14.
The structure and dynamics of two different pH-sensitive liposome systems were investigated by means of cryo-transmission electron microscopy and different photophysical techniques. Both systems consisted of dioleoylphosphatidylethanolamine (DOPE) and contained either oleic acid (OA) or a novel acid-labile polyethylene glycol-conjugated lipid (DHCho-MPEG5000) as stabiliser. Proton induced leakage, lipid mixing and structural changes were studied in the absence and presence of EPC liposomes, as well as in the presence of liposomes designed to model the endosome membrane. Neither DHCho-MPEG5000- nor OA-stabilised liposomes showed any tendency for fusion with pure EPC liposomes or endosome-like liposomes composed of EPC/DOPE/SM/Cho (40/20/6/34 mol.%). Our investigations showed, however, that incorporation of lipids from the pH-sensitive liposomes into the endosome membrane may lead to increased permeability and formation of non-lamellar structures. Taken together the results suggest that the observed ability of DOPE-containing liposomes to mediate cytoplasmic delivery of hydrophilic molecules cannot be explained by a mechanism based on a direct, and non-leaky, fusion between the liposome and endosome membranes. A mechanism involving destabilisation of the endosome membrane due to incorporation of DOPE, seems more plausible.  相似文献   

15.
A novel type of liposome bilayer destabilization catalyzed by the enzyme, beta-galactosidase, is described. Unsaturated phosphatidylethanolamine (PE), an HII-phase-forming lipid, does not form stable liposomes at physiological temperature and pH. However, stable unilamellar liposomes can be prepared by mixing PE with a minimum of 5 mol% ganglioside GM1, a micellar-phase-forming lipid. Treatment of these GM1/PE liposomes with beta-galactosidase induces a rapid leakage (3-6 min) of the entrapped fluorescent dye, calcein. The studies indicate that liposome destabilization is the result of catalytic degradation of GM1, rather than a stoichiometric binding of GM1 by beta-galactosidase. Kinetic data indicate that the destabilization takes place via liposome collision. This simple, rapid method of liposome destabilization by beta-galactosidase will be useful in designing a liposome-based signal amplification mechanism for assays involving enzymes.  相似文献   

16.
Abstract

Target-sensitive liposomes are liposomes which spontaneously destablize when they come into contact with target membrane/surface. The principle lipid in the liposomes ingredient is dioleoyl phosphatidylethanolamine (DOPE) which readily forms inverted micelle at physiological conditions. Earlier design of the liposomes uses acylated antibody as both a bilayer stabilizer and a targeting ligand. Although the immunoliposomes specifically release then-contents upon binding with the target membrane, they are not stable enough for long-term storage. Recent improvement in the design uses a charged phospholipid as a bilayer stabilizer and uses acylated antibody or other ligands at a much lower concentration. The new liposomes are stable for long-term storage, yet still destablize when bound with a target membrane. The rate of destabilization is significantly enhanced at elevated temperatures. The physical and biological properties of these liposomes are reviewed in this paper.  相似文献   

17.
肝细胞靶向pH敏脂质体的制备及性质分析   总被引:3,自引:0,他引:3  
为了制备具有肝细胞特异靶向性和pH敏感性的脂质体,设计并合成了四种带有半乳糖残基的导向分子,与具有pH敏感性的DC-chol/DOPE混合制备脂质体,通过质粒转染实验、受体竞争抑制实验和红细胞溶血等实验选出最佳转染活性的十八醇-半乳糖甙(18-gal)脂质体,并证明其具有肝细胞特异受体介导的靶向性和pH敏感性,且细胞毒性较小,可以作为一种潜在的肝细胞靶向转运系统得到进一步发展.  相似文献   

18.
We describe the synthesis and characterization of a pH-sensitive poly(ethylene glycol)-diortho ester-distearoyl glycerol conjugate (POD). POD was prepared by a one-step synthesis, and its acid sensitivity characterized by TLC. The conjugate was found to be stable at neutral pH for greater than 3 h but degraded completely within 1 h at pH 5. Liposomes composed of 10% of POD and 90% of a fusogenic lipid, dioleoyl phosphatidylethanolamine (DOPE) were readily prepared and remained stable for up to 12 h in neutral buffer as shown by photon correlation spectrometry and a liposome contents leakage assay. However, when POD/DOPE liposomes were incubated in acidic pH as mild as 5.5, they aggregated and released most of their contents within 30 min. The kinetics of content release from POD/DOPE liposomes consisted of two phases, a lag phase, and a burst phase. The lag phase is inversely correlated with pH and the logarithm of the length of lag phase showed a linear relationship with the buffer pH. When the POD/DOPE liposomes were incubated in 75% of fetal bovine serum at 37 degrees C, they remained as stable as traditional PEG-grafted liposomes for 12 h but released 84% of the encapsulated ANTS in the following 4 h. Upon intravenous administration into mice, liposomes composed of 10% POD and 90% DOPE were cleared from circulation by a one-compartment kinetics with a half-life of about 200 min. POD is an example for the design of a novel category of pH sensitive lipids composed of a headgroup, an acid-labile diortho ester linker and a hydrophobic tail. The uniquely fast degradation kinetics of POD at pH 5-6 and its ability to stabilize liposomes in serum make the conjugate suitable for applications for triggered drug release systems targeted to mildly acidic bio-environments such as endosomes, solid tumors, and inflammatory tissues.  相似文献   

19.
The fusogenic properties of sulfatide-containing 1,2-dioleoyl-3-sn -phosphatidylethanolamine (DOPE) small unilamellar vesicles (SUVs) in the presence of CaCl2 were studied by mixing membrane lipids based on an assay of fluorescence resonance energy transfer (FRET). Fusion of the vesicles was also confirmed by mixing aqueous contents with the Tb/dipicolinate (DPA) assay. The half-times of lipid mixing revealed that the fusion rate decreased with increasing molar concentration of sulfatide. This inhibitory effect was more obvious at sulfatide concentrations higher than 30 mol%, where hydration at the membrane surface reached its maximum and the fusion was no longer pH-sensitive in the range of pH 6.0 - 9.0. Similar inhibitory effect was also observed in Ca2+-induced fusion of DOPE/ganglioside GM1 vesicles but at a lower concentration of the glycosphingolipid (20 mol%). In contrast, increasing the concentration of phosphatidylserine (PS) in DOPE/PS SUVs resulted in an increase in the rate of Ca2+-induced lipid mixing and the pH sensitivity of this system was not affected.These results are consistent with an increasing steric hindrance to membrane fusion at higher molar concentration and larger headgroup size of the glycosphingolipids. Interestingly, the pH sensitivity of the sulfatide-containing liposomes was retained when they were allowed to fuse with synaptosomes in the absence of Ca2+ by a mechanism involving protein mediation.  相似文献   

20.
Lipoplexes with different surface charge were prepared from a short oligonucleotide (20 mer, dsAT) inserted into liposomes of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 1,2-dioleoyl-sn-glycero-3-phospho-ethanolamine (DOPE). The starting liposomes were prepared by two different procedures, i.e. progressive dsAT addition starting from plain liposomes (titration) and direct mixing of dsAT with pure liposomes (point to point preparation). Lipoplexes were characterized from a molecular point of view by Electron Spin Resonance (ESR) of a cationic spin probe and by Nuclear Magnetic Resonance. Structural and surface features were analysed by Zeta potential (zeta) measurements and Cryo-TEM micrographs. The complete set of results allowed to demonstrate that: i) the interactions between dsAT and cationic lipids were strong and occurred at the liposome surface; ii) the overall shape and physicochemical properties of liposomes did not change when short nucleic acid fragments were added before surface charge neutralization; iii) the bilayer structure of the lipids in lipoplexes was substantially preserved at all charge ratios; iv) the physical status of lipoplexes with electrical charge far from neutrality did not depend on the preparation method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号