首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Guanine nucleotide binding proteins (GNB-proteins) play an essential role in cellular signaling, acting as molecular switches, cycling between the inactive, GDP-bound form and the active, GTP-bound form. It has been shown that conformational equilibria also exist within the active form of GNB-proteins between conformational states with different functional properties. Here we present (31)P NMR data on ADP ribosylation factor 1 (Arf1), a GNB-protein involved in Golgi traffic, promoting the coating of secretory vesicles. To investigate conformational equilibria in active Arf1, the wild type and switch I mutants complexed with GTP and a variety of commonly used GTP analogues, namely, GppCH(2)p, GppNHp, and GTPγS, were analyzed. To gain deeper insight into the conformational state of active Arf1, we titrated with Cu(2+)-cyclen and GdmCl and formed the complex with the Sec7 domain of nucleotide exchange factor ARNO and an effector GAT domain. In contrast to the related proteins Ras, Ral, Cdc42, and Ran, from (31)P NMR spectroscopic view, Arf1 exists predominantly in a single conformation independent of the GTP analogue used. This state seems to correspond to the so-called state 2(T) conformation, according to Ras nomenclature, which is interacting with the effector domain. The exchange of the highly conserved threonine in position 48 with alanine led to a shift of the equilibrium toward a conformational state with typical properties obtained for state 1(T) in Ras, such as interaction with guanine nucleotide exchange factors, a lower affinity for nucleoside triphosphates, and greater sensitivity to chaotropic agents. In active Arf1(wt), the effector interacting conformation is strongly favored. These intrinsic conformational equilibria of active GNB-proteins could be a fine-tuning mechanism of regulation and thereby an interesting target for the modulation of protein activity.  相似文献   

2.
The ability of three anionic cosolutes (sulfate, thiocyanate, and chloride) in modulating the (1)H/(2)H exchange rates for backbone amide protons has been investigated using nuclear magnetic resonance (NMR) for two different proteins: the IGg-binding domain of protein L (ProtL) and the glucose-galactose-binding protein (GGBP). Our results show that moderate anion concentrations (0.2 M-1 M) regulate the exchange rate following the Hofmeister series: Addition of thiocyanate increases the exchange rates for both proteins, while sulfate and chloride (to a less extent) slow down the exchange reaction. In the presence of the salt, no alteration of the protein structure and minimal variations in the number of measurable peaks are observed. Experiments with model compounds revealed that the unfolded state is modulated in an equivalent way by these cosolutes. For ProtL, the estimated values for the local free energy change upon salt addition (m (3,DeltaG )) are consistent with the previously reported free energy contribution from the cosolute's preferential interaction/exclusion term indicating that nonspecific weak interactions between the anion and the amide groups constitute the dominant mechanism for the exchange-rate modulation. The same trend is also found for GGBP in the presence of thiocyanate, underlining the generality of the exchange-rate modulation mechanism, complementary to more investigated effects like the electrostatic interactions or specific anion binding to protein sites.  相似文献   

3.
Three exorphins, beta-casomorphin-5, morphiceptin and its D-Pro4 analog, were studied in DMSO by means of 1H and 13C NMR spectroscopy, with the aim of detecting conformational features of potential biological significance for the mu opioid activity since the presence of two Pro residues restricts the accessible conformational space more than in all other peptides. It is found that the conformational mixtures present in solution contain relevant fractions of folded conformers, a feature that assures the observation of four different Tyr OH signals in the 500 MHz spectrum of morphiceptin. The conformer distribution of (very active) (D-Pro4)-morphiceptin is different from those of its (less active) congeners.  相似文献   

4.
Biological 1H NMR spectroscopy   总被引:1,自引:0,他引:1  
Proton nuclear magnetic resonance spectroscopy (1H NMR) is a powerful analytical method used to identify and quantitate chemical compounds. In recent years, it has been used to study rates of metabolism in microbes, isolated perfused tissues, intact animals, and human beings. This review highlights some of the more recent biological applications of 1H NMR in the study of metabolic pathophysiology in animals and man. 1H NMR can rapidly analyze complex mixtures of metabolites found in body fluid and biopsy specimens. In vivo 1H NMR methods can measure intracellular pH, a wide variety of metabolites, tissue perfusion, and rates of metabolism of endogenous and exogenous compounds. Using 13C labeled compounds or magnetization transfer techniques metabolic fluxes may be measured in vivo during virtually all normal and abnormal physiological conditions.  相似文献   

5.
Photochemically induced dynamic nuclear polarization (CIDNP)-1H-NMR spectroscopy has been used to study the interaction of the protein hormone epidermal growth factor (EGF) with micelles of sodium dodecyl sulfate (SDS) and dodecylphosphorylcholine (DPC). Conventional 1H-NMR spectra show that most protein resonances remain unperturbed when micelles are added to solution, which argues that the overall protein conformation is maintained in the presence of SDS or DPC at the concentrations used. Photo-CIDNP enhancements of resonances assigned to aromatic side chains of residues at the COOH terminus and beta-sheet regions of murine EGF (i.e. Trp-49, Trp-50, and Tyr-37) are considerably reduced in the presence of micelles, while resonances of aromatic side chains of residues found elsewhere on the protein surface are mostly unaffected. This suggests that the primary interaction between murine EGF and the micelle occurs at the micelle-bulk solvent interface. The overall negatively charged surface of SDS micelles tends to induce a stronger interaction with the protein compared to the zwitterionic DPC micelles, probably due to electrostatic interactions. Cleavage of the COOH-terminal pentapeptide containing both tryptophan residues enhances the already present, but weak, interaction with Tyr-10 and attenuates it with Tyr-37. A similar interaction pattern is found with rat EGF suggesting that at least concerning these two species of EGF the interaction is somewhat specific and conserved. A simple mass-action model for protein-micelle interaction is also presented.  相似文献   

6.
J Krebs  M Vasak  A Scarpa  E Carafoli 《Biochemistry》1987,26(13):3921-3926
Different conformational states of the purified plasma membrane Ca2+-ATPase from pig erythrocytes have been detected by circular dichroism (CD) and fluorescence spectroscopy. The helical content of the enzyme decreased by about 10% in the transition from the Ca2+ high-affinity form (10 microM free Ca2+ = E1 state) to the VO4(3-)-inhibited state (20 microM VO4(3-) = E2 state). The changes in the CD spectra did not show full reversibility upon reversing the E1-E2 transition, whereas those in the fluorescence spectra did. A temperature-dependent loss of alpha-helical content in the presence of Ca2+ was also observed. Intrinsic fluorescence measurements revealed an increase in fluorescence intensity upon addition of Ca2+. The change was fully reversed by ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. The increase in fluorescence intensity was partly reversed by adding ATP, an effect which is suggested to correspond to the "Ca2+-occluded" form of the ATPase. The steady-state level of the fluorescence intensity was stable for several minutes in the presence of 100 microM ATP. By contrast, the decrease of fluorescence intensity induced by limiting concentrations of ATP (= 1 microM) was only transient, indicating the decomposition of the phosphorylated intermediate of the ATPase and the reestablishment of the Ca2+ high-affinity form of the enzyme.  相似文献   

7.
Homologous aged and nonaged fluorescent organophosphorus conjugates of alpha-chymotrypsin (Cht) were used in a comparative spectroscopic study of the conformation of their active sites, employing the pyrene group as the fluorescent probe. Steady-state fluorescence measurements showed that the quantum yield of the pyrene probe which is stoichiometrically attached to the active site is ca. 20% lower in the aged conjugate, pyrenebutyl-O-P(O)(O-)-Cht (PBP-Cht), than in the nonaged conjugate, pyrenebutyl-O-P-(O)(OC2H5)-Cht (PBEP-Cht). Furthermore, fluorescence decay data indicate that quenching is dynamic and is not caused by oxygen. These data, together with collisional quenching data, imply that quenching originates in an internal interaction of the fluorophore with a group within the protein. Thus, interaction of the pyrene moiety with the polypeptide chain is significantly stronger in the aged than in the nonaged conjugate, implying a different orientation of the fluorophore with respect to the protein. Circular dichroism measurements, which reflect the asymmetry of the bound pyrene in the ground state, as well as circularly polarized luminescence studies, which reflect its asymmetry in the excited state, also show that the relative configuration of the pyrene moiety and the polypeptide chain is significantly altered upon aging. Aged conjugates obtained by use of various fluorescenct organophosphates [pyrenebutyl-O-P(O)Cl2, pyrenebutyl-O-P(O)(p-nitrophenoxy)Cl, pyrenebutyl-O-P(O)(p-nitrophenoxy)2] exhibit similar spectroscopic features, thus substantiating the hypothesis that instantaneous aging, by use of pyrenebutyl-O-P(O)Cl2, and dynamic aging, by gradual removal of an aryloxy group, yield a similar product. This finding provides strong support for the formation of a P-O- moiety in the aged conjugates, since the only expected common product of the two processes is PB-O-P(O)(O-)-Cht. Formation of excimers of the pyrene-containing organophosphorylchymotrypsin conjugates at concentrations above 3 X 10(-6) M is also reported.  相似文献   

8.
Mastoparan B (MP-B) is an antimicrobial cationic tetradecapeptide amide isolated from the venom of the hornet Vespa basalis. NMR spectroscopy was used to study the membrane associated structures of MP-B in various model membrane systems such as 120 mM DPC micelles, 200 mM SDS micelles, and 3%(w/v) DMPC/DHPC (1:2) bicelles. In all systems, MP-B has an amphiphilic alpha-helical structure from Lys2 to Leu14. NOESY experiments performed on MP-B in nondeuterated SDS micelles show that protons in the indole ring of Trp9 are in close contact with methylene protons of SDS micelles. T1 relaxation data and NOE data revealed that the bound form of MP-B may be dominant in SDS micelles. The interactions between MP-B and zwitterionic DPC micelles were much weaker than those between MP-B and anionic SDS micelles. By substitution of Trp9 with Ala9, the pore-forming activity of MP-B was decreased dramatically. All of these results imply that strong electrostatic interactions between the positively charged Lys residues in MP-B and the anionic phospholipid head groups must be the primary factor for MP-B binding to the cell membrane. Then, insertion of the indole ring of Trp9 into the membrane, as well as the amphiphilic alpha-helical structures of MP-B may allow MP-B to span the lipid bilayer through the C-terminal portion. These structural features are crucial for the potent antibiotic activities of MP-B.  相似文献   

9.
Using (1)H NMR spectroscopy, the base-pair opening dynamics of an antiparallel foldback DNA triplex and the corresponding duplex has been characterized via catalyzed imino proton exchange. The triplex system was found to be in an equilibrium between a duplex and a triplex form. The exchange rate between the two forms (i.e., the on/off-rate of the third strand) was measured to be 5 s(-1) at 1 degrees C, and the base-pair dynamics of both forms were investigated separately. Both Watson-Crick and reverse Hoogsteen base pairs were found to have base-pair lifetimes in the order of milliseconds. The stability of the Watson-Crick base pairs was, however, substantially increased in the presence of the third strand. In the DNA triplex, the opening dynamics of the reverse Hoogsteen base pairs was significantly faster than the dynamics of the Watson-Crick pairs. We were able to conclude that, for both Watson-Crick and reverse Hoogsteen base pairs, spontaneous and individual opening from within the closed base triplet is the dominating opening pathway.  相似文献   

10.
Specific heme protons for the majority of resonances in the downfield resolved region of equine met-azido myoglobin have been assigned using solely the two-dimensional 1H NMR experiments NOESY and COSY. Metazido myoglobin provides a useful test case for the applicability of these techniques to paramagnetic proteins for the following reasons. First met-azido myoglobin is a mixed spin-state protein, with significantly shorter relaxation times and broadened lines relative to pure low-spin systems (eg., met-cyano myoglobin). Second, met-azido hemoglobin and met-azido myoglobin are important as models for the physiological forms of hemoglobin. Third, a few sperm whale met-azido myoglobin resonances have been previously assigned, which permits a comparison of assignments for these similar proteins, and a check of the method presented here.  相似文献   

11.
At low ionic strength, apoplastocyanin forms an unfolded state under non-denaturing conditions. The refolding of this state is sufficiently slow to allow real-time NMR experiments to be performed. Folding of apoplastocyanin, initiated by the addition of salt and followed by real-time 2D 1H-15N heteronuclear single quantum coherence (HSQC) spectroscopy, is highly cooperative. A concomitant increase in the intensity of both sequential and long-range nuclear Overhauser effects (NOEs) between backbone amide protons in successive acquisitions of 1H-15N HSQC-NOESY-HSQC spectra provides the first direct observation of the development of structure-specific NOEs as a protein folds. Our results show that the local and long-range interactions in the native apoplastocyanin are formed simultaneously, consistent with highly cooperative formation of the native structure.  相似文献   

12.
Photo-CIDNP NMR spectroscopy is a powerful method for investigating the solvent accessibility of histidine, tyrosine and tryptophan residues in a protein. When coupled to real-time NMR, this technique allows changes in the environments of these residues to be used as a probe of protein folding. In this paper we describe experiments performed to monitor the refolding of ribonuclease A following dilution from a high concentration of chemical denaturant. These experiments provide a good example of the utility of this technique which provides information that is difficult to obtain by other biophysical methods. Real-time photo-CIDNP measurements yield residue-specific kinetic data pertaining to the folding reaction, interpreted in terms of current knowledge of the folding of bovine pancreatic ribonuclease A.  相似文献   

13.
A peptide comprising the N-terminal 38 residues of human apolipoprotein C-I (apoC-I(1-38)) was synthesized using solid-phase methods and its solution conformation studied by CD and 1H NMR spectroscopy. The CD data indicate that apoC-I(1-38) has a similar helical content (55%) in the presence of saturating amounts of SDS or egg yolk lysophosphatidylcholine. A structural ensemble of SDS-bound apoC-I(1-38) was calculated from 464 NOE-based distance restraints using distance geometry methods. ApoC-I(1-38) adopts a helical structure between residues V4 and K30 and an extended C-terminus from Q31 when associated with SDS. The region K12-G15 undergoes slow conformational exchange as indicated by above-average amide resonance linewidths, large temperature coefficients, and fast exchange (< 2 h) of backbone amide protons with deuterium. The mobility of K12-G15 is reflected in the poorly defined dihedral angles of K12 and E13 in the calculated ensemble of structures. The average structure of apoC-I(1-38) is curved toward its hydrophobic face with bends of 125 degrees, centered at K12/E13, and 150 degrees, centered at K21. This curvature appears to be driven by the interaction of two hydrophobic clusters, one formed by residues L8, L11, F14, and L18, and the other by L25, I26, and I29, with the amphiphile SDS. Based on our present structural definition of apoC-I(1-38) and the previously obtained structure of the fragment apoC-I(35-53), we propose the secondary structure of intact apolipoprotein C-I.  相似文献   

14.
15.
M J Bogusky  C M Dobson  R A Smith 《Biochemistry》1989,28(16):6728-6735
Human urinary-type plasminogen activator (urokinase) and proteolytic fragments corresponding to the kringle, EGF-kringle, and protease domains have been examined by 1H NMR spectroscopy. The intact protein shows a very well-resolved spectrum for a molecule of this size (MW 54,000), with resonance line widths not greatly increased from those of the isolated domains. On increasing the temperature, the protein at pH values close to 4 was found to undergo two distinct and reversible conformational transitions. These were identified, by comparison with spectra of the proteolytic fragments, as the unfolding of the kringle (and EGF) domains (at approximately 42 degrees C) and of a segment of the protease domain (at approximately 60 degrees C). The remaining segment of the protease domain showed persistent structure to at least 85 degrees C at pH 4; only at lower pH values could complete unfolding be achieved. The results indicate that the structures and stabilities of the isolated domains are closely similar to those in the intact protein and suggest that there is a degree of independent motion at least between the kringle and protease domains.  相似文献   

16.
The solution conformations of uridine diphosphoglucose (UDP-Glc) under a variety of conditions (solvent, ionic strength, various mono- and divalent cations) have been studied by NMR spectroscopy (1H, 13C, 31P, and 25Mg). In the case of divalent cations (Ca2+, Mg2+, Mn2+) the phosphate oxygens are the preferred coordination sites and analysis of the 25Mg linewidths of solutions with various [Mg2+]/[UDP-Glc] ratios, indicates that the 1:1 Mg2+ UDP-Glc complex is the major species. From 13C relaxation data and hydrodynamic theory, it has been demonstrated that under all conditions UDP-Glc adopts a fairly extended overall shape and that magnesium ions lead to a significant increase in the average length of the UDP-Glc molecule as compared to monovalent cations. Thus, one of the roles of the metal ion in enzymic reactions involving nucleotide sugars may be to preorganize the nucleotide sugar.  相似文献   

17.
G I Rhyu  W J Ray  J L Markley 《Biochemistry》1985,24(18):4746-4753
1H and 31P NMR pH titrations were conducted to monitor changes in the environment and protonation state of the histidine residues and phosphoserine group of rabbit muscle phosphoglucomutase on binding of metal ions at the activating site and of substrate (glucose phosphate) at the catalytic site. Imidazole C epsilon-H signals from 8 of the 10 histidines present in the free enzyme were observed in 1H NMR spectra obtained by a spin-echo pulse sequence at 470 MHz; their pH (uncorrected pH meter reading of a 2H2O solution measured with a glass electrode standardized with H2O buffer) titration properties (in 99% 2H2O) were determined. Three of these histidine residues, which have pKa values ranging from 6.5 to 7.9, exhibited an atypical pH-dependent perturbation of their chemical shifts with a pHmid of 5.8 and a Hill coefficient of about 2. Since none of the observed histidines has a pKa near 5.8, it appears that these three histidines interact with a cluster consisting of two or more groups which become protonated cooperatively at this pH. Binding of Cd2+ at the activating site of the enzyme abolishes the pH-dependent transition of these histidines; hence, the putative anion cluster may constitute the metal ion binding site, or part of it. Two separate 31P NMR peaks from phosphoserine-116 of the phosphoenzyme were observed between pH 6 and 9. Apparently, the metal-free enzyme exists as a pH-dependent mixture of conformers that provide two different environments, I and II, for the enzymic phosphate group; the transition of the phosphate group between these two environments is slow on the NMR time scale.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The addition of Adriamycin to a solution containing flavin mononucleotide (FMN) resulted in an upfield shift in the signals of the aromatic ring protons H(6,9) and the 8α, 7α methyl protons of FMN. The chemical shift of the H(6,9) and of the 8α and 7α methyl proton signals of FMN decreased from 7.92, 2.56 and 2.46 ppm, respectively, in the absence of Adriamycin to 7.61, 2.42 and 2.36 ppm, respectively, at 3 mM Adriamycin. Concomitant increases in the linewidth of aromatic and methyl proton siqnals of FMN were also observed. Variable temperature studies over the range of 5 to 43° showed an increase in the chemical shift of both the aromatic and aliphatic proton signals with increasing temperatures. These results suggest that FMN and Adriamycin form a complex via ring-ring stacking.  相似文献   

19.
The thermodynamic stability of staphylococcal nuclease was studied against the variation of both temperature and pressure by utilizing (1)H NMR spectroscopy at 750 MHz in 20 mM Mes buffer containing 99.9 % (2)H(2)O, pH 5.3. Equilibrium fractions of folded and unfolded protein species were evaluated with the proton signals of two histidine residues as monitor in the pressure range of 30-3300 bar and in the temperature range of 1.5 degrees C-35 degrees C. From the multi-parameter fit of the experimental data to the Gibbs energy equation expressed as a simultaneous function of pressure and temperature, we determined the compressibility change (Deltabeta), the volume change at 1 bar (DeltaV degrees ) and the expansivity change (Deltaalpha) upon unfolding among other thermodynamic parameters: Deltabeta=0.02(+/-0.003) ml mol(-1) bar(-1); Deltaalpha=1.33(+/-0.2) ml mol(-1) K(-1); DeltaV degrees =-41.9(+/-6. 3) ml mol(-1) (at 24 degrees C); DeltaG degrees =13.18(+/-2) kJ mol(-1) (at 24 degrees C); DeltaC(p)=13.12(+/-2) kJ mol(-1) K(-1); DeltaS degrees =0.32(+/-0.05) kJ mol(-1) K(-1 )(at 24 degrees C). The result yields a three-dimensional free energy surface, i.e. the free energy-landscape of staphylococcal nuclease on the P-T plane. The significantly positive Deltabeta and Deltaalpha values suggest that, in the pressure-denatured state, staphylococcal nuclease forms a loosely packed and fluctuating structure. The slight but statistically significant difference between the unfolding transitions of the His8 and His124 environments is considered to reflect local fluctuations in the native state, leading to pre-melting of the His124 environment prior to the cooperative unfolding of the major part of the protein.  相似文献   

20.
Phospholipid metabolism in cancer cells monitored by 31P NMR spectroscopy   总被引:5,自引:0,他引:5  
Addition of choline, ethanolamine, or hemicholinium-3 (a choline kinase inhibitor) to the perfusate of human breast cancer cells monitored by 31P NMR spectroscopy resulted in significant changes to phosphomonoester (PME) and phosphodiester (PDE) signals. These results enable us to assign the PMEs to phosphcholine (PC) and phosphoethanolamine (PE), the PDEs to glycerophosphorylcholine and glycerophosphorylethanolamine, and to define the pathways producing them. The PMEs are products of choline and ethanolamine kinases, the first steps in phospholipid synthesis; and the PDEs are substrates of glycerophosphorylcholine phosphodiesterase, the last step in phospholipid catabolism. Furthermore, PC and PE peaks are twice as intense in cells at log phase versus confluency. We also observed these signals in vivo in human colon and breast tumors grown in mice. Since PMEs are low in most nonproliferating tissues, they could form a basis for noninvasive diagnosis. Also, PE and PC are situated between the control enzymes of two major synthetic pathways and will allow noninvasive 31P NMR studies of these pathways in intact cells and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号