共查询到20条相似文献,搜索用时 0 毫秒
1.
Keisuke Tsuzuki † Bertrand Lambolez ‡ Jean Rossier‡ Seiji Ozawa † 《Journal of neurochemistry》2001,77(6):1650-1659
alpha-Amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor subunit (GluR1-4) mRNAs expressed by single neurons in rat hippocampal cultures were quantified by single-cell RT-PCR using an internal standard RNA after whole-cell patch-clamp recording. The internal standard RNA, derived from GluR2 with a single nucleotide substitution, was reverse-transcribed and PCR-amplified with the same efficiency as GluR1-4 mRNAs. The mean mRNA numbers harvested in vitro from pyramidal-like neurons on day 9 were 1150 +/- 324 molecules of GluR1, 1080 +/- 273 molecules of GluR2, 100 +/- 20 molecules of GluR3, and 50 +/- 10 molecules of GluR4 (mean +/- SEM, n = 12). In a non-pyramidal neuronal population that expresses AMPA receptors characterized by high Ca(2+) permeability, the numbers of GluR1, GluR3 and GluR4 mRNA molecules harvested per cell were 354 +/- 64, 25 +/- 17 and 168 +/- 36, respectively (n = 8). The GluR2 mRNA was not detected in this cell type. The calculated ratio of AMPAR mRNA molecules per total mRNA molecules was 1/240 in pyramidal-like neurons (1/500 for GluR2), being in the range obtained with total RNA from rat forebrain and cerebellum (1/170 and 1/380, respectively). Finally, our results indicated that the proportion of GluR1-4 mRNA located in neurites reached approximately 60% in pyramidal-like neurons. However, we found no evidence of preferential subcellular distribution of a given subunit. 相似文献
2.
O V Krasilnikov P G Merzliak R Z Sabirov B A Tashmuk-Hamedov 《General physiology and biophysics》1990,9(6):569-575
The short-time depolarization effects on the integral conductance induced by S. aureus alpha-toxin (ST) in planar lipid bilayer membranes has been studied. Ion channels formed by ST were found to have several potential-induced nonconductance (closed) states. The transitions of ion channels between the states are only through one conductance state. The transition of ST-channels from closed to open state is induced by membrane depolarization. The amplitude current after a series of voltage pulses is a function of pulse number, and is effectively independent of the time interval between the neighbouring pulses. Therefore, a membrane which contains a pool of ion channels "remembers" its previous existence. A simple model can be used to explain this phenomenon. 相似文献
3.
4.
Differential regulation of AMPA receptor subunit trafficking by palmitoylation of two distinct sites
Modification of AMPA receptor function is a major mechanism for the regulation of synaptic transmission and underlies several forms of synaptic plasticity. Post-translational palmitoylation is a reversible modification that regulates localization of many proteins. Here, we report that palmitoylation of the AMPA receptor regulates receptor trafficking. All AMPA receptor subunits are palmitoylated on two cysteine residues in their transmembrane domain (TMD) 2 and in their C-terminal region. Palmitoylation on TMD 2 is upregulated by the palmitoyl acyl transferase GODZ and leads to an accumulation of the receptor in the Golgi and a reduction of receptor surface expression. C-terminal palmitoylation decreases interaction of the AMPA receptor with the 4.1N protein and regulates AMPA- and NMDA-induced AMPA receptor internalization. Moreover, depalmitoylation of the receptor is regulated by activation of glutamate receptors. These data suggest that regulated palmitoylation of AMPA receptor subunits modulates receptor trafficking and may be important for synaptic plasticity. 相似文献
5.
On the stochastic properties of single ion channels 总被引:38,自引:0,他引:38
D Colquhoun A G Hawkes 《Proceedings of the Royal Society of London. Series B, Containing papers of a Biological character. Royal Society (Great Britain)》1981,211(1183):205-235
It is desirable to be able to predict, from a specified mechanism, the appearance of currents that flow through single ion channels (a) to enable interpretation of experiments in which single channel currents are observed, and (b) to allow physical meaning to be attached to the results observed in kinetic (noise and relaxation) experiments in which the aggregate of many single channel currents is observed. With this object, distributions (and the means) are derived for the length of the sojourn in any specified subset of states (e.g. all shut states). In general these are found to depend not only on the state in which the sojourn starts, but also on the state that immediately follows the sojourn. The methods described allow derivation of the distribution of, for example, (a) the number of openings, and total length of the burst of openings, that may occur during a single occupancy, and (b) the apparent gap between such bursts. The methods are illustrated by their application to two simple theories of agonist action. The Castillo-Katz (non-cooperative) mechanism predicts, for example, that the number of openings per occupancy, and the apparent burst length, are independent of agonist concentration whereas a simple cooperative mechanism predicts that both will increase with agonist concentration. 相似文献
6.
Stretch-activated current through single ion channels in the abdominal stretch receptor organ of the crayfish 总被引:5,自引:0,他引:5
下载免费PDF全文

C Erxleben 《The Journal of general physiology》1989,94(6):1071-1083
Single stretch-activated ion channels were studied on the soma and primary dendrites of stretch receptor neurons of the crayfish Orconectes limosus. When the membrane of the patch was deformed by applying suction to the pipette, a marked nonlinear increase in single-channel activity could be observed in two types of channels. These were indistinguishable on the basis of their single-channel conductances but differed in their voltage range of activation. One type showed strong inward rectification (RSA channel) and the second type was largely voltage independent (SA channel). A linear relationship was found between negative pressure and the natural logarithm of the channels' open probability. For an e-fold change in pressure, the average sensitivity was 8.7 +/- 0.4 (SD, n = 5) mmHg for the RSA channel and 5.6 +/- 2.2 (n = 5) mmHg for the SA channel. Both channels were found to be permeable to mono- and divalent cations. Current-voltage relationships were linear with slope conductances for the SA channel of: 71 +/- 11 (SD, n = 3) pS for K+, 50 +/- 7.4 (n = 5) pS for Na+, and 23 pS for Ca++. Similar values were found for the RSA channel. The data suggest that the SA channel is responsible for the mechanotransduction process in the stretch receptor neuron. 相似文献
7.
A single tryptophan on M2 of glutamate receptor channels confers high permeability to divalent cations. 总被引:1,自引:1,他引:1
下载免费PDF全文

Ionotropic glutamate receptors (iGluRs) of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate/kainate subtype display lower permeability to Ca2+ than the N-methyl-D-aspartate (NMDA) subtype. The well-documented N/Q/R site on the M2 transmembrane segment (M2) is an important determinant of the distinct Ca2+ permeability exhibited by members of the non-NMDA receptor subfamily. This site, however, does not completely account for the different permeation properties displayed by non-NMDA and NMDA receptors, suggesting the involvement of other molecular determinants. We have identified additional molecular elements on M2 of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate/kainate receptor GluR1 that specify its permeation properties. Higher permeability to divalent over monovalent cations is conferred on GluR1 by a tryptophan at position 577, whereas blockade by external divalent cations is imparted by an asparagine at position 582. Hence, the permeation properties of ionotropic glutamate receptors appear to be primarily specified by two distinct determinants on M2, the well-known N/Q/R site and the newly identified L/W site. These findings substantiate the notion that M2 is a structural component of the pore lining. 相似文献
8.
9.
Barbon A Caracciolo L Orlandi C Musazzi L Mallei A La Via L Bonini D Mora C Tardito D Gennarelli M Racagni G Popoli M Barlati S 《Neurochemistry international》2011,59(6):896-905
Growing evidence suggests a pivotal role for glutamatergic neurotransmission in the pathophysiology of major depressive disorder and in the action of antidepressants. The main aim of this study was to elucidate the temporal profile of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors expression and their functional regulation in prefrontal/frontal cortex (P/FC) and hippocampus (HC) of rats chronically treated with two different antidepressants: fluoxetine (FLX) and reboxetine (RBX). Rat groups were treated for 1, 2 or 3 weeks with the two drugs and, in additional groups, the treatments were followed by 1 week of drug washout (3 + 1). We found that both drugs induced strong increases in AMPAR subunit protein expression that were time dependent and subunit specific. Especially in P/FC, FLX had the main effect on GluA2 and GluA4 subunits, reaching a 5-fold increase after the drug washout; RBX mostly affected GluA1 and GluA3, reaching a 4-fold increase at the end of the treatment. Furthermore, in HC, the two drugs induced a time specific increase in subunit protein levels, with GluA3 and GluA4 presenting the main changes, albeit with different kinetics. In addition, our data indicate that antidepressants might alter, though by small changes, the R/G editing levels for GluA2, mostly in P/FC, and in turn may induce fine-tuning of glutamate neurotransmission.Overall, we showed that antidepressant treatments induced marked changes in AMPA receptor subunits expression, with time-dependent effects that are consistent with the onset of therapeutic effect of these drugs. These data confirm the involvement of glutamate neurotransmission in the effects of these drugs and further suggest the targeting of AMPA receptors as a therapeutic approach for the treatment of depression. 相似文献
10.
Inhibitors of AMPA-type glutamate ion channels are useful as biochemical probes for structure-function studies and as drug candidates for a number of neurological disorders and diseases. Here, we describe the identification of an RNA inhibitor or aptamer by an in vitro evolution approach and a characterization of its mechanism of inhibition on the sites of interaction by equilibrium binding and on the receptor channel opening rate by a laser-pulse photolysis technique. Our results show that the aptamer is a noncompetitive inhibitor that selectively inhibits the GluA2Q(flip) AMPA receptor subunit without any effect on other AMPA receptor subunits or kainate or NMDA receptors. On the GluA2 subunit, this aptamer preferentially inhibits the flip variant. Furthermore, the aptamer preferentially inhibits the closed-channel state of GluA2Q(flip) with a K(I) = 1.5 μM or by ~15-fold over the open-channel state. The potency and selectivity of this aptamer rival those of small molecule inhibitors. Together, these properties make this aptamer a promising candidate for the development of water-soluble, highly potent, and GluA2 subunit-selective drugs. 相似文献
11.
Phosphorylation of the AMPA receptor GluR1 subunit is required for synaptic plasticity and retention of spatial memory 总被引:32,自引:0,他引:32
Lee HK Takamiya K Han JS Man H Kim CH Rumbaugh G Yu S Ding L He C Petralia RS Wenthold RJ Gallagher M Huganir RL 《Cell》2003,112(5):631-643
Plasticity of the nervous system is dependent on mechanisms that regulate the strength of synaptic transmission. Excitatory synapses in the brain undergo long-term potentiation (LTP) and long-term depression (LTD), cellular models of learning and memory. Protein phosphorylation is required for the induction of many forms of synaptic plasticity, including LTP and LTD. However, the critical kinase substrates that mediate plasticity have not been identified. We previously reported that phosphorylation of the GluR1 subunit of AMPA receptors, which mediate rapid excitatory transmission in the brain, is modulated during LTP and LTD. To test if GluR1 phosphorylation is necessary for plasticity and learning and memory, we generated mice with knockin mutations in the GluR1 phosphorylation sites. The phosphomutant mice show deficits in LTD and LTP and have memory defects in spatial learning tasks. These results demonstrate that phosphorylation of GluR1 is critical for LTD and LTP expression and the retention of memories. 相似文献
12.
Using the patch-voltage-clamp method kinetics of the fast potential-dependent K+-channels in molluscan neurones was investigated. It was found that under given experimental conditions the amplitudes of single current impulses have a wide spectrum. The amplitudes are proportional to a number of the current substates involved. Averaged fronts of the current impulses are S-shaped, and have duration greater than 1 ms. Averaged duration of the current impulses increases (from 0.25 to 30-40 ms) with the impulse amplitude (or with the number of the substates involved). There is a sharp bend of the dependence at the impulse amplitude 0.6-0.7 of maximal value. The phenomena investigated reflect, probably, cooperativity of the channel transitions between the substates. The degree of the cooperativity depends on the membrane potential value. 相似文献
13.
G D Chazenbalk S M McLachlan C R Chen B Rapoport 《European journal of biochemistry》2001,268(8):2261-2269
To gain insight into the thyrotropin hormone (TSH) receptor (TSHR) cleavage, we sought to convert the noncleaving luteinizing hormone (LH) receptor (LHR) into a cleaved, two-subunit molecule. For this purpose, we generated a series of LHR mutants and chimeric LH-TSH receptors. Cleavage of mature, ligand binding receptors on the cell surface was determined by covalent 125I-labeled hCG crosslinking to intact, stably transfected mammalian cells. We first targeted a cluster of three N-linked glycans in the LHR (N295, N303, N317) in a region corresponding to the primary TSHR cleavage site, which has only one N-linked glycan. Elimination by mutagenesis of the most strategic N-linked glycan (LHR-N317Q) generated only a trace amount of LHR cleavage. Removal of the other N-linked glycans had no additive effect. A much greater degree of cleavage ( approximately 50%) was evident in a chimeric LH-TSHR in which the juxtamembrane segment of the LHR (domain E; amino acids 317-367) was replaced with the corresponding domain of the TSHR (residues 363-418). Similarly cleaving LHR were created using a much smaller component within this region, namely LHR-NET317-319 replaced with TSHR-GQE367-369, or by substitution of the same three amino-acid residues with AAA (LHR-NET317-319AAA). In summary, our data alter current concepts regarding TSHR cleavage by suggesting limited (not absent) amino-acid specificity in a region important for TSHR cleavage (GQE367-369). The data also support the concept of a separate and distinct downstream cleavage site 2 in the TSHR. 相似文献
14.
Calcium influx through subunits GluR1/GluR3 of kainate/AMPA receptor channels is regulated by cAMP dependent protein kinase.
下载免费PDF全文

Excitatory synaptic transmission in the central nervous system (CNS) is mediated by three major classes of glutamate receptors, namely the ionotropic NMDA (N-Methyl-D-Aspartate) and KA/AMPA (kainate/alpha-amino-3-hydroxyl-5-methylisoxazole-4-propionic acid) receptors and the metabotropic receptor type. Among the ionotropic receptors, NMDA receptors are thought to mediate their physiological response mainly through the influx of extracellular calcium, while KA/AMPA receptor channels are mainly thought to carry the influx of monovalent cations. Recently, we have challenged this view by showing that cloned KA/AMPA receptor subunits GluR1 and GluR3 form ion channels which are permeable to calcium. We now directly demonstrate large increases in intracellular calcium concentrations induced by calcium fluxes through KA/AMPA receptor channels in solutions with physiological calcium concentrations. Calcium fluxes were observed through glutamate receptor channels composed of the subunits GluR1 and GluR3, which are both abundantly present in various types of central neurones. The calcium influx was fluorometrically monitored in Xenopus oocytes injected with the calcium indicator dye fura-2. Bath application of the membrane permeable analogue of adenosine cyclic monophosphate (cAMP) potentiated the current and also the flux of calcium through open KA/AMPA receptor channels. Further pharmacological experiments suggested that this effect was mediated by the activation of protein kinase A. Our results provide a molecular interpretation for the function of calcium permeable KA/AMPA receptor channels in neurones and identify two of the subunits of the KA/AMPA receptor channel which are regulated by the cAMP dependent second messenger system. 相似文献
15.
The rabbit progesterone receptor. Evidence for a single steroid-binding subunit and characterization of receptor mRNA 总被引:7,自引:0,他引:7
H Loosfelt F Logeat M T Vu Hai E Milgrom 《The Journal of biological chemistry》1984,259(22):14196-14202
Monoclonal antibodies were used to study the structure and the biosynthesis of the rabbit progesterone receptor. Proteins in nonfractionated uterine cytosol were submitted to gel electrophoresis in denaturing conditions, transferred onto nitrocellulose, and reacted with monoclonal antireceptor antibodies and 125I-protein A. A single 110,000-dalton protein was observed when precautions were taken during homogenization of the uteri and protease inhibitors used. Smaller forms of receptor (essentially of 79,000 daltons but also of 72,000 and in some experiments of 64,000 daltons) were present when these precautions were not observed and thus probably arose from artifactual proteolysis of receptor. When poly(A)+ RNA from rabbit uterus was translated in a reticulocyte lysate and the radioactive proteins precipitated by the antireceptor monoclonal antibodies, a radioactive protein of 110,000 daltons was also observed. Further evidence that this protein was the product of the translation of progesterone receptor mRNA was obtained by precipitation and immunoaffinity purification with several antireceptor monoclonal and polyclonal antibodies, inhibition of immunoprecipitation by purified receptor and its absence in a receptor-poor tissue (liver). Estrogen treatment is known to increase the concentration of progesterone receptor. RNA translation experiments showed that this effect is due to an increase in the concentration of receptor mRNA. The size of this messenger RNA was studied by sucrose gradient ultracentrifugation, followed by mRNA translation, and specific immunoprecipitation: progesterone receptor mRNA was found by this method to sediment at 20 S. 相似文献
16.
The distribution of mRNA for the rho2 subunit of the GABA(C) receptor is much broader in organotypic SC cultures than in vivo, suggesting that GABA(C) receptor expression is regulated by environmental factors. Electrophysiological recordings indicate that neurons in SC cultures have functional GABA(C) receptors, although these receptors exhibited smaller conductance than in vivo, probably due to increased rho2 subunit expression. Adding cortical input, treatment with various neuromodulators, and blocking neuronal activity with TTX failed to affect the expression of rho2 subunits. Electrophysiological recordings revealed the presence of spontaneous Ca(2+) currents in SC cultures and preventing these, by treatment with blockers of L-type Ca(2+) channels, caused rho2 mRNA expression to decline to in vivo levels. In contrast, rho1 subunit mRNA levels remained unchanged, indicating that the two subunits are independently regulated. Surprisingly, both tonic activation and blockade of GABA(C) receptors upregulated rho1/rho2 mRNA expression. Further, NGF and BDNF promoted such expression during an early postnatal time window. In vivo, expression of the rho2 mRNA in the SC, and the rho2/rho3 mRNA in the retina increased with age. Expression of the rho2 mRNA in the visual cortex, and the rho1 mRNA in the retina and SC was constant. Subunit mRNA expression was similar in dark-reared animals, indicating that visual experience has no influence. These experiments suggest that GABA(C) receptor expression in the SC is regulated during postnatal development. While visual experience seems to have no influence on GABA(C) receptor subunits, spontaneous calcium currents selectively promote rho2 expression and both rho1 and rho2 are autoregulated both by GABA(C) receptor activity and by neurotrophic factors. 相似文献
17.
18.
19.
Béatrice Duthey Sara Caudron Julie Perroy Bernhard Bettler Laurent Fagni Jean-Philippe Pin Laurent Prézeau 《The Journal of biological chemistry》2002,277(5):3236-3241
Although G-protein-coupled receptors (GPCRs) have been shown to assemble into functional homo or heteromers, the role of each protomer in G-protein activation is not known. Among the GPCRs, the gamma-aminobutyric acid (GABA) type B receptor (GABA(B)R) is the only one known so far that needs two subunits, GB1 and GB2, to function. The GB1 subunit contains the GABA binding site but is unable to activate G-proteins alone. In contrast the GB2 subunit, which does not bind GABA, has an heptahelical domain able to activate G-proteins when assembled into homodimers (Galvez, T., Duthey, B., Kniazeff, J., Blahos, J., Rovelli, G., Bettler, B., Prézeau, L., and Pin, J.-P. (2001) EMBO J. 20, 2152-2159). In the present study, we have examined the role of each subunit within the GB1-GB2 heteromer, in G-protein coupling. To that end, point mutations in the highly conserved third intracellular loop known to prevent G-protein activation of the related Ca-sensing or metabotropic glutamate receptors were introduced into GB1 and GB2. One mutation, L686P introduced in GB2 prevents the formation of a functional receptor, even though the heteromer reaches the cell surface, and even though the mutated subunit still associates with GB1 and increases GABA affinity on GB1. This was observed either in HEK293 cells where the activation of the G-protein was assessed by measurement of inositol phosphate accumulation, or in cultured neurons where the inhibition of the Ca(2+) channel current was measured. In contrast, the same mutation when introduced into GB1 does not modify the G-protein coupling properties of the heteromeric GABA(B) receptor either in HEK293 cells or in neurons. Accordingly, whereas in all GPCRs the same protein is responsible for both agonist binding and G-protein activation, these two functions are assumed by two distinct subunits in the GABA(B) heteromer: one subunit, GB1, binds the agonists whereas the other, GB2, activates the G-protein. This illustrates the importance of a single subunit for G-protein activation within a dimeric receptor. 相似文献
20.
Glutathione S-transferase Ya subunit is coded by a multigene family located on a single mouse chromosome. 总被引:1,自引:0,他引:1
下载免费PDF全文

A cloned DNA probe of Ya, the major glutathione S-transferase subunit in rat liver, was used to study the organization of Ya genes in the mouse genome. Southern blot analysis of mouse genomic DNA indicates that the Ya subunit is encoded by a multigene family. The chromosomal distribution of Ya genes was determined by analysis of DNA from a panel of mouse-Chinese hamster somatic cell hybrids. All detectable Ya genes were found to be located on chromosome 9. At least some of the Ya-specific DNA sequences are clustered since, by screening a mouse genomic library, two recombinant phages, each containing two different Ya DNA sequences in the same insert, have been isolated. The finding that Ya is encoded by a cluster of different genes raises the question of the specificity of the different Ya DNA sequences. 相似文献