首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tumor cells and vasculature offer specific targets for the selective delivery of therapeutic genes. To achieve tumor-specific gene transfer, baculovirus tropism was manipulated by viral envelope modification using baculovirus display technology. LyP-1, F3, and CGKRK tumor-homing peptides, originally identified by in vivo screening of phage display libraries, were fused to the transmembrane anchor of vesicular stomatitis virus G protein and displayed on the baculoviral surface. The fusion proteins were successfully incorporated into budded virions, which showed two- to fivefold-improved binding to human breast carcinoma (MDA-MB-435) and hepatocarcinoma (HepG2) cells. The LyP-1 peptide inhibited viral binding to MDA-MB-435 cells with a greater magnitude and specificity than the CGKRK and F3 peptides. Maximal 7- and 24-fold increases in transduction, determined by transgene expression level, were achieved for the MDA-MB-435 and HepG2 cells, respectively. The internalization of each virus was inhibited by ammonium chloride treatment, suggesting the use of a similar endocytic entry route. The LyP-1 and F3 peptides showed an apparent inhibitory effect in transduction of HepG2 cells with the corresponding display viruses. Together, these results imply that the efficiency of baculovirus-mediated gene delivery can be significantly enhanced in vitro when tumor-targeting ligands are used and therefore highlight the potential of baculovirus vectors in cancer gene therapy.  相似文献   

2.
The baculovirus group of insect viruses is widely used for foreign gene introduction into mammalian cells for gene expression and protein production; however, the efficiency of baculovirus entry into mammalian cells is in general still low. In this study, two recombinant baculoviruses were engineered and their ability to improve viral entry was examined: (1) cytoplasmic transduction peptide (CTP) was fused with baculovirus envelope protein, GP64, to produce a cytoplasmic membrane penetrating baculovirus (vE-CTP); and (2) the protein transduction domain (PTD) of HIV TAT protein was fused with the baculovirus capsid protein VP39 to form a nuclear membrane penetrating baculovirus (vE-PTD). Transduction experiments showed that both viruses had better transduction efficiency than vE, a control virus that only expresses EGFP in mammalian cells. Interestingly, vE-CTP and vE-PTD were also able to improve the transduction efficiency of a co-transduced baculovirus, resulting in higher levels of gene expression. Our results have described new routes to further enhance the development of baculovirus as a tool for gene delivery into mammalian cells.  相似文献   

3.
The envelope protein gp64 of the baculovirus Autographa californica nuclear polyhedrosis virus is essential for viral entry into insect cells, as the glycoprotein both mediates pH-dependent membrane fusion and binds to host cell receptors. Surface modification of baculovirus particles by genetic engineering of gp64 has been demonstrated by various strategies and thus has become an important and powerful tool in molecular biology. To improve further the presentation of peptides on the surface of baculovirus particles, several insertion sites within the gp64 envelope protein were selected by their theoretical maximum surface probability and investigated for efficient peptide presentation. The ELDKWA peptide of the gp41 of HIV-1, specific for the human mAb 2F5, was inserted into 17 different positions of the glycoprotein gp64. Propagation of viruses was successful in 13 cases, mutagenesis at four positions did not result in production of intact virus particles. Western blotting, FACS analysis and ELISA were used for characterization of the different binding properties of the mutants. Insertion of this peptide into the native envelope protein resulted in high avidity display on the surface of baculovirus particles. This approach offers the possibility of effective modification of surface properties in regard to host range specificity and antigen display.  相似文献   

4.
A tumor-homing peptide, F3, selectively binds to endothelial cells in tumor blood vessels and to tumor cells. Here, we show that the cell surface molecule recognized by F3 is nucleolin. Nucleolin specifically bound to an F3 peptide affinity matrix from extracts of cultured breast carcinoma cells. Antibodies and cell surface biotin labeling revealed nucleolin at the surface of actively growing cells, and these cells bound and internalized fluorescein-conjugated F3 peptide, transporting it into the nucleus. In contrast, nucleolin was exclusively nuclear in serum-starved cells, and F3 did not bind to these cells. The binding and subsequent internalization of F3 were blocked by an antinucleolin antibody. Like the F3 peptide, intravenously injected antinucleolin antibodies selectively accumulated in tumor vessels and in angiogenic vessels of implanted "matrigel" plugs. These results show that cell surface nucleolin is a specific marker of angiogenic endothelial cells within the vasculature. It may be a useful target molecule for diagnostic tests and drug delivery applications.  相似文献   

5.
Virus-templated fabrication of compound structures can be made through incorporating the specifically inorganic-binding peptide into the viral scaffold, widely used is phage display system. Compared to prokaryotic phages, insect cell-based baculovirus has some strengths such as the adaptability to the proteins’ posttranslational modification and non-replication in mammalian cells. As an attempt to explore the baculovirus-mediated bioconjugates, we show in this study that a genetically engineered baculovirus, with a hexahistidine (His6) tagged ZnO binding peptide fused to the N-terminus of the viral capsid protein vp39 of AcNPV, was constructed. It maintains both the viral infectivity and the fusion protein’s activity. The presence of the fusion protein on the baculovirus particle was demonstrated by western blot analysis of purified budded virus. Its display on the virus capsid was revealed by virus fractionation analysis. The binding of nanosized ZnO powders to the virus capsid was visualized by transmission electron microscopy (TEM). This is the first report of the display of the inorganic-binding peptide on the capsid of eukaryotic baculovirus. Aimed at the nanomaterials’ application in the biological field, this research could find useful in the biotracking of the baculovirus transduction process and the preparation of novel functional nanodevices.  相似文献   

6.
BACKGROUND: Baculovirus transduction of cultured mammalian cells is typically performed by incubating the cells with virus using culture medium (e.g. Dulbecco's modified Eagle's medium (DMEM)) as the surrounding solution. However, we previously uncovered that DMEM hinders the baculovirus-mediated gene transfer. METHODS: In this study, we systematically explored the influences of promoter and medium constituents on the transduction efficiency by using different recombinant viruses and surrounding solutions for transduction, followed by flow cytometric analyses. Whether the key medium component impeded baculovirus binding to the cells and subsequent virus entry was investigated by immunofluorescence/confocal microscopy and quantitative real-time polymerase chain reaction (Q-PCR). RESULTS: We demonstrated that the poorer transduction by using DMEM as the surrounding solution is independent of the promoter. Examination of the medium constituents group by group revealed that the balanced salt solution suppresses the baculovirus transduction. By omitting individual salt species in the balanced salt solution, we surprisingly uncovered that NaHCO(3), a common buffering agent, exerts the inhibitory effects in a concentration-dependent manner. Intriguingly, NaHCO(3) did not debilitate the baculovirus, nor did it inhibit virus binding to the cells. Instead, NaHCO(3) inhibited baculovirus transduction by reducing the intracellular virus number. CONCLUSIONS: To our best knowledge, this is the first report unraveling the significance of NaHCO(3) in gene transfer. Our finding suggests that baculovirus-mediated gene transfer can be readily enhanced by omitting NaHCO(3) from the medium during the transduction period.  相似文献   

7.
The baculovirus Autographa californica nucleopolyhedrovirus (AcNPV) has been widely used to achieve a high level of foreign gene expression in insect cells, as well as for efficient gene transduction into mammalian cells without any replication. In addition to permitting efficient gene delivery, baculovirus has been shown to induce host innate immune responses in various mammalian cells and in mice. In this study, we examined the effects of the innate immune responses on gene expression by recombinant baculoviruses in cultured cells. The reporter gene expression in IRF3-deficient mouse embryonic fibroblasts (MEFs) infected with the recombinant baculovirus was shown to be enhanced in accordance with the suppression of beta interferon (IFN-β) production. Furthermore, efficient gene transduction by the recombinant baculovirus was achieved in MEFs deficient for stimulator of interferon genes (STING), TANK binding kinase 1 (TBK1), IFN regulatory factor 3 (IRF3), or IFN-β promoter stimulator 1 (IPS-1), but not in those deficient for IRF7, MyD88, or Z-DNA binding protein 1 (ZBP1)/DAI. Enhancement of gene expression by the recombinant baculovirus was also observed in human hepatoma cell lines replicating hepatitis C virus (HCV), in which innate immunity was impaired by the cleavage of IPS-1 by the viral protease. In addition, infection with the recombinant baculovirus expressing the BH3-only protein, BIMS, a potent inducer of apoptosis, resulted in a selective cell death in the HCV replicon cells. These results indicate that innate immune responses induced by infection with baculovirus attenuate transgene expression, and this characteristic might be useful for a selective gene transduction into cells with impaired innate immunity arising from infection with various viruses.  相似文献   

8.
The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) can infect a variety of mammalian cells, as well as insect cells, facilitating its use as a viral vector for gene delivery into mammalian cells. Glycoprotein gp64, a major component of the budded AcMNPV envelope, is involved in viral entry into cells by receptor-mediated endocytosis and subsequent membrane fusion. We examined the potential production of pseudotype baculovirus particles transiently carrying ligands of interest in place of gp64 as a method of ligand-directed gene delivery into target cells. During amplification of a gp64-null pseudotype baculovirus carrying a green fluorescent protein gene in gp64-expressing insect cells, however, we observed the high-frequency appearance of a replication-competent virus incorporating the gp64 gene into the viral genome. To avoid generation of replication-competent revertants, we prepared pseudotype baculoviruses by transfection with recombinant bacmids without further amplification in the gp64-expressing cells. We constructed gp64-null recombinant bacmids carrying cDNAs encoding either vesicular stomatitis virus G protein (VSVG) or measles virus receptors (CD46 or SLAM). The VSVG pseudotype baculovirus efficiently transduced a reporter gene into a variety of mammalian cell lines, while CD46 and SLAM pseudotype baculoviruses allowed ligand-receptor-directed reporter gene transduction into target cells expressing measles virus envelope glycoproteins. Gene transduction mediated by the pseudotype baculoviruses could be inhibited by pretreatment with specific antibodies. These results indicate the possible application of pseudotype baculoviruses in ligand-directed gene delivery into target cells.  相似文献   

9.
李俪  王鑫  尹隽  钟江 《生物工程学报》2009,25(10):1558-1563
为了提高昆虫杆状病毒在哺乳动物细胞中转导基因的效率,构建了重组杆状病毒AcRed-tat和AcRed。两者都能在哺乳动物细胞内表达红色荧光蛋白作为报告基因。同时,AcRed-tat带有HIV-1Tat转导肽、病毒主要衣壳蛋白基因vp39及增强型绿色荧光蛋白(egfp)三者的融合基因,并由杆状病毒多角体启动子表达,能够在昆虫细胞中表达该Tat融合蛋白,并掺入子代病毒粒子。而AcRed作为相应的对照病毒,带有多角体启动子表达vp39和egfp的融合基因。2株病毒分别转导哺乳动物细胞后,利用流式细胞仪检测报告基因的表达水平,发现在CHO和Vero细胞中AcRed-Tat介导的报告基因表达水平明显高于AcRed,而在HEK293细胞中2株病毒介导的报告基因表达水平差异不显著。结果表明Tat转导肽可以提高杆状病毒对一部分哺乳动物细胞的转导效率,为改进杆状病毒-哺乳动物细胞转导载体提供了新的思路。  相似文献   

10.
Although baculovirus-mediated gene delivery into mammalian cells has been documented in a wealth of the literature, systematic investigation of the optimal transduction conditions remains unavailable. In this work, a transduction protocol using unconcentrated baculovirus is proposed for simple and efficient gene delivery into HeLa cells. We found that approximately 75-85% of the cells could be readily transduced and express the reporter protein when virus transduction occurred for 4 h at 25 degrees C using Dulbecco's phosphate-buffered saline (D-PBS) as the surrounding solution. This method contrasts with previous protocols in which transduction occurs for 1 h at 37 degrees C using growth medium (e.g., DMEM) as the surrounding solution. Investigation of the physical parameters led to the findings that: 1) baculovirus uptake by HeLa cells continued for at least 4 h in the event of high virus dosage, which led to higher gene expression; 2) the half-life of baculovirus dramatically decreased at 37 degrees C; 3) EGTA pretreatment did not apparently facilitate the gene delivery when the cells grew to multilayers; and 4) lower transduction efficiency and gene expression were obtained when DMEM was used (in comparison with D-PBS and TNM-FH), suggesting that DMEM contains certain inhibitory factors for baculovirus transduction. Our data uncovered several aspects that were not investigated before and the optimized transduction conditions allowed for gene delivery as efficient as that by the protocols commonly employed by others, but eliminated the need for virus ultracentrifugation. The protocol not only represented a simpler approach, but also considerably reduced possible virus inactivation during ultracentrifugation, thus making it easier to convert the baculovirus/mammalian cell system to a tool for eukaryotic protein production on a larger scale.  相似文献   

11.
Intracellular alphavirus nucleocapsids express a binding site for the cytoplasmic domain of the viral E2 spike glycoprotein. This binding site is recognized by the anti-idiotype monoclonal antibody, F13. The monoclonal anti-anti-idiotype antibody, raised against F13 and designated 3G10, recognizes the carboxy-terminal eight residues of the E2 cytoplasmic domain in Semliki Forest virus (SFV), identifying this as the signal for nucleocapsid interaction. F13 binding to cells infected with SFV or a second alphavirus, Sindbis virus, is inhibited by a synthetic peptide corresponding to the entire 31 residue cytoplasmic domain (E2c), and also by a synthetic peptide corresponding to the eight residue epitope recognized by 3G10. Both E2c and the eight residue peptide inhibited viral budding in microinjection experiments and when conjugated to colloidal gold are bound specifically to nucleocapsids in infected cells. These results identify a short linear signal in the E2 cytoplasmic domain required for the interaction with nucleocapsids which leads to budding of at least two alphaviruses from infected cells.  相似文献   

12.
The baculovirus has recently emerged as a promising vector for in vivo gene therapy. To investigate its potential as a delivery vector for an anti-virus ribozyme targeting HIV-1, we constructed recombinant baculovirus vectors bearing a ribozyme-synthesizing cassette driven by the tRNA(i)(Met) promoter with enhanced transduction efficiency by displaying vesicular stomatitis virus glycoprotein (VSV-G) on the viral envelope. Transduction of HeLa CD4(+) cells with a recombinant baculovirus delivering the HIV-1 U5 gene-specific ribozyme dramatically suppressed HIV-1 expression in this cell line. The VSV-G pseudotyped baculovirus vector-transduced ribozyme potently inhibited HIV-1 replication compared to a recombinant baculovirus vector-transduced ribozyme lacking VSV-G. The use of a baculovirus vector might be beneficial for application in gene therapy.  相似文献   

13.
In vitro and in vivo gene delivery by recombinant baculoviruses   总被引:20,自引:0,他引:20       下载免费PDF全文
Although recombinant baculovirus vectors can be an efficient tool for gene transfer into mammalian cells in vitro, gene transduction in vivo has been hampered by the inactivation of baculoviruses by serum complement. Recombinant baculoviruses possessing excess envelope protein gp64 or other viral envelope proteins on the virion surface deliver foreign genes into a variety of mammalian cell lines more efficiently than the unmodified baculovirus. In this study, we examined the efficiency of gene transfer both in vitro and in vivo by recombinant baculoviruses possessing envelope proteins derived from either vesicular stomatitis virus (VSVG) or rabies virus. These recombinant viruses efficiently transferred reporter genes into neural cell lines, primary rat neural cells, and primary mouse osteal cells in vitro. The VSVG-modified baculovirus exhibited greater resistance to inactivation by animal sera than the unmodified baculovirus. A synthetic inhibitor of the complement activation pathway circumvented the serum inactivation of the unmodified baculovirus. Furthermore, the VSVG-modified baculovirus could transduce a reporter gene into the cerebral cortex and testis of mice by direct inoculation in vivo. These results suggest the possible use of the recombinant baculovirus vectors in combination with the administration of complement inhibitors for in vivo gene therapy.  相似文献   

14.
BACKGROUND: We have previously demonstrated highly efficient baculovirus transduction of primary rat articular chondrocytes, thus implicating the possible applications of baculovirus in gene-based cartilage tissue engineering. However, baculovirus-mediated gene expression in the chondrocytes is transient. METHODS: In this study, we attempted to prolong the expression by supertransduction, but uncovered that after long-term culture the chondrocytes became more refractory to baculovirus transduction. Therefore, the correlation between baculovirus-mediated enhanced green fluorescent protein (EGFP) expression and cell cycle was investigated by comparing the cycling chondrocytes and chondrocytes rich in quiescent cells, in terms of EGFP expression, virus uptake, cell cycle distribution, nuclear import and methylation of viral DNA. RESULTS: We demonstrated, for the first time, that baculovirus-mediated transduction of chondrocytes is correlated with the cell cycle. The chondrocytes predominantly in G2/M phase were approximately twice as efficient in EGFP expression as the cycling cells, while the cells in S and G1 phases expressed EGFP as efficiently as the cycling cells. Notably, the chondrocyte populations rich in quiescent cells resulted in efficient virus uptake, but less effective nuclear transport of baculoviral DNA and higher degree of methylation, and hence poorer transgene expression. CONCLUSIONS: These findings unravel the practical limitations when employing baculovirus in cartilage tissue engineering. The implications and possible solutions are discussed.  相似文献   

15.
Baculovirus vectors have been shown to enter a variety of mammalian cell lines and gene transfer with wild-type baculovirus (WT) has been demonstrated both in vitro and in vivo. Different protein motifs have been displayed on the viral surface to serve as ligands for cell-specific receptor molecules. We have generated recombinant baculovirus vectors displaying an RGD-motif, recognized by alphaV integrin, on the viral surface. The RGD motifs within the C-terminus of coxsackie virus A9 and human parechovirus 1 VP1 proteins were fused to the N-terminus of the major envelope glycoprotein, gp64, of Autographa californica multiple nucleopolyhedrovirus. The recombinant RGD-presenting viruses bound more efficiently to the surface of human lung carcinoma cells (A549), known to contain alphaV integrins, as compared to WT baculovirus. In addition, the binding pattern of the RGD-displaying baculovirus showed extensive clustering. This most likely represents clustering of the integrin molecules on the cell surface, induced by binding of the RGD-displaying baculovirus. Finally, the transduction efficiency of an RGD-representing virus increased by almost three-fold as monitored by light emission measurements. In conclusion, these results suggest that the RGD-motif is functional on the surface of baculovirus and thereby these tropism-modified viruses bind more efficiently as well as enhance the transduction efficiency of human cancer cells expressing alphaV integrins.  相似文献   

16.
Rabies virus replicates in the cytoplasm of host cells, but rabies virus phosphoprotein (P-protein) undergoes active nucleocytoplasmic trafficking. Here we show that the largely nuclear P-protein isoform P3 can localize to nucleoli and forms specific interactions with nucleolin. Importantly, depletion of nucleolin expression inhibits viral protein expression and infectious virus production by infected cells. This provides the first evidence that lyssaviruses interact with nucleolin and that nucleolin is important to lyssavirus infection.  相似文献   

17.
Wu C  Wang S 《Journal of virology》2012,86(1):484-491
Binding to heparan sulfate is essential for baculovirus transduction of mammalian cells. Our previous study shows that gp64, the major glycoprotein on the virus surface, binds to heparin in a pH-dependent way, with a stronger binding at pH 6.2 than at 7.4. Using fluorescently labeled peptides, we mapped the pH-dependent heparin-binding sequence of gp64 to a 22-amino-acid region between residues 271 and 292. Binding of this region to the cell surface was also pH dependent, and peptides containing this sequence could efficiently inhibit baculovirus transduction of mammalian cells at pH 6.2. When the heparin-binding peptide was immobilized onto the bead surface to mimic the high local concentration of gp64 on the virus surface, the peptide-coated magnetic beads could efficiently pull down cells expressing heparan sulfate but not cells pretreated with heparinase or cells not expressing heparan sulfate. Interestingly, although this heparin-binding function is essential for baculovirus transduction of mammalian cells, it is dispensable for infection of Sf9 insect cells. Virus infectivity on Sf9 cells was not reduced by the presence of heparin or the identified heparin-binding peptide, even though the peptide could bind to Sf9 cell surface and be efficiently internalized. Thus, our data suggest that, depending on the availability of the target molecules on the cell surface, baculoviruses can use two different methods, electrostatic interaction with heparan sulfate and more specific receptor binding, for cell attachment.  相似文献   

18.
The baculovirus expression system was utilized to serve as a tool for ligand selection, demonstrating the applicability of the system to the generation and screening of eukaryotic expression libraries. The HIV-1-gp41 epitope 'ELDKWA', specific for the neutralizing human mAb 2F5, was inserted into the antigenic site B of influenza virus hemagglutinin and expressed on the surface of baculovirus infected insect cells. In order to improve the antigenicity of the epitope within the hemagglutinin, and therefore enhance the specific binding of 2F5, we inserted three additional, random amino acids adjacent to the epitope. This pool of hemagglutinin genes was directly cloned into the baculovirus Ac-omega. To identify distinct proteins displayed on the cellular surface, we developed a screening protocol to select for specific binding capacity of individual viral clones. Using fluorescence activated cell sorting (FACS) we isolated a baculovirus clone displaying the epitope with markedly increased binding capacity out of a pool of 8000 variants in only one sorting step. Binding properties of the identified ligand were examined by FACS performing a competition assay.  相似文献   

19.
The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) serves as an efficient viral vector, not only for abundant gene expression in insect cells, but also for gene delivery into mammalian cells. Lentivirus vectors pseudotyped with the baculovirus envelope glycoprotein GP64 have been shown to acquire more potent gene transduction than those with vesicular stomatitis virus (VSV) envelope glycoprotein G. However, there are conflicting hypotheses about the molecular mechanisms of the entry of AcMNPV. Moreover, the mechanisms of the entry of pseudotyped viruses bearing GP64 into mammalian cells are not well characterized. Determination of the entry mechanisms of AcMNPV and the pseudotyped viruses bearing GP64 is important for future development of viral vectors that can deliver genes into mammalian cells with greater efficiency and specificity. In this study, we generated three pseudotyped VSVs, NPVpv, VSVpv, and MLVpv, bearing envelope proteins of AcMNPV, VSV, and murine leukemia virus, respectively. Depletion of membrane cholesterol by treatment with methyl-β-cyclodextrin, which removes cholesterol from cellular membranes, inhibited GP64-mediated internalization in a dose-dependent manner but did not inhibit attachment to the cell surface. Treatment of cells with inhibitors or the expression of dominant-negative mutants for dynamin- and clathrin-mediated endocytosis abrogated the internalization of AcMNPV and NPVpv into mammalian cells, whereas inhibition of caveolin-mediated endocytosis did not. Furthermore, inhibition of macropinocytosis reduced GP64-mediated internalization. These results suggest that cholesterol in the plasma membrane, dynamin- and clathrin-dependent endocytosis, and macropinocytosis play crucial roles in the entry of viruses bearing baculovirus GP64 into mammalian cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号