首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A study was conducted on the incorporation of [11-3H]retinyl acetate into various retinyl esters in liver tissues of rats either vitamin A-sufficient, vitamin A-deficient or vitamin A-deficient and maintained on retinoic acid. Further, the metabolism of [11-3H]retinyl acetate to polar metabolites in liver tissues of these three groups of animals was investigated. Retinol metabolites were analyzed by high-performance liquid chromatography. In vitamin A-sufficient rat liver, the incorporation of radioactivity into retinyl palmitate and stearate was observed at 0.25 h after the injection of the label. The label was further detected in retinyl laurate, myristate, palmitoleate, linoleate, pentadecanoate and heptadecanoate 3 h after the injection. The specific radioactivities (dpm/nmol) of all retinyl esters increased with time. However, the rate of increase in the specific radioactivity of retinyl laurate was found to be significantly higher (66-fold) than that of retinyl palmitate 24 h after the injection of the label. 7 days after the injection of the label, the specific radioactivity between different retinyl esters were found to be similar, indicating that newly dosed labelled vitamin A had now mixed uniformly with the endogenous pool of vitamin A in the liver. The esterification of labelled retinol was not detected in liver tissues of vitamin A-deficient or retinoic acid-supplemented rats at any of the time point studied. Among the polar metabolites analyzed, the formation of [3H]retinoic acid from [3H]retinyl acetate was found only in vitamin A-deficient rat liver 24 h after the injection of the label. A new polar metabolite of retinol (RM) was detected in liver of the three groups of animals. The formation of 3H-labelled metabolite RM from [3H]retinyl acetate was not detected until 7 days after the injection of the label in the vitamin A-sufficient rat liver, suggesting that metabolite RM could be derived from a more stable pool of vitamin A.  相似文献   

2.
1. A comparison was made of the nature and intestinal intracellular distribution of the metabolites formed in vitamin D-deficient chicks from [4-(14)C]cholecalciferol and [1-(3)H]cholecalciferol. 2. The simultaneous administration of the two radioactive substances showed the presence in blood, liver, intestine, kidney and bone of cholecalciferol, its ester, 25-hydroxycholecalciferol and a further metabolite of cholecalciferol more polar than 25-hydroxycholecalciferol. The (3)H/(14)C ratios in these four radioactive components were the same as that of the dosed material (4.7:1) with the exception of the most polar material. The (3)H/(14)C ratio was lower in the fourth, most polar, metabolite (0.4:1-1.8:1) in all tissues examined, with the exception of blood. 3. In the chick intestine the polar metabolite accounted for almost 70% of the radioactivity in this tissue after a dose of 0.5mug. of [4-(14)C,1-(3)H]cholecalciferol. This polar metabolite from the intestine also had the lowest (3)H/(14)C ratio of all the tissues. It appears that in the chick intestine the polar metabolite reaches a maximum concentration of 1ng./g. of tissue, above which it cannot be increased irrespective of the dose of the vitamin. 4. The intestinal intracellular organelle with the highest concentration of (14)C radioactivity is the nucleus, and this radioactivity is almost entirely due to the polar metabolite with the lowered (3)H/(14)C ratio, in this case <0.2:1. It appears to be further localized in the chromatin of the nuclei. However, about half of the polar metabolite in the intestine is extranuclear. 5. Double-labelled 25-hydroxycholecalciferol was prepared and after its administration to vitamin D-deficient chicks the polar metabolite with the lowered (3)H/(14)C ratio was detected in liver, kidney, intestine, bone, muscle and heart. 6. None of the polar metabolite with the lowered (3)H/(14)C ratio was detected 16hr. after dosing with either the double-labelled vitamin or the double-labelled 25-hydroxycholecalciferol in blood and adipose tissue of vitamin D-deficient chicks, nor in the intestine, liver and kidney of supplemented birds. 7. The reasons for this loss of (3)H relative to (14)C are discussed in relation to possible chemical structures of this new polar metabolite.  相似文献   

3.
1. A simple technique has been developed to obtain subcellular fractions of chick bone. The method yielded 60-70% of total DNA in the nuclear debris fraction and 80-90% of total (14)C recovered in bone after a dose of radioactive vitamin D. 2. After a dose of [4-(14)C,1,2-(3)H(2)]cholecalciferol (0.5mug) was given to vitamin D-deficient chicks, the time-course of total (14)C radioactivity in the epiphysis, metaphysis and diaphysis of proximal tibiae was measured. The maximum concentrations were reached at 6h, corresponding to a similar peak of radioactivity in blood, decreasing until 24h and indicating the dependence on the circulating (14)C and on the blood supply of the three bone components. 3. The (14)C radioactivity of cholecalciferol and 25-hydroxycholecalciferol (expressed per mg of DNA) followed the pattern of incorporation of total (14)C radioactivity in all three bone components. The more polar metabolite fraction reached a peak of radioactivity at 6-9h and maintained its concentration over the 24h period studied in all anatomical bone components. 4. After a dose of [4-(14)C,1-(3)H]cholecalciferol (0.5mug) was given to vitamin D-deficient chicks, the subcellular distribution was studied. At 24h after dosing, the nuclear fraction contained 27% and the supernatant fraction had 67% of total (14)C recovered in the bone filtrate. When the (14)C in the residual bone fragments was included, the nuclear fraction contained up to 35% of the total radioactivity in the bone. 5. The subcellular distribution pattern of individual vitamin D metabolites indicated that the purified nuclear fraction concentrated the polar metabolite, which lost (3)H at C-1, so that 77% of the radioactivity could be accounted for by 1,25-dihydroxycholecalciferol. The supernatant fraction contained smaller amounts of 1,25-dihydroxycholecalciferol (9%), with 66% of 25-hydroxycholecalciferol forming the major metabolite, corresponding to its concentration found in blood at 24h. 6. The preferential accumulation of 1,25-dihydroxycholecalciferol in the nuclear fraction and the overall pattern of other metabolites, found previously in intestinal tissue, suggests a similar mechanism of action in bone to that postulated for the intestinal cell in calcium translocation.  相似文献   

4.
[1,2-(3)H(2)]Cholecalciferol has been synthesized with a specific radioactivity of 508mCi/mmol by using tristriphenylphosphinerhodium chloride, the homogeneous hydrogen catalyst. With doses of 125ng (5i.u.) of [4-(14)C,1-(3)H(2)]cholecalciferol the tissue distribution in rachitic rats of cholecalciferol and its metabolites (25-hydroxycholecalciferol and peak P material) was similar to that found in chicken with 500ng doses of the double-labelled vitamin. The only exceptions were rat kidney, with a very high concentration of vitamin D, and rat blood, with a higher proportion of peak P material, containing a substance formed from vitamin D with the loss of hydrogen from C-1. Substance P formed from [4-(14)C,1,2-(3)H(2)]cholecalciferol retained 36% of (3)H, the amount expected from its distribution between C-1 and C-2, the (3)H at C-1 being lost. 25-Hydroxycholecalciferol does not seem to have any specific intracellular localization within the intestine of rachitic chicks. The (3)H-deficient substance P was present in the intestine and bone 1h after a dose of vitamin D and 30min after 25-hydroxycholecalciferol. There was very little 25-hydroxycholecalciferol in intestine at any time-interval, but bone and blood continued to take it up over the 8h experimental period. It is suggested that the intestinal (3)H-deficient substance P originates from outside this tissue. The polar metabolite found in blood and which has retained its (3)H at C-1 is not a precursor of the intestinal (3)H-deficient substance P.  相似文献   

5.
Kidney homogenates from vitamin D3-supplemented chicks incubated with 25-hydroxyvitamin D3 [25(OH)D3] produce significant quantities of a new, unknown vitamin D metabolite. This metabolite was isolated in pure form from such incubation mixtures by using Sephadex LH-20 column chromatography followed by high-pressure liquid chromatography. This metabolite has been identified as 23,25,26-trihydroxyvitamin D3 [23,25,26(OH)3D3] by loss of radioactivity from 25-hydroxy[23,24-3H]vitamin D3 and 25-hydroxy-[26,27-methyl-3H]vitamin D3, ultraviolet absorption spectrophotometry, mass spectrometry, and periodate cleavage oxidation followed by mass spectrometry. This same metabolite was also isolated from the serum of rats given large doses of vitamin D3, and structurally characterized as 23,25,26-trihydroxyvitamin D3. As yet, the stereochemistry at the C-23 and C-25 positions of the natural product remains unknown. A comparison of responses to a single dose level (500 ng) of 23,25,26(OH)3D3 or 25(OH)D3 over 96 h in vitamin D-deficient rats indicated that the new metabolite had no capability to mediate bone calcium mobilization and that it was only weakly active in stimulating intestinal calcium transport.  相似文献   

6.
A simple yet powerful new chromatographic procedure for vitamin D(3) and its metabolites is described. Liquid-gel partition chromatography on Sephadex LH-20 using a solvent of various percentages of CHCl(3) in Skellysolve B (petroleum ether, bp 67-69 degrees C) permits excellent resolution of vitamin D(3), 25-hydroxyvitamin D(3), and their more polar metabolites. Of special importance is the resolution of the metabolites of vitamin D(3) more polar than 25-hydroxycholecalciferol. Because of this resolution, a new metabolite of vitamin D(3) has been demonstrated in the plasma of rats and in the intestines of chicks given 100 IU of vitamin D(3)-1,2-(3)H.  相似文献   

7.
Because only retinol and not all-trans-retinoic acid (atRA) can satisfy all of the functions of vitamin A, we have investigated the retinol metabolites in tissues of vitamin A-deficient (VAD) rats responding to a radioactive dose of [20-(3)H]all-trans-retinol. As expected, atRA is the major vitamin A metabolite present in the target tissues of VAD rats given a physiological dose (1 microg) of [20-(3)H]all-trans-retinol (atROL). Both atROL and atRA were detected by high-performance liquid chromatographic (HPLC) analysis of the radioactivity extracted from the liver, kidney, small intestine, lung, spleen, bone, skin, or testis of these animals. Novel retinol metabolites were observed in the aqueous extracts from the testis, lung, and skin. However, these metabolites were detected in very small amounts and were not characterized further. Importantly, neither 9-cis-retinoic acid (9cRA), 9-cis-retinol (9cROL), nor 13-cis-retinoic acid (13cRA) was present in detectable amounts. The amounts of atRA varied in each tissue, ranging from 0.29 +/- 0.05 fmol of RA/g of tissue in the femurs to 12.9 +/- 4.3 fmol of RA/g of tissue in the kidneys. The absence of 9cRA in vivo was not due to degradation of this retinoid during the extraction procedure or HPLC analysis of the extracted radioactivity. As atROL completely fulfills all of the physiological roles of vitamin A, and 9cRA is not detected in any of the tissues analyzed, these results suggest that 9cRA may have no physiological relevance in the rat.  相似文献   

8.
9.
1. Vitamin D-deficient rachitic rats were given [1-(3)H]cholecalciferol by gastric intubation. After 24hr., diethyl ether extracts of liver and kidney contained 5-11% and 4.5-20% respectively of total vitamin D apparently esterified with long-chain fatty acids. 2. A two-dimensional thin-layer chromatographic technique was devised that completely separated seven synthetic vitamin D esters according to the chain length and number of double bonds in the fatty acid component. When the ;vitamin D ester' fraction from liver or kidney was co-chromatographed with the standard esters, radioactivity appeared mainly in vitamin D palmitate, stearate, oleate and linoleate regions. The proportion of radioactivity in the saturated fatty acid esters was higher in kidney than in liver. 3. The same percentage of tissue vitamin D in the esterified form was found at each of two dosages of vitamin D. 4. The possible specificity of a vitamin D esterification mechanism is discussed.  相似文献   

10.
Normal male rats received six subcutaneous injections of 8.0 pmoles of tritiated 25-hydroxy vitamin D3 ([3H]25(OH)D3) or one intrajugular injection of 8.0 pmoles of high specific radioactivity [3H]-25(OH)D3. Lipid extracts of several tissues including the reproductive organs were subjected to sephadex LH-20 chromatography to determine the tissue distribution of the injected material and of the in vivo produced dihydroxylated cholecalciferol metabolites. The nature of the putative 25(OH)D3 and the 24,25-dihydroxy vitamin D3 (24,25(OH)2D3) from epididymis tissue was confirmed by high performance liquid chromatography (HPLC). The epididymis levels of 24,25(OH)2D3 were considerably higher in the cauda epididymis compared to kidney and caput epididymis levels. The other metabolites levels in this tissue were similar to those determined in the kidneys. The amounts of the three metabolites found in all other tissues were well below the cauda epididymis or kidney levels. The findings suggest a possible physiological role for 24,25(OH)2D3 in the epididymis, and are also consistent with data of others which indicated a possible action of 1,25-dihydroxy vitamin D3 (1,25(OH)2D3) in rat reproductive tissues.  相似文献   

11.
The influence of short-(7 days) and long-term (28 days) hypokinesia on 25-hydroxyvitamin D3 metabolism was investigated in rats fed on a normal calcium (0.6%), normal phosphorus (0.6%), vitamin D-supplemented diet. The animals were given a single intraperitoneal dose of tritiated [26,27-3H]25(OH)D3 (200 pmol) eighteen hours before sacrifice. [3H]Labelled vitamin D3 metabolites were separated by high performance liquid chromatographic procedure, and their radioactivity levels in serum, kidney, intestinal mucosa and femoral bone were measured. Long-term hypokinesia resulted in decreased levels of [3H]1.25(OH)2D3 and increased levels of [3H]24.25(OH)2D3 in serum and kidney (3.15 +/- 0.62 vs. 4.33 +/- 0.41% and 5.34 +/- 0.69 vs. 3.76 +/- 0.29% for [3H]1.25(OH)2D3 and [3H]24.25(OH)2D3 in serum; 7.52 +/- 0.69 vs. 11.6 +/- 0.79% and 9.33 +/- 0.55 vs. 5.94 +/- 0.24% for those in kidney). The levels of [3H]1.25(OH)2D3 as well as of [3H] 24.25(OH)2D3 were decreased in intestinal mucosa and bone (21.5 +/- 1.46 vs. 30.1 +/- 3.04% and 7.30 +/- 0.58 vs. 9.18 +/- 0.78% for [3H]1.25(OH)2D3 and [3H]24.25(OH)2D3 in intestinal mucosa; 6.39 +/- 06.5 vs. 11.5 +/- 1.64% and 7.78 +/- 0.71 vs. 13.9 +/- 1.28% for those in bone). The data obtained suggest a suppressed synthesis of 1.25(OH)2D3 and enhanced production of 24.25(OH)2D3 in kidney as well as a diminished binding of 24.25(OH)2D3 in intestinal mucosa and bone in hypothetic rats. Possible causes of variations in biosynthesis of vitamin D3 active metabolites, and role of these variations in the disorders of calcium metabolism and bone state during hypokinesia are discussed.  相似文献   

12.
Endres B  Kato S  DeLuca HF 《Biochemistry》2000,39(8):2123-2129
The metabolism of 1alpha,25-dihydroxyvitamin D(3) was studied in vitamin D receptor-ablated mice following the administration of a physiological dose of 1alpha,25-dihydroxy-[26,27-(3)H]vitamin D(3). The degradation of 1alpha,25-dihydroxy-[26,27-(3)H]vitamin D(3) in the vitamin D receptor null mutant mice was substantially reduced compared to the wild-type control mice. At 24 h postadministration of radiolabeled 1alpha,25-dihydroxyvitamin D(3) more than 50% of the radioactivity was recovered unmetabolized, whereas in wild-type mice nearly all of the 1alpha,25-dihydroxy-[26,27-(3)H]vitamin D(3) was degraded. In wild-type mice three polar metabolites other than 1alpha,25-dihydroxyvitamin D(3) were detected and identified on straight-phase and reverse-phase high-performance liquid chromatography as 1alpha,24(R),25-trihydroxy-[26,27-(3)H]vitamin D(3), 1alpha,25(S),26-trihydroxy-[26,27-(3)H]vitamin D(3), and (23S, 25R)-1alpha,25-dihydroxy-[(3)H]vitamin D(3)-26,23-lactone. Only one metabolite was detected in the plasma and kidneys of vitamin D receptor null mutant mice at 3 h following an intrajugular dose of 1alpha,25-dihydroxy-[26,27-(3)H]vitamin D(3). This metabolite was clearly identified as 1alpha,25(S),26-trihydroxy-[26,27-(3)H]vitamin D(3) by comigration on two HPLC systems and periodate cleavage reaction. At 6, 12, and 24 h postinjection 1alpha,24(R), 25-trihydroxy-[26,27-(3)H]vitamin D(3) was also detected at low levels in plasma, kidneys, and liver of some but not all mutant mice. The presence of 25-hydroxyvitamin D(3)-24-hydroxylase mRNA in the kidneys of these vitamin D receptor null mutant mice was confirmed by ribonuclease protection assay.  相似文献   

13.
Vitamin D supplemented rats produce a metabolite of 25-hydroxy[3 alpha-3H]vitamin D3 that is easily separated from known metabolites by using high-performance liquid chromatography. The production of this metabolite in vivo as well as 1,25-dihydroxyvitamin D3, 24(R),25-dihydroxyvitamin D3, and 25-hydroxyvitamin D3 26,23-lactone is largely if not totally eliminated by nephrectomy. Kidney homogenates from vitamin D supplemented chickens incubated with 25-hydroxyvitamin D3 produce significant quantities of the new, unknown metabolite. This metabolite was isolated in pure form from such incubation mixtures by using both straight-phase and reversed-phase high-performance liquid chromatography. This metabolite has been positively identified as 23,25-dihydroxyvitamin D3 by ultraviolet absorption spectrophotometry, mass spectrometry, and derivatization. This structure was confirmed by chemical synthesis of both C-23 stereoisomers. Although the natural product exactly comigrates with one of the synthetic isomers, the exact stereochemistry of the natural product remains unknown. It is possible that this new metabolite is an intermediate in the biosynthesis of 25-hydroxyvitamin D3 26,23-lactone.  相似文献   

14.
The in vivo side-chain oxidation of 1 alpha,25-dihydroxyvitamin D3 was investigated by using a double-label radiotracer technique. Rats dosed with 1 alpha,25-dihydroxy-[3 alpha-3H]vitamin D3 and 1 alpha,25-dihydroxy[26,27-14C]vitamin D3 produced compounds with a high 3H/14C ratio. These compounds were found in sizable quantities in intestine and liver within 3 h after dosing. The major side-chain oxidized metabolite migrated as an acid on DEAE-Sephadex chromatography and contained no 14C. Methyl esterification of this compound with diazomethane proceeded in good yield and rendered the compound more amenable to chromatographic purification. The metabolite was isolated in several steps from rats dosed with 1 microgram of 1 alpha,25-dihydroxy[3 alpha-3H]vitamin D3. The metabolite was obtained in pure form as the methyl ester and was positively identified as 1 alpha,3 beta-dihydroxy-24-nor-9,10-seco-5,7,10(19)cholatrien-23-oic acid. The trivial name calcitroic acid is proposed for this major side-chain oxidized metabolite of 1,25-dihydroxyvitamin D3.  相似文献   

15.
In order to prove the hypothesis that humans and animals with adequate vitamin A status do not absorb and metabolize orally administered all-trans retinoyl β-glucuronide, unlabeled retinoyl glucuronide (0.1 mmol) was orally dosed to fasting well-nourished young men. Neither retinoyl glucuronide nor retinoic acid, a possible metabolite, appeared in the blood within 12 h after ingestion. Next, radiolabeled all-trans 15-[14C]-retinoyl β-glucuronide was chemically synthesized by a new procedure, and fed orally to rats of different vitamin A status. Analysis of blood and other tissues 5 or 24 h after the dose, showed the presence of radioactivity ( 0.5%) in the blood of vitamin A deficient rats, but not in sufficient rats. Livers of all rats contained small, but detectable amounts (0.3 to 1.1% of the dose) of radioactivity. The accumulation of radioactivity in the liver was highest in deficient rats. Analysis of the retinoids showed that the radioactivity in serum and liver was due to retinoic acid formed from retinoyl glucuronide. Within 24 h after the dose, 31 to 40% of the administered radioactivity was excreted in the feces, and 2 to 4.7% of the dose was excreted in the urine. Results of the present studies show that oral administration of retinoyl β-glucuronide did not give rise to detectable changes in blood retinoyl glucuronide and/or retinoic acid concentrations in humans or rats with adequate vitamin A status.  相似文献   

16.
The 26-hydroxylation of 1alpha,25-dihydroxyvitamin D3 in rats in vitro and in vivo was studied under physiological conditions. Incubation of 1alpha,25-dihydroxy-[26,27-3H]vitamin D3 with rat kidney or rat liver homogenate showed formation of a metabolite that was identified as 1alpha,25(S),26-trihydroxy-[26,27-3H]vitamin D3 by comigration on three different HPLC systems and a periodate cleavage reaction. This metabolite was not generated by hydroxylation of 1alpha,25-dihydroxy-[26,27-3H]vitamin D3 itself but by an enzymatic conversion of a precursor that was formed nonenzymatically in substantial amounts upon storage of 1alpha,25-dihydroxy-[26,27-3H]vitamin D3 in ethanol at -20 degrees C under argon for more than three weeks. An in vivo metabolism study in rats dosed with a physiological dose of 1alpha,25-dihydroxy-[26,27-3H]vitamin D3 confirmed the absence of 26-hydroxylation of the hormone. As expected at 6 h postinjection of purified 1alpha,25-dihydroxy-[26,27-3H]vitamin D3, 1alpha,24(R),25-trihydroxy-[26,27-3H]vitamin D3, as well as traces of (23S,25R)-1alpha,25-dihydroxy-[3H]vitamin D3-lactone were detected and identified on straight phase and reverse phase HPLC in serum, kidney, and liver.  相似文献   

17.
Calcitroic acid: biological activity and tissue distribution studies   总被引:1,自引:0,他引:1  
Calcitroic acid was recently identified as a major metabolite of 1,25-dihydroxyvitamin D3 (Esvelt, Schnoes, and DeLuca, Biochemistry 18, 3977, 1979). The metabolite was found to have little, although significant, activity in healing rickets, and causing bone mineral mobilization but elicited no significant elevation in intestinal calcium transport. The compound showed little affinity for either the serum 25-hydroxyvitamin D binding protein or the intestinal cytosol receptor for 1,25-dihydroxyvitamin D3. Various tissues of the rat were examined for the presence of calcitroic acid following a 120-ng dose of 1,25-dihydroxy-[3α-3H]vitamin D3. The metabolite was detected in liver, intestinal mucosa, kidneys, and blood with livers and mucosa containing the highest concentrations. In each of these tissues the calcitroic acid content increased during the period between 4 and 12 h after the dose. The presence of calcitroic acid in femurs was indicated but could not be confirmed. Bile duct cannulation reduced but did not abolish the intestinal calcitroic acid content. In addition to calcitroic acid, other polar metabolites of 1,25-dihydroxyvitamin D3 were detected in these experiments.  相似文献   

18.
Vitamin D2 is less toxic in rats when compared to vitamin D3. Our laboratory has been involved in research projects which were directed towards identifying the possible mechanisms responsible for the toxicity differences between vitamins D2 and D3 in rats. The present research project was designed to isolate and identify new metabolites of vitamin D2 from serum of rats which were fed toxic doses of vitamin D2. Hypervitaminosis D2 was induced in 30 rats by feeding each rat with 1000 nmol of vitamin D2/day x 14 days. The rats were sacrificed on the 15th day and obtained 180 ml of serum. The lipid extract of the serum was directly analyzed by a straight phase HPLC system. The various vitamin D2 metabolites were monitored by their ultraviolet (UV) absorbance at 254 nm. One of the UV absorbing peaks did not comigrate with any of the known vitamin D2 metabolites. This unknown metabolite peak was further purified by HPLC and was then subjected to UV absorption spectrophotometry and mass spectrometry. The structure assignment of the new metabolite was established to be 4,25-dihydroxyvitamin D2 [4,25(OH)2D2] by the techniques of UV absorption spectrophotometry and mass spectrometry and by the new metabolite's susceptibility to sodium metaperiodate oxidation. At present the biological activity of this unique 'A-ring' hydroxylated vitamin D2 metabolite is not known. As this new metabolite is isolated from the serum of rats intoxicated with vitamin D2, we speculate that 4,25(OH)2D2 may be playing an important role in the deactivation of vitamin D2.  相似文献   

19.
Vitamin D physiology   总被引:1,自引:0,他引:1  
  相似文献   

20.
25-Azavitamin D3 inhibited both the bone calcium mobilization and intestinal calcium transport responses of rats to vitamin D3 but not to 25-hydroxyvitamin D3. Although 25-azavitamin D3 had no effect on the response of bone to 1alpha,25-dihydroxyvitamin D3, it did diminish the response of the intestine to that metabolite. 25-Azavitamin D3 increased liver vitamin D content and reduced the concentration of 25-hydroxyvitamin D3 required to inhibit the metabolism of vitamin D3 (75 and 200 microgram) were similar to the doses of 25-azavitamin D3 required to inhibit the action of vitamin D3 in vivo (50 and 150 microgram). 25-Azavitamin D3 is thus a vitamin D antagonist, acting for the most part via inhibition of the liver 25-hydroxylation of vitamin D3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号