首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Classical models for biological invasions were single-species models in homogeneous landscapes, but most invasions happen in the presence of interacting species and in heterogeneous environments. The combination of spatial variation and species interaction could alter the spreading process significantly. For example, the ‘environmental heterogeneity hypothesis of invasions’ posits that heterogeneity offers more opportunities for invaders and reduces the negative impact on native species. Environmental heterogeneity offers an obvious coexistence mechanism on the regional scale if two or more competing species have different spatial niches, i.e. if the local competitive advantage changes in space. We consider a more subtle mechanism of space use through individual movement behaviour when the local competitive advantage remains with the same species. Specifically, we model the densities of two species, diffusing and competing in an infinite landscape consisting of two types of patches. We include individual behaviour in terms of movement rate and patch preference. We consider the scenario that one of the species is the stronger local competitor in both patch types. We then uncover a number of mechanisms—based solely on movement behaviour—through which these two species can coexist regionally, how the inferior competitor can replace the superior competitor globally, or how a bistable situation can arise between the two. We calculate mutual invasion conditions as well as mutual spatial spread rates, and we show that spread rates may depend on movement parameters in unexpected ways.  相似文献   

3.
Tumours consist of heterogeneous populations of cells. The sub-populations can have different features, including cell motility, proliferation and metastatic potential. The interactions between clonal sub-populations are complex, from stable coexistence to dominant behaviours. The cell–cell interactions, i.e. attraction, repulsion and alignment, processes critical in cancer invasion and metastasis, can be influenced by the mutation of cancer cells. In this study, we develop a mathematical model describing cancer cell invasion and movement for two polarised cancer cell populations with different levels of mutation. We consider a system of non-local hyperbolic equations that incorporate cell–cell interactions in the speed and the turning behaviour of cancer cells, and take a formal parabolic limit to transform this model into a non-local parabolic model. We then investigate the possibility of aggregations to form, and perform numerical simulations for both hyperbolic and parabolic models, comparing the patterns obtained for these models.  相似文献   

4.
We consider the dynamics of a model toggle switch abstracted from the genetic interactions operative in a fungal stress response circuit. The switch transduces an external signal and propagates it forward by mediating the transport between compartments of two interacting gene products. The transport between compartments is assumed to be related to the degree of association between the interacting proteins, a fact for which there exists a wealth of biological evidence. The ubiquity and modularity of this cellular control mechanism warrants a detailed study of the dynamics entailed by various modelling assumptions. Specifically, we consider a general gate model in which both of the associating proteins are freely transportable between compartments. A more restrictive, but biologically supported model, is considered in which only one of the two proteins undergoes transport. Under the strong assumption that the disassociation of the interacting proteins is unidirectional we show that the qualitative dynamics of the two models are similar; that is they both converge to unique periodic orbits. From a biophysical perspective the assumption of unidirectional dissociation is unrealistic. We show that the same result holds for the more restrictive model when one weakens the assumption of unidirectional binding or disassociation. We speculate that this is not true for the more general model. This difference in dynamics may have important biological implications and certainly points to promising avenues of research.  相似文献   

5.
Sensitivity analysis of structured populations is a useful tool in population ecology. Historically, methodological development of sensitivity analysis has focused on the sensitivity of eigenvalues in linear matrix models, and on single populations. More recently there have been extensions to the sensitivity of nonlinear models, and to communities of interacting populations. Here we derive a fully general mathematical expression for the sensitivity of equilibrium abundances in communities of interacting structured populations. Our method yields the response of an arbitrary function of the stage class abundances to perturbations of any model parameters. As a demonstration, we apply this sensitivity analysis to a two-species model of ontogenetic niche shift where each species has two stage classes, juveniles and adults. In the context of this model, we demonstrate that our theory is quite robust to violating two of its technical assumptions: the assumption that the community is at a point equilibrium and the assumption of infinitesimally small parameter perturbations. Our results on the sensitivity of a community are also interpreted in a niche theoretical context: we determine how the niche of a structured population is composed of the niches of the individual states, and how the sensitivity of the community depends on niche segregation.  相似文献   

6.
King R  Brooks SP 《Biometrics》2008,64(3):816-824
Summary .   We consider the estimation of the size of a closed population, often of interest for wild animal populations, using a capture–recapture study. The estimate of the total population size can be very sensitive to the choice of model used to fit to the data. We consider a Bayesian approach, in which we consider all eight plausible models initially described by Otis et al. (1978, Wildlife Monographs 62, 1–135) within a single framework, including models containing an individual heterogeneity component. We show how we are able to obtain a model-averaged estimate of the total population, incorporating both parameter and model uncertainty. To illustrate the methodology we initially perform a simulation study and analyze two datasets where the population size is known, before considering a real example relating to a population of dolphins off northeast Scotland.  相似文献   

7.
We consider a dynamical model of cancer growth including three interacting cell populations of tumor cells, healthy host cells and immune effector cells. The tumor–immune and the tumor–host interactions are characterized to reproduce experimental results. A thorough dynamical analysis of the model is carried out, showing its capability to explain theoretical and empirical knowledge about tumor development. A chemotherapy treatment reproducing different experiments is also introduced. We believe that this simple model can serve as a foundation for the development of more complicated and specific cancer models.  相似文献   

8.
In this paper, we use a model by Slatkin (1977) to investigate the genetic effects of extinction and recolonization for a species whose population structure consists of an array of local demes with some migration among them. In particular, we consider the conditions under which extinction and recolonization might enhance or diminish gene flow and increase or decrease the rate of genetic differentiation relative to the static case with no extinctions. We explicitly take into account the age-structure that is established within the array of populations by the extinction and colonization process. We also consider two different models of the colonization process, the so-called “migrant pool” and “propagule pool” models. Our theoretical studies indicate that the genetic effects of extinction and colonization depend upon the relative magnitudes of K, the number of individuals founding new colonies, and 2Nm, twice the number of migrants moving into extant populations. We find that these genetic effects are surprisingly insensitive to the extinction rate. We conclude that, in order to assess the genetic effects of the population dynamics, we must first answer an important empirical question that is essentially ecological: is colonization a behavior distinct from migration?  相似文献   

9.
Wen Z  Pollock K  Nichols J  Waser P 《Biometrics》2011,67(3):691-700
Summary Ecologists applying capture–recapture models to animal populations sometimes have access to additional information about individuals' populations of origin (e.g., information about genetics, stable isotopes, etc.). Tests that assign an individual's genotype to its most likely source population are increasingly used. Here we show how to augment a superpopulation capture–recapture model with such information. We consider a single superpopulation model without age structure, and split each entry probability into separate components due to births in situ and immigration. We show that it is possible to estimate these two probabilities separately. We first consider the case of perfect information about population of origin, where we can distinguish individuals born in situ from immigrants with certainty. Then we consider the more realistic case of imperfect information, where we use genetic or other information to assign probabilities to each individual's origin as in situ or outside the population. We use a resampling approach to impute the true population of origin from imperfect assignment information. The integration of data on population of origin with capture–recapture data allows us to determine the contributions of immigration and in situ reproduction to the growth of the population, an issue of importance to ecologists. We illustrate our new models with capture–recapture and genetic assignment data from a population of banner‐tailed kangaroo rats Dipodomys spectabilis in Arizona.  相似文献   

10.
The chemotactic response of a cell population to a single chemical species has been characterized experimentally for many cell types and has been extensively studied from a theoretical standpoint. However, cells frequently have multiple receptor types and can detect and respond chemotactically to more than one chemical. How these signals are integrated within the cell is not known, and we therefore adopt a macroscopic phenomenological approach to this problem. In this paper we derive and analyze chemotactic models based on partial differential (chemotaxis) equations for cell movement in response to multiple chemotactic cues. Our derivation generalizes the approach of Othmer and Stevens [29], who have recently developed a modeling framework for studying different chemotactic responses to a single chemical species. The importance of such a generalization is illustrated by the effect of multiple chemical cues on the chemotactic sensitivity and the spatial pattern of cell densities in several examples. We demonstrate that the model can generate the complex patterns observed on the skin of certain animal species and we indicate how the chemotactic response can be viewed as a form of positional indicator. Received: 15 February 1999 / Revised version: 1 February 2000 / Published online: 14 September 2000  相似文献   

11.
In this paper, we examine the effects of patch number and different dispersal patterns on dynamics of local populations and on the level of synchrony between them. Local population renewal is governed by the Ricker model and we also consider asymmetrical dispersal as well as the presence of environmental heterogeneity. Our results show that both population dynamics and the level of synchrony differ markedly between two and a larger number of local populations. For two patches different dispersal rules give very versatile dynamics. However, for a larger number of local populations the dynamics are similar irrespective of the dispersal rule. For example, for the parameter values yielding stable or periodic dynamics in a single population, the dynamics do not change when the patches are coupled with dispersal. High intensity of dispersal does not guarantee synchrony between local populations. The level of synchrony depends also on dispersal rule, the number of local populations, and the intrinsic rate of increase. In our study, the effects of density-independent and density-dependent dispersal rules do not show any consistent difference. The results call for caution when drawing general conclusions from models of only two interacting populations and question the applicability of a large number of theoretical papers dealing with two local populations.  相似文献   

12.

Background

Most mathematical models of biochemical pathways consider either signalling events that take place within a single cell in isolation, or an 'average' cell which is considered to be representative of a cell population. Likewise, experimental measurements are often averaged over populations consisting of hundreds of thousands of cells. This approach ignores the fact that even within a genetically-homogeneous population, local conditions may influence cell signalling and result in phenotypic heterogeneity. We have developed a multi-scale computational model that accounts for emergent heterogeneity arising from the influences of intercellular signalling on individual cells within a population. Our approach was to develop an ODE model of juxtacrine EGFR-ligand activation of the MAPK intracellular pathway and to couple this to an agent-based representation of individual cells in an expanding epithelial cell culture population. This multi-scale, multi-paradigm approach has enabled us to simulate Extracellular signal-regulated kinase (Erk) activation in a population of cells and to examine the consequences of interpretation at a single cell or population-based level using virtual assays.

Results

A model consisting of a single pair of interacting agents predicted very different Erk activation (phosphorylation) profiles, depending on the formation rate and stability of intercellular contacts, with the slow formation of stable contacts resulting in low but sustained activation of Erk, and transient contacts resulting in a transient Erk signal. Extension of this model to a population consisting of hundreds to thousands of interacting virtual cells revealed that the activated Erk profile measured across the entire cell population was very different and may appear to contradict individual cell findings, reflecting heterogeneity in population density across the culture. This prediction was supported by immunolabelling of an epithelial cell population grown in vitro, which confirmed heterogeneity of Erk activation.

Conclusion

These results illustrate that mean experimental data obtained from analysing entire cell populations is an oversimplification, and should not be extrapolated to deduce the signal:response paradigm of individual cells. This multi-scale, multi-paradigm approach to biological simulation provides an important conceptual tool in addressing how information may be integrated over multiple scales to predict the behaviour of a biological system.  相似文献   

13.
We consider family specific fitnesses that depend on mixed strategies of two basic phenotypes or behaviours. Pairwise interactions are assumed, but they are restricted to occur between sibs. To study the change in frequency of a rare mutant allele, we consider two different forms of weak selection, one applied through small differences in genotypic values determining individual mixed strategies, the other through small differences in viabilities according to the behaviours chosen by interacting sibs. Under these two specific forms of weak selection, we deduce conditions for initial increase in frequency of a rare mutant allele for autosomal genes in the partial selfing model as well as autosomal and sex-linked genes in the partial sib-mating model with selection before mating or selection after mating. With small differences in mixed strategies, we show that conditions for protection of a mutant allele are tantamount to conditions for initial increase in frequency obtained in additive kin selection models. With particular reference to altruism versus selfishness, we provide explicit ranges of values for the selfing or sib-mating rate based on a fixed cost-benefit ratio and the dominance scheme that allow the spreading of a rare mutant allele into the population. This study confirms that more inbreeding does not necessarily promote the evolution of altruism. Under the hypothesis of small differences in viabilities, the situation is much more intricate unless an additive model is assumed. In general however, conditions for initial increase in frequency of a mutant allele can be obtained in terms of fitness effects that depend on the genotypes of interacting individuals or their mates and generalized conditional coefficients of relatedness according to the inbreeding condition of the interacting individuals.  相似文献   

14.
In ecology, we are faced with modelling complex systems involving many variables corresponding to interacting populations structured in different compartmental classes, ages and spatial patches. Models that incorporate such a variety of aspects would lead to systems of equations with many variables and parameters. Mathematical analysis of these models would, in general, be impossible. In many real cases, the dynamics of the system corresponds to two or more time scales. For example, individual decisions can be rapid in comparison to growth of the populations. In that case, it is possible to perform aggregation methods that allow one to build a reduced model that governs the dynamics of a lower dimensional system, at a slow time scale. In this article, we present a review of aggregation methods for time continuous systems as well as for discrete models. We also present applications in population dynamics. A first example concerns a continuous time model of a single population distributed on a system of two connected patches (a logistic source and a sink), by fast migration. It is shown that under a certain condition, the total equilibrium population can be larger than the carrying capacity of the logistic source. A second example concerns a discrete model of a population distributed on two patches, still a source and a sink, connected by fast migration. The use of aggregation methods permits us to conclude that density-dependent migration can stabilize the total population.  相似文献   

15.
Most mathematical models of collective cell spreading make the standard assumption that the cell diffusivity and cell proliferation rate are constants that do not vary across the cell population. Here we present a combined experimental and mathematical modeling study which aims to investigate how differences in the cell diffusivity and cell proliferation rate amongst a population of cells can impact the collective behavior of the population. We present data from a three-dimensional transwell migration assay that suggests that the cell diffusivity of some groups of cells within the population can be as much as three times higher than the cell diffusivity of other groups of cells within the population. Using this information, we explore the consequences of explicitly representing this variability in a mathematical model of a scratch assay where we treat the total population of cells as two, possibly distinct, subpopulations. Our results show that when we make the standard assumption that all cells within the population behave identically we observe the formation of moving fronts of cells where both subpopulations are well-mixed and indistinguishable. In contrast, when we consider the same system where the two subpopulations are distinct, we observe a very different outcome where the spreading population becomes spatially organized with the more motile subpopulation dominating at the leading edge while the less motile subpopulation is practically absent from the leading edge. These modeling predictions are consistent with previous experimental observations and suggest that standard mathematical approaches, where we treat the cell diffusivity and cell proliferation rate as constants, might not be appropriate.  相似文献   

16.
This paper deals with the spatio-temporal dynamics of a pollinator–plant–herbivore mathematical model. The full model consists of three nonlinear reaction–diffusion–advection equations defined on a rectangular region. In view of analyzing the full model, we firstly consider the temporal dynamics of three homogeneous cases. The first one is a model for a mutualistic interaction (pollinator–plant), later on a sort of predator–prey (plant–herbivore) interaction model is studied. In both cases, the interaction term is described by a Holling response of type II. Finally, by considering that the plant population is the unique feeding source for the herbivores, a mathematical model for the three interacting populations is considered. By incorporating a constant diffusion term into the equations for the pollinators and herbivores, we numerically study the spatiotemporal dynamics of the first two mentioned models. For the full model, a constant diffusion and advection terms are included in the equation for the pollinators. For the resulting model, we sketch the proof of the existence, positiveness, and boundedness of solution for an initial and boundary values problem. In order to see the separated effect of the diffusion and advection terms on the final population distributions, a set of numerical simulations are included. We used homogeneous Dirichlet and Neumann boundary conditions.  相似文献   

17.
We propose a simple discrete-time host-parasitoid model to investigate the impact of external input of parasitoids upon the host-parasitoid interactions. It is proved that the input of the external parasitoids can eventually eliminate the host population if it is above a threshold and it also decreases the host population level in the unique interior equilibrium. It can simplify the host-parasitoid dynamics when the host population practices contest competition. We then consider a corresponding optimal control problem over a finite time period. We also derive an optimal control model using a chemical as a control for the hosts. Applying the forward-backward sweep method, we solve the optimal control problems numerically and compare the optimal host populations with the host populations when no control is applied. Our study concludes that applying a chemical to eliminate the hosts directly may be a more effective control strategy than using the parasitoids to indirectly suppress the hosts.  相似文献   

18.
We investigate the combined effects of diffusion and stirring on the dynamics of interacting populations which have spatial structure. Specifically we consider the marine phytoplankton and zooplankton populations, and model them as an excitable medium. The results are applicable to other biological and chemical systems. Under certain conditions the combination of diffusion and stirring is found to enhance the excitability, and hence population growth of the system. Diffusion is found to play an important role: too much and initial perturbations are smoothed away, too little and insufficient mixing takes place before the reaction is over. A key time-scale is the mix-down time, the time it takes for the spatial scale of a population to be reduced to that of a diffusively controlled filament. If the mix-down time is short compared to the reaction time-scale, then excitation of the system is suppressed. For intermediate values of the mix-down time the peak population can attain values many times that of a population without spatial structure. We highlight the importance of the spatial scale of the initial disturbance to the system.  相似文献   

19.
Seasonal reproduction causes, due to the periodic inflow of young small individuals in the population, seasonal fluctuations in population size distributions. Seasonal reproduction furthermore implies that the energetic body condition of reproducing individuals varies over time. Through these mechanisms, seasonal reproduction likely affects population and community dynamics. While seasonal reproduction is often incorporated in population models using discrete time equations, these are not suitable for size-structured populations in which individuals grow continuously between reproductive events. Size-structured population models that consider seasonal reproduction, an explicit growing season and individual-level energetic processes exist in the form of physiologically structured population models. However, modeling large species ensembles with these models is virtually impossible. In this study, we therefore develop a simpler model framework by approximating a cohort-based size-structured population model with seasonal reproduction to a stage-structured biomass model of four ODEs. The model translates individual-level assumptions about food ingestion, bioenergetics, growth, investment in reproduction, storage of reproductive energy, and seasonal reproduction in stage-based processes at the population level. Numerical analysis of the two models shows similar values for the average biomass of juveniles, adults, and resource unless large-amplitude cycles with a single cohort dominating the population occur. The model framework can be extended by adding species or multiple juvenile and/or adult stages. This opens up possibilities to investigate population dynamics of interacting species while incorporating ontogenetic development and complex life histories in combination with seasonal reproduction.  相似文献   

20.
Neural populations encode information about their stimulus in a collective fashion, by joint activity patterns of spiking and silence. A full account of this mapping from stimulus to neural activity is given by the conditional probability distribution over neural codewords given the sensory input. For large populations, direct sampling of these distributions is impossible, and so we must rely on constructing appropriate models. We show here that in a population of 100 retinal ganglion cells in the salamander retina responding to temporal white-noise stimuli, dependencies between cells play an important encoding role. We introduce the stimulus-dependent maximum entropy (SDME) model—a minimal extension of the canonical linear-nonlinear model of a single neuron, to a pairwise-coupled neural population. We find that the SDME model gives a more accurate account of single cell responses and in particular significantly outperforms uncoupled models in reproducing the distributions of population codewords emitted in response to a stimulus. We show how the SDME model, in conjunction with static maximum entropy models of population vocabulary, can be used to estimate information-theoretic quantities like average surprise and information transmission in a neural population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号