首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《The Journal of cell biology》1990,111(6):2861-2870
The RER retains a specific subset of ER proteins, many of which have been shown to participate in the translocation of nascent secretory and membrane proteins. The mechanism of retention of RER specific membrane proteins is unknown. To study this phenomenon in yeast, where no RER- specific membrane proteins have yet been identified, we expressed the human RER-specific protein, ribophorin I. In all mammalian cell types examined, ribophorin I has been shown to be restricted to the membrane of the RER. Here we ascertain that yeast cells correctly target, assemble, and retain ribophorin I in their RER. Floatation experiments demonstrated that human ribophorin I, expressed in yeast, was membrane associated. Carbonate (pH = 11) washing and Triton X-114 cloud-point precipitations of yeast microsomes indicated that ribophorin I was integrated into the membrane bilayer. Both chromatography on Con A and digestion with endoglycosidase H were used to prove that ribophorin I was glycosylated once, consistent with its expression in mammalian cells. Proteolysis of microsomal membranes and subsequent immunoblotting showed ribophorin I to have assumed the correct transmembrane topology. Sucrose gradient centrifugation studies found ribophorin I to be included only in fractions containing rough membranes and excluded from smooth ones that, on the basis of the distribution of BiP, included smooth ER. Ribosome removal from rough membranes and subsequent isopycnic centrifugation resulted in a shift in the buoyant density of the ribophorin I-containing membranes. Furthermore, the rough and density-shifted fractions were the exclusive location of protein translocation activity. Based on these studies we conclude that sequestration of membrane proteins to rough domains of ER probably occurs in a like manner in yeast and mammalian cells.  相似文献   

2.
Ribophorins I and II, two transmembrane glycoproteins characteristic of the rough endoplasmic reticulum (ER) are thought to be part of the translocation apparatus for proteins made on membrane bound polysomes. To study the stoichiometry between ribophorins and membrane-bound ribosomes we have determined the RNA and ribophorin content in rat liver microsomes or in microsomal subfractions of different density (i.e., ribosome content). The specificity of antibodies against the ribophorins was demonstrated by Western blot analysis of rat liver rough microsomes separated by 2-dimensional gel electrophoresis. The ribophorin content of microsomal subfractions was determined by indirect immunoprecipitation and for ribophorin I by a radioimmune assay. In the latter assay a molar ratio of ribophorin I/ribosomes approaching one was calculated for total microsomes as well as in the gradient subfractions. We therefore suggest that ribophorins mediate the binding of ribosomes to endoplasmic reticulum membranes or play a role in co-translational process which depend on this binding, such as the insertion of nascent polypeptides into the membrane or their transfer into the cisternal lumen.  相似文献   

3.
4.
The Sec61p complex forms the core element of the protein translocation complex (translocon) in the rough endoplasmic reticulum (rough ER) membrane. Translating or nontranslating ribosomes bind with high affinity to ER membranes that have been stripped of ribosomes or to liposomes containing purified Sec61p. Here we present evidence that the beta subunit of the complex (Sec61beta) makes contact with nontranslating ribosomes. A fusion protein containing the Sec61beta cytoplasmic domain (Sec61beta(c)) prevents the binding of ribosomes to stripped ER-derived membranes and also binds to ribosomes directly with an affinity close to the affinity of ribosomes for stripped ER-derived membranes. The ribosome binding activity of Sec61beta(c), like that of native ER membranes, is sensitive to high salt concentrations and is not based on an unspecific charge-dependent interaction of the relatively basic Sec61beta(c) domain with ribosomal RNA. Like stripped ER membranes, the Sec61beta(c) sequence binds to large ribosomal subunits in preference over small subunits. Previous studies have shown that Sec61beta is inessential for ribosome binding and protein translocation, but translocation is impaired by the absence of Sec61beta, and it has been proposed that Sec61beta assists in the insertion of nascent proteins into the translocation pore. Our results suggest a physical interaction of the ribosome itself with Sec61beta; this may normally occur alongside interactions between the ribosome and other elements of Sec61p, or it may represent one stage in a temporal sequence of binding.  相似文献   

5.
We found novel vesicles derived from rough endoplasmic reticulum (ER) in rice endosperm. The novel vesicles had characteristic structures different from that of the ER-derived protein body type I and the Golgi-derived dense vesicles. Immunocytochemical analysis revealed that the novel vesicles are derived directly from the aggregates of vacuolar storage proteins in the rough ER. In addition, BiP, an ER-resident molecular chaperone, was localized in the novel vesicles, but also in protein storage vacuoles (PSVs). These results suggest that the novel vesicles mediate transport of vacuolar storage proteins directly from the ER to PSVs in rice endosperm.  相似文献   

6.
Oligosaccharyltransferase has been purified from canine microsomal membranes as a protein complex with three nonidentical subunits of 66, 63/64, and 48 kDa. The 66- and 63/64-kDa subunits were found to be identical to ribophorins I and II, respectively. The ribophorins are integral membrane glycoproteins that were previously shown to be localized exclusively to the rough endoplasmic reticulum. The 48-kDa subunit (OST48) of the oligosaccharyltransferase complex is not a glycoprotein and is not recognized by antibodies to either ribophorin. Here, we describe the characterization of a cDNA clone that encodes OST48. Like ribophorins I and II, OST48 was found to be an integral membrane protein, with the majority of the polypeptide located within the lumen of the endoplasmic reticulum. OST48 does not show significant amino acid sequence homology to either ribophorin I or II. A 45-kDa integral membrane protein, designated WBP1, from the yeast Saccharomyces cerevisiae was found to be 25% identical in sequence to OST48. Recently, WBP1 was shown to be essential for in vivo and in vitro expression of oligosaccharyltransferase activity in yeast. We conclude that OST48 and WBP1 are homologous gene products.  相似文献   

7.
Highly purified rough endoplasmic reticulum and three subfractions of golgi were prepared from 105,000g pellet of the homogenate by centrifugation in floatation and sedimentation discontinuous sucrose gradients. Highly purified plasma membranes were also prepared from 9,000g pellet of the same homogenates for assessment under the same experimental conditions. Although 5′-nucleotidase, a marker for plasma membranes, was markedly enriched in plasma membranes, very little or none of this enzyme activity was found in other fractions. Very little or no NADH cytochrome c reductase activity, a marker for rough endoplasmic reticulum, was found in fractions other than rough endoplasmic reticulum. Galactosyl transferase, a marker for golgi, was found and enriched in all the fractions; however, enrichment in golgi fractions was higher than in other fractions. Very little or no lysosomal marker activity, i.e., acid phosphatase, was found in rough endoplasmic reticulum or golgi fractions as compared to lysosomes. These marker enzyme data suggested that rough endoplasmic reticulum and golgi fractions were relatively pure with little or no cross contamination with other organelles. The [125I]human choriogonadotropin ([125I]hCG), [3H]prostaglandin (PG)E1, and [3H]PGF2a specifically bound to rough endoplasmic reticulum and golgi fractions in addition to plasma membranes. The enrichments of binding in the former two fractions, in some cases, were as high as plasma membranes itself. The specific binding of some of the ligands was found to be partially latent in rough endoplasmic reticulum and golgi fractions but not in plasma membranes. Marker enzyme data, ratio between bindings and marker enzyme activities (an index of organelle contamination), and partial latency of binding suggest that rough endoplasmic reticulum and golgi fractions intrinsically contain gonadotropin and PGs binding sites.  相似文献   

8.
Rubella virus E1 glycoprotein normally complexes with E2 in the endoplasmic reticulum (ER) to form a heterodimer that is transported to and retained in the Golgi complex. In a previous study, we showed that in the absence of E2, unassembled E1 subunits accumulate in a tubular pre-Golgi compartment whose morphology and biochemical properties are distinct from both rough ER and Golgi. We hypothesized that this compartment corresponds to hypertrophied ER exit sites that have expanded in response to overexpression of E1. In the present study we constructed BHK cells stably expressing E1 protein containing a cytoplasmically disposed epitope and isolated the pre-Golgi compartment from these cells by cell fractionation and immunoisolation. Double label indirect immunofluorescence in cells and immunoblotting of immunoisolated tubular networks revealed that proteins involved in formation of ER-derived transport vesicles, namely p58/ERGIC 53, Sec23p, and Sec13p, were concentrated in the E1-containing pre-Golgi compartment. Furthermore, budding structures were evident in these membrane profiles, and a highly abundant but unknown 65-kDa protein was also present. By comparison, marker proteins of the rough ER, Golgi, and COPI vesicles were not enriched in these membranes. These results demonstrate that the composition of the tubular networks corresponds to that expected of ER exit sites. Accordingly, we propose the name SEREC (smooth ER exit compartment) for this structure.  相似文献   

9.
Leticia Lemus 《Autophagy》2016,12(6):1049-1050
The endoplasmic reticulum (ER) is a major source for the generation of autophagosomes during macroautophagy. Our recent work in yeast shows that particular ER-derived vesicles are generated for the biogenesis of autophagosomes. These vesicles not only incorporate a SNARE protein that is largely ER-resident under nonstarving conditions, but also display COPII requirements for ER-exit that differ from conventional cargo-transporting vesicles. Our results suggest that specific intracellular traffic is launched at the ER for the transport of membranes to sites of autophagosome formation.  相似文献   

10.
Neurons are polarized cells presenting two distinct compartments, dendrites and an axon. Dendrites can be distinguished from the axon by the presence of rough endoplasmic reticulum (RER). The mechanism by which the structure and distribution of the RER is maintained in these cells is poorly understood. In the present study, we investigated the role of the dendritic microtubule-associated protein-2 (MAP2) in the RER membrane positioning by comparing their distribution in brain subcellular fractions and in primary hippocampal cells and by examining the MAP2-microtubule interaction with RER membranes in vitro. Subcellular fractionation of rat brain revealed a high MAP2 content in a subfraction enriched with the endoplasmic reticulum markers ribophorin and p63. Electron microscope morphometry confirmed the enrichment of this subfraction with RER membranes. In cultured hippocampal neurons, MAP2 and p63 were found to concomitantly compartmentalize to the dendritic processes during neuronal differentiation. Protein blot overlays using purified MAP2c protein revealed its interaction with p63, and immunoprecipitation experiments performed in HeLa cells showed that this interaction involves the projection domain of MAP2. In an in vitro reconstitution assay, MAP2-containing microtubules were observed to bind to RER membranes in contrast to microtubules containing tau, the axonal MAP. This binding of MAP2c microtubules was reduced when an anti-p63 antibody was added to the assay. The present results suggest that MAP2 is involved in the association of RER membranes with microtubules and thereby could participate in the differential distribution of RER membranes within a neuron.  相似文献   

11.
Secretory proteins are synthesized on ribosomes bound to the membrane of the endoplasmic reticulum (ER). After the selection of polysomes synthesizing secretory proteins and their direction to the membrane of the ER via signal recognition particle (SRP) and docking protein respectively, the polysomes become bound to the ER membrane via an unknown, protein-mediated mechanism. To identify proteins involved in protein translocation, beyond the (SRP-docking protein-mediated) recognition step, controlled proteolysis was used to functionally inactivate rough microsomes that had previously been depleted of docking protein. As the membranes were treated with increasing levels of protease, they lost their ability to be functionally reconstituted with the active cytoplasmic fragment of docking protein (DPf). This functional inactivation did not correlate with a loss of either signal peptidase activity, nor with the ability of the DPf to reassociate with the membrane. It did correlate, however, with a loss of the ability of the microsomes to bind ribosomes. Ribophorins are putative ribosome-binding proteins. Immunoblots developed with monoclonal antibodies against canine ribophorins I and II demonstrated that no correlation exists between the protease-induced inability to bind ribosomes and the integrity of the ribophorins. Ribophorin I was 85% resistant and ribophorin II 100% resistant to the levels of protease needed to totally eliminate ribosome binding. Moreover, no direct association was found between ribophorins and ribosomes; upon detergent solubilization at low salt concentrations, ribophorins could be sedimented in the presence or absence of ribosomes. Finally, the alkylating agent N-ethylmaleimide was shown to be capable of inhibiting translocation (beyond the SRP-docking protein-mediated recognition step), but had no affect on the ability of ribosomes to bind to ER membranes. We conclude that potentially two additional proteinaceous components, as yet unidentified, are involved in protein translocation. One is protease sensitive and possibly involved in ribosome binding, the other is N-ethylmaleimide sensitive and of unknown function.  相似文献   

12.
The signal sequence receptor (SSR), an integral membrane glycoprotein of 34 kDa, has previously been shown to be a component of the molecular environment which nascent polypeptide chains meet in passage through the endoplasmic reticulum (ER) membrane. We have used antibodies directed against the SSR and both immunocytochemistry and cell fractionation to determine its distribution in rat liver cells. SSR was found largely restricted to the rough ER. Only small amounts of the protein were detected in smooth ER. These results provide further evidence for a functional differentiation of rough and smooth ER and for a role of SSR in protein translocation across the ER membrane.  相似文献   

13.
Polyclonal antibodies directed against ribophorins I and II, two membrane glycoproteins characteristic of the rough endoplasmic reticulum, inhibit the cotranslational translocation of a secretory protein growth hormone into the lumen of dog pancreas or rat liver microsomes. As expected, site-specific antibodies to epitopes located within the cytoplasmic domain of ribophorin I, but not antibodies to epitopes in the luminal domain of this protein, were effective in inhibiting translocation. Since monovalent Fab fragments were as inhibitory as intact IgG molecules, ribophorins must be closely associated with the translocation site and, therefore, are likely to function at some stage in the translocation process. In all cases, the antibodies that inhibited translocation also caused a significant reduction in total protein synthesis and treatments that neutralized their capacity to inhibit translocation also prevented their inhibitory effect on protein synthesis. This would be expected if the antibodies blocked the membrane-mediated relief of the SRP-induced arrest of polypeptide elongation. The antibodies were effective only when added before translocation was allowed to begin. In this case, they prevented the targeting of active ribosomes containing mRNA and nascent chains to the ER membrane. Thus, ribophorins must either directly participate in targeting or be so close to the targeting site that the antibodies sterically blocked this early phase of the translocation process.  相似文献   

14.
Liang B  Song X  Liu G  Li R  Xie J  Xiao L  Du M  Zhang Q  Xu X  Gan X  Huang D 《Experimental cell research》2007,313(13):2833-2844
Nuclear orphan receptor TR3/Nur77/NGFI-B is a novel apoptotic effector protein that initiates apoptosis largely by translocating from the nucleus to the mitochondria, causing the release of cytochrome c. However, it is possible that TR3 translocates to other organelles. The present study was designed to determine the intracellular localization of TR3 following CD437-induced nucleocytoplasmic translocation and the mechanisms involved in TR3-induced apoptosis. In human neuroblastoma SK-N-SH cells and human esophageal squamous carcinoma EC109 and EC9706 cells, 5 microM CD437 induced translocation of TR3 to the endoplasmic reticulum (ER). This distribution was confirmed by immunofluorescence analysis, subcellular fractionation analysis and coimmunoprecipitation analysis. The translocated TR3 interacted with ER-targeting Bcl-2; initiated an early release of Ca(2+) from ER; resulted in ER stress and induced apoptosis through ER-specific caspase-4 activation, together with induction of mitochondrial stress and subsequent activation of caspase-9. Our results identified a novel distribution of TR3 in the ER and defined two parallel mitochondrial- and ER-based pathways that ultimately result in apoptotic cell death.  相似文献   

15.
The transfer of precursor proteins through the membrane of the rough endoplasmic reticulum (ER) in yeast is strictly dependent on the presence of ATP. Since Kar2p (the yeast homologue of mammalian BiP) is required for translocation, and is an ATP binding protein, an ATP transport system must be coupled to the translocation machinery of the ER. We report here the characterization of a transport system for ATP in vesicles derived from yeast ER. ATP uptake into vesicles was found to be saturable in the micromolar range with a Km of 1 x 10(-5) M. ATP transport into ER vesicles was specifically inhibited by 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), a stilbene derivative known to inhibit a number of other anion transporters, and by 3'-O-(4-benzoyl)benzoyl-ATP (Bz2-ATP). Inhibition of ATP uptake into yeast microsomes by DIDS and Bz2-ATP blocked protein translocation in vitro measured co- as well as post-translationally. The inhibitory effect of DIDS on translocation was prevented by coincubation with ATP. Moreover, selective membrane permeabilization, allowing ATP access to the lumen, restored translocation activity to DIDS-treated membranes. These results demonstrate that translocation requires a DIDS and Bz2-ATP-sensitive component whose function is to transport ATP to the lumen of the ER. These findings are consistent with current models of protein translocation in yeast which stipulate the participation of Kar2p in the translocation process.  相似文献   

16.
Properties of a GTP sensitive microdomain in rough microsomes   总被引:4,自引:0,他引:4  
Stripped rough microsomes (SRM) fuse when incubated with physiological concentrations of GTP and MgCl2. In order to examine further to what extent such fusions are associated with other membrane functions of rough endoplasmic reticulum, we have evaluated the role of cytosolically exposed peptide constituents of SRM in fusion, and the possible relationship of GTP/MgCl2-induced fusion in protein transport across endoplasmic reticulum (ER) membranes, and in ER-Golgi interactions. Controlled proteolytic digestion of SRM led to the loss of fusion capability at 15 micrograms/ml trypsin--a concentration which maintained the latency of intraluminal mannose-6-phosphatase. Hence, a cytosolically exposed protein(s) regulated fusion. Based on ribonuclease-induced ribosome capping experiments, it was further concluded that the cytosolic oriented protein(s) was sequestered beneath the ribosome. As co-translational cell free translocation of placental lactogen across SRM was similar in control membranes compared to those rendered incapable of fusing, it was concluded that the fusion phenomenon may not be related to translocation. Under conditions promoting homologous fusion of SRM or Golgi membranes, mixtures of the two membranes showed no heterologous membrane fusion as assessed morphologically or by the transport of newly synthesized membrane glycoprotein. These experiments attest to the specificity of cytosolically exposed protein(s) in regulating nucleotide/divalent cation-induced membrane fusion.  相似文献   

17.
Oligosaccharyltransferase mediates the transfer of a preassembled high mannose oligosaccharide from a lipid-linked oligosaccharide donor to consensus glycosylation acceptor sites in newly synthesized proteins in the lumen of the rough endoplasmic reticulum. The Saccharomyces cerevisiae oligosaccharyltransferase is an oligomeric complex composed of six nonidentical subunits (alpha-zeta), two of which are glycoproteins (alpha and beta). The beta and delta subunits of the oligosaccharyltransferase are encoded by the WBP1 and SWP1 genes. Here we describe the functional characterization of the OST1 gene that encodes the alpha subunit of the oligosaccharyltransferase. Protein sequence analysis revealed a significant sequence identity between the Saccharomyces cerevisiae Ost1 protein and ribophorin I, a previously identified subunit of the mammalian oligosaccharyltransferase. A disruption of the OST1 locus was not tolerated in haploid yeast showing that expression of the Ost1 protein is essential for vegetative growth of yeast. An analysis of a series of conditional ost1 mutants demonstrated that defects in the Ost1 protein cause pleiotropic underglycosylation of soluble and membrane-bound glycoproteins at both the permissive and restrictive growth temperatures. Microsomal membranes isolated from ost1 mutant yeast showed marked reductions in the in vitro transfer of high mannose oligosaccharide from exogenous lipid-linked oligosaccharide to a glycosylation site acceptor tripeptide. Microsomal membranes isolated from the ost1 mutants contained elevated amounts of the Kar2 stress-response protein.  相似文献   

18.
Rat liver rough endoplasmic reticulum membranes (ER) contain two characteristic transmembrane glycoproteins which have been designated ribophorins I and II and are absent from smooth ER membranes. These proteins (MW 65,000 and 63,000 respectively) are related to the binding sites for ribosomes, as suggested by the following findings: (i) The ribophorin content of the rough ER membranes corresponds stoichiometrically to the number of bound ribosomes; (ii) ribophorins are quantitatively recovered with the bound polysomes after most other ER membrane proteins are dissolved with the nonionic detegent Kyro EOB; (iii) in intact rough microsomes ribophorins can be crosslinked chemically to the ribosomes and therefore are in close proximity to them. Treatment of rough microsomes with a low Triton X-100 concentration leads to the lateral displacement of ribosomes on the microsomal surface and to the formation of aggregates of bound ribosomes in areas of membranes which frequently invaginate into the microsomal lumen. Subfractionation of Triton-treated microsomes containing invaginations led to the recovery of smooth and “rough-inverted” vesicles. Ribophorins were present only in the latter fraction, indicating that both proteins are displaced together with the ribosome-binding capacity of rough and smooth microsomal membranes reconstituted after solubilization with detergents sugest that ribophorins are necessary for in vitro ribosome binding. Ribophorin-like proteins were found in rough microsomes obtained from secretory tissues of several animal species. The two proteins present in rat lacrimal gland microsomes have the same mobility as hepatocyte ribophorins and cross-react with antisera against them.  相似文献   

19.
In yeast, efficient protein transport across the endoplasmic reticulum (ER) membrane may occur co-translationally or post-translationally. The latter process is mediated by a membrane protein complex that consists of the Sec61p complex and the Sec62p-Sec63p subcomplex. In contrast, in mammalian cells protein translocation is almost exclusively co-translational. This transport depends on the Sec61 complex, which is homologous to the yeast Sec61p complex and has been identified in mammals as a ribosome-bound pore-forming membrane protein complex. We report here the existence of ribosome-free mammalian Sec61 complexes that associate with two ubiquitous proteins of the ER membrane. According to primary sequence analysis both proteins display homology to the yeast proteins Sec62p and Sec63p and are therefore named Sec62 and Sec63, respectively. The probable function of the mammalian Sec61-Sec62-Sec63 complex is discussed with respect to its abundance in ER membranes, which, in contrast to yeast ER membranes, apparently lack efficient post-translational translocation activity.  相似文献   

20.
The biosynthesis of membrane proteins at the endoplasmic reticulum (ER) involves the integration of the polypeptide at the Sec61 translocon together with a number of maturation events, such as N-glycosylation and signal sequence cleavage, that can occur both during and after synthesis. To better understand the events occurring after the release of the nascent chain from the ER translocon, we investigated the ER components adjacent to the transmembrane-spanning domain of a well characterized fragment of the amyloid precursor protein. Using individual cysteine residues as site-specific cross-linking targets, we found that several ER components can be cross-linked to the fully integrated polypeptide. We identified strong adducts with both the ribophorin I subunit of the oligosaccharyltransferase complex and the 25-kDa subunit of the signal peptidase complex. Focusing on the association with ribophorin I, we found that adduct formation occurred exclusively after the exit of the nascent chain from the Sec61 translocon and was unaffected by the N-glycosylation status of the associated precursor. Only a subset of newly made membrane proteins associated with ribophorin I in vitro, and we could recapitulate a specific association between the amyloid precursor protein fragment and ribophorin I in vivo. Taken together, our data suggest a model where ribophorin I may function to retain potential substrates in close proximity to the catalytic subunit of the oligosaccharyltransferase and thereby stochastically improve the efficiency of the N-glycosylation reaction in vivo. Alternatively ribophorin I may be multifunctional and facilitate additional processes, for example, ER quality control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号