首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J A Carver  J H Bradbury 《Biochemistry》1984,23(21):4890-4905
The resolved 1H NMR resonances of the aromatic region in the 270-MHz NMR spectrum of sperm whale, horse, and pig metmyoglobin (metMb) have been assigned, including the observable H-2 and H-4 histidine resonances, the tryptophan H-2 resonances, and upfield-shifted resonances from one tyrosine residue. The use of different Mb species, carboxymethylation, and matching of pK values allows the assignment of the H-4 resonances, which agree in only three cases out of seven with scalar-correlated two-dimensional NMR spectroscopy assignments by others. The conversion to hydroxymyoglobin at high pH involves rearrangements throughout the molecule and is observed by many assigned residues. In sperm whale ferric cyanomyoglobin, nine H-2 and eight H-4 histidine resonances have been assigned, including the His-97 H-2 resonance and tyrosine resonances from residues 103 and 146. The hyperfine-shifted resonances from heme and near-heme protons observe a shift with a pK = 5.3 +/- 0.3 (probably due to deprotonation of His-97, pK = 5.6) and another shift at pK = 10.8 +/- 0.3. The spectrum of high-spin ferrous sperm whale deoxymyoglobin is very similar to that of metMb, which allows the assignment of seven surface histidine H-2 and H-4 resonances and also resonances from the two tryptophan residues and one tyrosine. In diamagnetic sperm whale (carbon monoxy)myoglobin (COMb), 10 His H-2 and 11 His H-4 resonances are observed, and 8 H-2 and 9 H-4 resonances are assigned, including His-64 H-4, the distal histidine. This important resonance is not observed in sperm whale oxymyoglobin, which in general shows very similar titration curves to COMb. Histidine-36 shows unusual titration behavior in the paramagnetic derivatives but normal behavior in the diamagnetic derivatives, which is discussed in the accompanying paper [Bradbury, J. H., & Carver, J. A. (1984) Biochemistry (following paper in this issue)].  相似文献   

2.
The tautomeric state of histidines in myoglobin   总被引:4,自引:1,他引:3       下载免费PDF全文
1H-15N HMQC spectra were collected on 15N-labeled sperm whale myoglobin (Mb) to determine the tautomeric state of its histidines in the neutral form. By analyzing metaquoMb and metcyanoMb data sets collected at various pH values, cross-peaks were assigned to the imidazole rings and their patterns interpreted. Of the nine histidines not interacting with the heme in sperm whale myoglobin, it was found that seven (His-12, His-48, His-81, His-82, His-113, His-116, and His-119) are predominantly in the N epsilon2H form with varying degrees of contribution from the Ndelta1 H form. The eighth, His-24, is in the Ndelta1H state as expected from the solid state structure. 13C correlation spectra were collected to probe the state of the ninth residue (His-36). Tentative interpretation of the data through comparison with horse Mb suggested that this ring is predominantly in the Ndelta1H state. In addition, signals were observed from the histidines associated with the heme (His-64, His-93, and His-97) in the 1H-15N HMQC spectra of the metcyano form. In several cases, the tautomeric state of the imidazole ring could not be derived from inspection of the solid state structure. It was noted that hydrogen bonding of the ring was not unambiguously reflected in the nitrogen chemical shift. With the experimentally determined tautomeric state composition in solution, it will be possible to broaden the scope of other studies focused on the electrostatic contribution of histidines to the thermodynamic properties of myoglobin.  相似文献   

3.
The amino groups of ribonuclease A (RNase-A) have been methylated with formaldehyde and borohydride to provide observable resonances for proton magnetic resonance (PMR) studies. Although enzymatic activity is lost, PMR difference spectroscopy and PMR studies of thermal denaturation show native conformation is largely preserved in methylated RNase-A. Resonances corresponding to the NH2-terminal alpha-amino and 10 xi-amino N-methyl groups are titrated at 220 MHz to obtain pK values. After correction for the effects of methylation, using values previously derived from model compound studies, a pK of 6.6 is found for the alpha-amino group, a pK of 8.6 for the xi-amino group of lysine-41 and pK values ranging from 10.6 to 11.2 for the other lysine xi-amino groups. Interactions between lysine-7 and lysine-41 or between the alpha-amino and xi-amino groups of lysine-1 have been proposed to account for deviations from simple titration behaviour. The correct continuities for the titration curves of the histidine H-2 proton resonances have been confirmed by selective deuteration of the H-2 protons. Titration curves for the H-2 proton resonances of histidine-12 and histidine-119 of methylated RNase-A show deviations from the titration curves for the native enzyme, indicating some alteration of the active-site conformation. In the presence of phosphate, titration curves for the H-2 proton resonances of histidine-12 and histidine-119 of methylated RNase-A indicate binding of phosphate at the active site, but these curves continue to show deviations from the titration behaviour of native RNase-A. The titration curve for the N-methyl resonance of lysine-41 is perturbed considerably by the presence of phosphate, which indicates a possible catalytic role for lysine-41.  相似文献   

4.
The titration behavior of individual tyrosine residues of myoglobins has been studied by observing the pH dependence of the chemical shifts of Czeta and Cgamma of these residues in natural abundance of 13C Fourier transform NMR spectra (at 15.18 MHz, in 20-mm sample tubes, at 37 degrees) of cyanoferrimyoglobins from sperm whale, horse, and red kangaroo. A comparison of the pH dependence of the spectra of the three proteins yielded specific assignments for the resonance of Tyr-151 (sperm whale) and Tyr-103 (sperm whale and horse). Selective proton decoupling yielded specific assignments for Czeta of Tyr-146 of the cyanoferrimyoglobins from horse and kangaroo, but not the corresponding assignment for sperm whale. The pH dependence of the chemical shifts indicated that only Tyr-151 and Tyr-103 are titratable tyrosine residues. Even at pH 12, Tyr-146 did not begin to titrate. The titration behavior of C zeta and Cgamma of Tyr-151 of sperm whale cyanoferrimyoglobin yielded a single pK value of 10.6. The pH dependence of the chemical shift of each of the resonances of Tyr-103 of the cyanoferrimyoglobins from horse and sperm whale could not be fitted with the use of a single pK value, but was consistent with two pK values (about 9.8 and 11.6). Furthermore, the resonances of Czeta and Cgamma of Tyr-103 broadened at high pH. The titration behavior of the tyrosines of sperm whale carbon monoxide myoglobin and horse ferrimyoglobin was also examined. A comparison of all the experimental results indicated that Tyr-151 is exposed to solvent, Tyr-146 is not exposed, and Tyr-103 exhibits intermediate behavior. These results for myoglobins in solution are consistent with expectations based on the crystal structure.  相似文献   

5.
Reconstitution of liver fluke (Dicrocoelium dendriticum) apo-hemoglobin with hemins selectively deuterated at specific positions has permitted the assignment of several heme resonances in the proton nuclear magnetic resonance spectrum of the Met-aquo and Met-cyano forms of the holoprotein. It was established that in the Met-aquo form the meso protons resonate at positions characteristic of a six-co-ordinated in-plane iron. From this, we deduced that the Met-aquo species retains a bound water molecule at pH values as low as 4.5. The orientation of the proximal histidine imidazole ring with respect to the heme group in the cavity was determined through the identification of the heme methyl signals and the analysis of the hyperfine shift pattern in the Met-cyano hemoglobin proton nuclear magnetic resonance spectrum. Compared to sperm whale myoglobin, the heme appears to be rotated by 180 degrees about the alpha, gamma meso-axis. Protein isomers with the heme group in a reversed orientation were not detected, even shortly after reconstitution. In the Met-cyano form, the resonances most affected by the Bohr transition were shown to arise from the heme propionates.  相似文献   

6.
Assignments of resonances of the heme and distal amino acid protons in spectra of the CO and O2 complexes of sperm whale myoglobin are reported. These resonances provide information on the conformation of the heme pocket. For oxymyoglobin, the assignments of the heme meso protons disagree with those proposed previously on the basis of partial deuteration experiments. Rapid ring flips about the C beta-C gamma bond are detected for Phe-CD1. Recent claims for two conformational substates of valine-E11 in carbonmonoxymyoglobin (Bradbury, J.H. and Carver, J.A. (1984) Biochemistry 23, 4905-4913) are shown to be in error. The pK of His-97 (FG3) in carbonmonoxymyoglobin has been determined (pK = 5.9). This residue appears to influence many spectroscopic properties of myoglobin. The distal His-E7 in carbonmonoxymyoglobin has pK less than 5.0. Differences in the heme pocket conformation in the CO complexes of myoglobin and leghemoglobin are discussed. These differences may be influential in O2 and CO association reactions.  相似文献   

7.
The 1H NMR characteristics of the high-spin metmyoglobin from the mollusc Aplysia limacina have been investigated and compared with those of the myoglobin (Mb) from sperm whale. Aplysia metMb exhibits a normal acid----alkaline transition with pK approximately 7.8. In the acidic form, the heme methyl and meso proton resonances have been assigned by 1H NMR using samples reconstituted with selectively deuterated hemins and in the latter case by 2H NMR as well. On the basis of the methyl peak intensities and shift pattern, heme rotational disorder could be established in Aplysia Mb; approximately 20% of the protein exhibits a reversed heme orientation compared to that found in single crystals. Three meso proton resonances have been detected in the upfield region between -16 and -35 ppm, showing that the chemical shift of such protons can serve as a diagnostic probe for a pentacoordinated active site in hemoproteins, as previously shown to be the case in model compounds. The temperature dependence of the chemical shift of the meso proton signals deviates strongly from the T-1 Curie behavior, reflecting the presence of a thermally accessible Kramers doublet with significant S = 3/2 character. Nuclear Overhauser effect, NOE, measurements on Aplysia metMb have provided the assignment of individual heme alpha-propionate resonances and were used to infer spatial proximity among heme side chains. The hyperfine shift values for assigned resonances, the NOE connectivities, and the NOE magnitudes were combined to reach a qualitative picture of the rotational mobility and the orientation of the vinyl and propionate side chains of Aplysia metMb relative to sperm whale MbH2O.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The contribution of the interaction of chloride ions with deoxy and oxyhemoglobin to the Bohr effect can be described by a simple binding model. Applying this model to experiment data reveals that at physiological pH and ionic strength about half of the release of Bohr protons is due to a difference in chloride ion binding to deoxy- and oxyhemoglobin. The chloride-independent part of the Bohr effect corresponds with the shift in pK which His-146 beta shows upon oxygenation. The proton absorptioon by hemoglobin observed upon oxygenation below pH 6 is apparently due to a chloride-ion-induced proton uptake, which is larger for oxyhemoglobin than for deoxyhemoglobin. The analysis of the experimental data indicates the existence of only two oxygen-linked chloride ion binding sites in both deoxy and oxyhemoglobin. In deoxyhemoglobin the binding sites most likely consist of Val-1 alpha of one chain and Arg-141 alpha of the partner chain. The sites in oxyhemoglobin consist of groups with a pK value in the neutral pH range; they do not contain lysyl or arginyl residues.  相似文献   

9.
The titration curves of the histidine residues of porcine lutropin and its isolated alpha and beta subunits have been determined by following the pH-dependence of the imidazole C-2 proton resonances. The isolated alpha subunit contains a buried histidine, whose C-2 proton does not exchange with solvent, and which has the unusually low pK of 3.3. In the native hormone all the histidine residues have relatively normal pK values (between 5.7 and 6.2). The four histidine C-2 proton resonances have been assigned to specific residues in the amino-acid sequence, by means of deuterium and tritium exchange experiments on the alpha subunit and its des(92-96) derivative. The histidine with a pK of 3.3 is identified as His-alpha87. The effects of pH on tyrosine and methyl proton resonances show that the titration of His-87 in the isolated alpha subunit is accompanied by a significant conformational change which involves loosening of the protein structure but which is not a normal unfolding transition. The role of conformational changes in the generation of biological activity by subunit association in the glycoprotein hormones is discussed.  相似文献   

10.
I M Russu  N T Ho  C Ho 《Biochemistry》1982,21(20):5031-5043
High-resolution proton nuclear magnetic resonance (NMR) spectroscopy at 250 MHz has been used to titrate 22 individual surface histidyl residues (11 per alpha beta dimer) of human normal adult hemoglobin in both the deoxy and the carbon monoxy forms. The proton resonances of beta 2, beta 143, and beta 146 histidyl residues are assigned by a parallel 1H NMR titration of appropriate mutant and chemically modified hemoglobins. The pK values of the 22 histidyl residues investigated are found to range from 6.35 to 8.07 in the deoxy form and from 6.20 to 7.87 in the carbon monoxy form, in the presence of 0.1 M Bis-Tris or 0.1 M Tris buffer in D2O with chloride ion concentrations varying from 5 to 60 mM at 27 degrees C. Four histidyl residues in the deoxy form and one histidyl residue in the carbon monoxy form are found to have proton nuclear magnetic resonance titration curves that deviate greatly from that predicted by the simple proton dissociation equilibrium of a single ionizable group. The proton nuclear magnetic resonance data are used to ascertain the role of several surface histidyl residues in the Bohr effect of hemoglobin under the above-mentioned experimental conditions. Under these experimental conditions, we have found that (i) the beta 146 histidyl residues do not change their electrostatic environments significantly upon binding of ligand to deoxyhemoglobin and, thus, their contribution to the Bohr effect is negligible, (ii) the beta 2 histidyl residues have a negative contribution to the Bohr effect, and (iii) the total contribution of the 22 histidyl residues investigated here to the Bohr effect is, in magnitude, comparable to the Bohr effect observed experimentally. These results suggest that the molecular mechanism of the Bohr effect proposed by Perutz [Perutz, M.F. (1970) Nature (London) 228, 726-739] is not unique and that the detailed mechanism depends on experimental conditions, such as the solvent composition.  相似文献   

11.
The titration curves of the C-2 histidine protons of bovine pancreatic ribonuclease A in the presence of several dideoxynucleoside monophosphates (dNpdN) were studied by means of proton nuclear magnetic resonance at 270 MHz in order to obtain information on the ligand--RNase A interaction. The changes in the chemical shift and pKs of the C-2 proton resonances of His-12, -48, -119 in the complexes RNase A--dNpdN were smaller than those previously found when the enzyme interacted with mononucleotides. The pK2 of His-12 was not affected by the interaction of the enzyme with these ligands, whereas, the perturbation of the pK2 of His-119 was clearly dependent on the nature of the ligand. If there is a pyrimidine nucleoside at the 3' side of the dideoxynucleoside monophosphates, as in TpdA and TpT, an enhancement due to the well known interaction of the phosphate in p1, the catalytic site, was found. However, when there is a purine nucleoside, as in dApT and dApdA, a decrease in the pK2 value was observed and we propose that in such cases the phosphate group interacts in a secondary phosphate binding site, p2. The results obtained suggest the existence of different specific interactions depending on the structure of the dideoxynucleoside monophosphate studied.  相似文献   

12.
F Jordan  L Polgar  G Tous 《Biochemistry》1985,24(26):7711-7717
A technique was developed to exchange the backbone -N-H protons in D2O in the native subtilisins Carlsberg and BPN (Novo) that resulted in clearly resolved proton resonances in the aromatic region of the nuclear magnetic resonance spectrum. pH titration curves for four of the five histidine C2-H resonances in subtilisin Carlsberg and five of the six in subtilisin BPN between 7.5 and 8.8 ppm downfield from 4,4-dimethyl-4-silapentane-1-sulfonic acid sodium salt provided microscopic pKa's between 6.3 and 7.2 for both sources of the enzyme at ambient (approximately 22 degrees C) probe temperature. A resonance that titrated with a pKapp of 7.35 +/- 0.05 was observed in the 1H spectra only of the diisopropylphosphoryl derivatives of the subtilisins from both sources. The 31P NMR pH titration of the same preparations under identical conditions of solvent (D2O) and temperature gave a pKapp = 7.40 +/- 0.05 of the single titratable resonance. Both observations must pertain to His-64 at the active center. A resonance smaller than the others and titrating with a pKapp of 7.2 could also be observed in the native enzymes. This resonance was assigned to the catalytic center histidine since its pK corresponded to that derived from kinetic studies. No major perturbations in the chemical shifts or the pK's derived from the pH dependence of the observed resonances were apparent in the presence of saturating concentrations of the two putative transition-state analogues phenylboronic acid and bis [3,5-(trifluoromethyl)phenyl]boronic acid and in monoisopropylphosphorylsubtilisin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
M R Busch  J E Mace  N T Ho  C Ho 《Biochemistry》1991,30(7):1865-1877
Assessment of the roles of the carboxyl-terminal beta 146 histidyl residues in the alkaline Bohr effect in human normal adult hemoglobin by high-resolution proton nuclear magnetic resonance spectroscopy requires assignment of the resonances corresponding to these residues. Previous resonance assignments in low ionic strength buffers for the beta 146 histidyl residue in the carbonmonoxy form of hemoglobin have been controversial [see Ho and Russu (1987) Biochemistry 26, 6299-6305; and references therein]. By a careful spectroscopic study of human normal adult hemoglobin, enzymatically prepared des(His146 beta)-hemoglobin, and the mutant hemoglobins Cowtown (beta 146His----Leu) and York (beta 146His----Pro), we have resolved some of these conflicting results. By a close incremental variation of pH over a wide range in chloride-free 0.1 M N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid buffer, a single resonance has been found to be consistently missing in the proton nuclear magnetic resonance spectra of these hemoglobin variants. The spectra of each of these variants show additional perturbations; therefore, the assignment has been confirmed by an incremental titration of buffer conditions to benchmark conditions, i.e., 0.2 M phosphate, where the assignment of this resonance is unambiguous. The strategy of incremental titration of buffer conditions also allows extension of this resonance assignment to spectra taken in 0.1 M [bis(2-hydroxyethyl)amino]tris(hydroxymethyl)methane buffer. Participation of the beta 146 histidyl residues in the Bohr effect has been calculated from the pK values determined for the assigned resonances in chloride-free 0.1 M N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid buffer. Our results indicate that the contribution of the beta 146 histidyl residues is 0.52 H+/hemoglobin tetramer at pH 7.6, markedly less than the 0.8 H+/hemoglobin tetramer estimated by study of the mutant hemoglobin Cowtown (beta 146His----Leu) by Shih and Perutz [(1987) J. Mol. Biol. 195, 419-422]. We have found that at least two histidyl residues in the carbonmonoxy form of this mutant have pK values that are perturbed, and we suggest that these pK differences may in part account for this discrepancy. Furthermore, summation of the positive contribution of the beta 146 histidyl residues and the negative contribution of the beta 2 histidyl residues to the maximum Bohr effect measured in 0.1 M N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid buffer suggests that additional sites in the hemoglobin molecule account for proton release upon ligation greater than the contribution of the beta 146 histidyl residues.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Proton NMR spectroscopy was applied to myoglobin in the ferric, water-liganded form (metMbH2O) and the apo form (apoMb) to probe the structure and stability of the latter. Proteins from sperm whale and horse skeletal muscles were studied to simplify the spectral assignment task. Nuclear Overhauser effects and the response of chemical shifts to variations of pH were used as indicators of residual native holoprotein structure in the apoprotein. The investigation was focused in the histidine side chains and their environment. In metMbH2O, the resonances of all imidazole rings not interacting with the heme were assigned by applying standard two-dimensional methods. These assignments were found to differ from those reported elsewhere [Carver, J. A., & Bradbury, J. H. (1984) Biochemistry 23, 4890-4905] except for His-12, -113, and -116. Only one histidine (His-36) has a pK(a) higher than 7, two (His-48 and His-113) have a pK(a) lower than 5.5, and two (His-24 and His-82) appear not to titrate between pH 5.5 and pH 10. In the apoproteins, the signals of His-113 and His-116, as well as those of His-24, -36, -48, and -119 previously assigned in the horse globin [Cocco, M. J.. & Lecomte, J. T. J. (1990) Biochemistry 29, 11067-11072], could be followed between pH 5 and pH 10. A comparison to the holoprotein data indicated that heme removal has limited effect on the pK(a) and the surroundings of these residues. Five additional histidines which occur in the two helices and connecting loops forming the heme binding site were identified in the horse apoprotein. Four of these were found to have pK(a) values lower than that expected of an exposed residue. The NOE and titration data were proposed to reflect the fact that several holoprotein structural elements, in particular outside the heme binding site, are maintained in the apoprotein. In the heme binding region of the apoprotein structure, the low pK(a)'s suggest local environments which are resistant to protonation.  相似文献   

15.
The 270-MHz proton NMR spectra of cobrotoxin from Naja naja atra were observed in 2H2O solution. The pKa value (5.93) of His-32 is slightly lower than the pKa value (6.65) of the reference model of N-acetylhistidine methylamide, because of the electrostatic interaction with Arg-33 and Asp-31. The pKa value (5.3--5.4) of His-4 is appreciably low, because of the interaction with the positively charged guanidino group possibly of Arg-59. The hydrogen-deuterium exchange rates in 2H2O solution were measured of cobrotoxin and imidazole-bearing models. The second-order rate constants of N-acetylhistidine methylamide, N-acetylhistidine and imidazole acetic acid satisfy the Br?nsted relation. With reference to this Br?nsted relation, the imidazole ring of His-32 is confirmed to be exposed. The imidazole ring of His-4 is also exposed and the exchange rate is excessively promoted by the presence possibly of Arg-59 in the proximity. All the methyl proton resonances are assigned to amino-acid types, by conventional double-resonance method and more effectively by the spin-echo double-resonance method. Eight methyl proton resonances are identified as due to the gamma and/or delta-methyl groups of Val-46, Leu-1, Ile-50 and Ile-52 residues. The proximity of aromatic ring protons and methyl protons is elucidated by the analyses of nulcear Overhauser effect enhancements. The aromatic proton resonances of Trp-29 are affected by the ionizable groups of Asp-31, His-32 and Tyr-35. The methyl groups of Ile-50 are in the proximity to the aromatic ring of Trp-29 and the methyl groups of Ile-52 are in the proximity to Tyr-25. The highest-field methyl proton resonance is due to a threonine residue in the proximity to His-4. The appreciable temperature-dependent chemical shift of this methyl proton resonance suggests a temperature-dependent local conformational equilibrium around the His-4 residue of the first loop of the cobrotoxin molecule.  相似文献   

16.
Hexacyanochromate ion, (Cr(CN)6)3-, was applied to ribonuclease T1 (RNase T1), which specifically cleaves RNA chains at guanylic acid residues. From kinetic studies, this anion was shown to bind to the active site of RNase T1 as a competitive inhibitor. Therefore, the line broadening effect of NMR resonances due to binding of (Cr(CN)6)3- was analyzed for the mapping of the active site of RNase T1. His-40 C2 proton resonance was significantly broadened, following His-92 C2 proton resonance upon binding of (Cr(CN)6)3-, while His-27 C2 proton resonance did not show any appreciable line broadening. Moreover, from the pH dependence of the line broadening effect, the binding of (Cr(CN)6)3- was shown to be controlled by the ionic state of Glu-58. Based on the present NMR results and x-ray crystal structure, the active site structure of RNase T1 is discussed.  相似文献   

17.
1H NMR spectroscopy at 100 MHz was used to determine the first-order rate constants for the 1H-2H exchange of the H-2 histidine resonances of RNase-A in 2H2O at 35 degrees C and pH meter readings of 7, 9, 10 and 10.5. Prolonged exposure in 2H2O at 35 degrees C and pH meter reading 11 caused irreversible denaturation of RN-ase-A. The rate constants at pH 7 and 9 agreed reasonably well with those obtained in 1H-3H exchange experiments by Ohe, J., Matsuo, H., Sakiyama, F. and Narita, K. [J. Biochem, (Tokyo) 75, 1197-1200 (1974)]. The rate data obtained by various authors is summarised and the reasons for the poor agreement between the data is discussed. The first-order rate constant for the exchange of His-48 increases rapidly from near zero at pH 9 (due to its inaccessibility to solvent) with increase of pH to 10.5 The corresponding values for His-119 show a decrease and those for His-12 a small increase over the same pH range. These changes are attributed to a conformational change in the hinge region of RNase-A (probably due to the titration of Tyr-25) which allows His-48 to become accessible to solvent. 1H NMR spectra of S-protein and S-peptide, and of material partially deuterated at the C-2 positions of the histidine residues confirm the reassignment of the histidine resonances of RNase-A [Bradbury, J. H. & Teh, J. S. (1975) Chem. Commun., 936-937]. The chemical shifts of the C-2 and C-4 protons of histidine-12 of S-peptide are followed as a function of pH and a pK' value of 6.75 is obtained. The reassignment of the three C-2 histidine resonances of S-protein is confirmed by partial deuteration studies. The pK' values obtained from titration of the H-2 resonances of His-48, His-105 and His-119 are 5.3, 6.5 and 6.0, respectively. The S-protein is less stable to acid than RNase-A since the former, but not the latter, shows evidence of reversible denaturation at pH 3 and 26 degrees C. His-48 in S-protein titrates normally and has a lower pK than in RN-ase-A probably because of the absence of Asp-14, which in RN-ase-A forms a a hydrogen bond with His-48 and causes it to be inaccessible to solvent, at pH values below 9.  相似文献   

18.
Proton NMR titration curves of the histidine Cepsilon-H resonances of the deoxy and oxy forms of human, horse, and sperm whale myoglobins (Mb) were determined and compared with the results for the met and azide forms. One extra titrating resonance (H-8) was observed for each deoxy-Mb compared with the corresponding met-Mb, and a further extra resonance (H-9) was observed for the oxy-Mb form. These resonances correspond to the two additional resonances previously described for azide-Mb [Hayes, M., Hagenmaier, H., & Cohen, J. S. (1975) J. Biol. Chem. 250, 7461--7472]. This new evidence prompts us to reassign these resonances to the near-heme histidine residues.  相似文献   

19.
Extensive 15N-NMR investigations of active-site amino acids were made possible by the solid-phase synthesis of the N-terminal pentadecapeptide of RNase A with selectively 15N-enriched amino acids. On complexation with S-protein a fully active RNase S' complex was obtained. The 15N resonances of the side chains of lysine-7 (N epsilon), glutamine-11 (N gamma), and histidine-12 (N pi, tau) were studied in the free synthetic peptide, in the RNase S' complex and in the nucleotide complexes RNase S' with 2'CMP, 3'CMP, and 5'AMP. The analysis of the 15N-1H couplings, the 15N line broadenings due to proton exchange, and the chemical shift values showed that, while the imidazole ring is directly involved in the peptide-protein interaction, the side chains of Lys-7 and Gln-11 do not contribute to this interaction. In the nucleotide complexes the resonances of His-12 and Gln-11 are shifted downfield. In the 2'CMP complex a doublet for the N tau signal of His-12 indicates a stable H bond between this nitrogen and the phosphate group of nucleotide. The other nucleotide influence the resonances of the imidazole group much less, possibly due to a slightly different orientation of the phosphate group. The downfield shift of the Gln-11 resonance indicates an interaction between the carbonyl oxygen of the amide group and the phosphate moiety of the nucleotide. The only observable effect of nucleotide complexation on the Lys-7 signal is line broadening due to reduced proton exchange. For comparison with the 15N-NMR titration curves of His-12 in RNase S' the 1H-NMR titration curves of RNase A were also recorded. Both shape and pK values were very similar for the 15N and the 1H titration curves. An extensive analysis of the protonation equilibria with several fitting models showed that a mutual interaction of the imidazole groups of the active-site histidines results in flat titration curves. The Hill plots of all resonances of the imidazole rings, including the 15N resonances, show a small inflection in the pH range 5.8-6.4. Since the existence of a diimidazole system is most likely in this pH range, the inflection could be interpreted as a disturbance of the mutual electrostatic interaction of the active-site histidines by a partial H-bond formation between the imidazole groups.  相似文献   

20.
Human muscle adenylate kinase (ATP:AMP phosphotransferase, EC 2.7.4.3.) was studied by 1H-nuclear magnetic resonance spectroscopy. The C-2 and C-4 proton resonances of the active-center histidine His-36 could be identified; the pK of His-36 was determined as 6.1. The pK of His-189 is very low (4.9) although it is located at the surface of the protein. Other resonance lines are discussed in comparison with NMR spectra of porcine adenylate kinase [McDonald et al. (1975) J. Biol. Chem. 250, 6947-6954]. A pH-dependent structural isomerization as shown by X-ray crystallography in the pig enzyme [Pai et al. (1977) J. Mol. Biol. 114, 37-45] was not observed for human adenylate kinase in solution. However, the binding of adenosine(5')pentaphospho(5')adenosine (Ap5A), a bisubstrate inhibitor, to adenylate kinase causes an overall change of the NMR spectrum indicative of a large conformational change of the enzyme. The exchange rate (koff) for Ap5A was estimated as 10 s-1 and decreases by addition of Mg2+. On the basis of these values and the known dissociation constant it is likely that the binding of Ap5A is a diffusion-controlled process kon being 10(8) M-1 s-1. In conclusion, the system Ap5A/Mg2+/human adenylate kinase, which has been studied by NMR spectroscopy and X-ray diffraction in parallel, is suitable for analyzing the induced fit postulated by Jencks for all kinase-catalyzed reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号