首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article reviews cell cycle changes that occur during midblastula transition (MBT) in Xenopus laevis based on research carried out in the authors' laboratory. Blastomeres dissociated from the animal cap of blastulae, as well as those in an intact embryo, divide synchronously with a constant cell cycle duration in vitro, up to the 12th cell cycle regardless of their cell sizes. During this synchronous cleavage, cell sizes of blastomeres become variable because of repeated unequal cleavage. After the 12th cell cycle blastomeres require contact with an appropriate protein substrate to continue cell division. When nucleocytoplasmic (N/C) ratios of blastomeres reach a critical value during the 13th cycle, their cell cycle durations lengthen in proportion to the reciprocal of cell surface areas, and cell divisions become asynchronous due to variations in cell sizes. The same changes occur in haploid blastomeres with a delay of one cell cycle. Thus, post-MBT cell cycle control becomes dependent not only on the N/C relation but also on cell surface activities of blastomeres. Unlike cell cycle durations of pre-MBT blastomeres, which show monomodal frequency distributions with a peak at about 30 min, those of post-MBT blastomeres show polymodal frequency distributions with peaks at multiples of about 30 min, suggesting 'quantisement' of the cell cycle. Thus, we hypothesised that MPF is produced periodically during its unit cycle with 30 min period, but it titrates, and is neutralized by, an inhibitor contained in the nucleus in a quantity proportional to the genome size; however, when all of the inhibitor has been titrated, excess MPF during the last cycle triggers mitosis. At MBT, cell cycle checkpoint mechanisms begin to operate. While the operation of S phase checkpoint to monitor DNA replication is initiated by N/C relation, the initiation of M phase checkpoint operation to monitor chromosome segregation at mitosis is regulated by an age-dependent mechanism.  相似文献   

2.
Summary The temporal pattern of cleavage in the egg of the axolotl,Ambystoma mexicanum, was studied 1. by time-lapse microcinematography, and 2. by counting the total number of blastomeres dissociated at successive stages.Eggs were filmed from the one-cell stage till the early gastrula either (A) simultaneously from above and below with a double-camera assembly, or (B) from the side with a single camera.The animal blastomeres divide synchronously from the 2nd up to and including the 10th cleavage. The cycle length is roughly constant from the 3rd till the 10th cleavage. The cycle from the 2nd to the 3rd cleavage is slightly longer, while that from the 1st to the 2nd cleavage is about 20% longer. After the 10th cleavage the synchrony of divisions is lost owing to variable lengthening of cell cycles in individual blastomeres. Gastrulation starts around the onset of the 15th cleavage in the animal blastomeres.The analysis of films taken in side view reveals seven recurring cleavage waves, from the 5th till the 11th cleavage. Cells in the animal, equatorial and vegetative regions in sequence repeatedly pass through the three successive phases of the cleavage cycle—rounding-up, division, and relaxation—but with a shift in phase. The start of the 10th cleavage division of the slowest vegetative cells more or less coincides with that of the 11th division of the animal cells; from then on the cleavage waves become increasingly obscured.Morulae and blastulae were dissociated by placing them in 1/15 M phosphate buffer (pH 7.8) for the duration of 2–3 cleavage cycles and then removing the vitelline membrane. In this solution cell divisions continued without disturbance of the temporal cleavage pattern. The dissociated cells were fixed either just prior to the onset of the next cleavage (up to the 10th cleavage) or at those times when cleavageswould have been expected, had there been no lenthening of cleavage cycles (beyond the 10th cleavage). The total cell number was counted, dividing cells being scored as two.Prior to the 11th cleavage the total cell number increased exponentially. Beyond the 10th cleavage the rate of increase was considerably lower. At the time when gastrulation would have started if the egg had not been dissociated, the total cell counts were 13,000–15,000, whereas the number anticipated without lengthening of cleavage cycles would be of the order of 130,000 (217).The application of Balfour's rule to amphibian eggs is criticized.  相似文献   

3.
Reproductive cell specification during Volvox obversus development   总被引:1,自引:0,他引:1  
Asexual spheroids of the genus Volvox contain only two cell types: flagellated somatic cells and immotile asexual reproductive cells known as gonidia. During each round of embryogenesis in Volvox obversus, eight large gonidial precursors are produced at the anterior extremity of the embryo. These cells arise as a consequence of polarized, asymmetric divisions of the anteriormost blastomeres at the fourth through nine cleavage cycles, while all other blastomeres cleave symmetrically to yield somatic cell precursors. Blastomeres isolated from embryos at any point between the 2-cell and the 32-cell stage cleaved in the normal pattern and produced the same complement and spatial distribution of cell types as they would have in an intact embryo. This result indicates that intrinsic features control the cleavage patterns and developmental potentials of blastomeres, and rules out any significant role for cell-cell interactions in gonidial specification. When substantial quantities of anterolateral cytoplasm were deleted from uncleaved gonidia or 4-cell stage blastomeres, the cell fragments frequently regulated and embryos were produced with the expected number of asymmetrically cleaving cells and gonidial precursors at their anterior ends. However, when anterior cytoplasm was deleted from 8-cell stage blastomeres, the depleted cells frequently failed to cleave asymmetrically and produced no gonidial precursors. Furthermore, when compression was used to reorient cleavage planes at the fourth division cycle, so that anterior cytoplasm was transmitted to more than the normal number of cells, those cells receiving a significant amount of such cytoplasm cleaved asymmetrically to produce supernumerary gonidial precursors. Together, these last two experiments indicate that blastomeres in the V. obversus embryo acquire (at least by the end of the third cleavage cycle) a polarized organization in which anterior cytoplasm plays a causal role in the process of reproductive-cell specification.  相似文献   

4.
We obtained translucent blastomeres free of yolk and pigment granules from Xenopus embryos which had been centrifuged at the beginning of the 8-cell stage with cellular integrity. They divided synchronously regardless of their cell size until they had decreased to 37.5 microm in radius; those smaller than this critical size, however, divided asynchronously with cell cycle times inversely proportional to the square of the cell radius after midblastula transition (MBT). The length of the S phase was determined as the time during which nuclear DNA fluorescence increased in Hoechst-stained blastomeres. When the cell cycle time exceeded 45 min, S and M phases were lengthened; when the cell cycle times exceeded 70 min, the G2 phase appeared; and after cell cycle times became longer than 150 min, the G1 phase appeared. Lengths of G1, S and M phases increased linearly with increasing cell cycle time. Enhanced green fluorescent protein (EGFP)-tagged proliferating cell nuclear antigen (PCNA) expressed in the blastomeres appeared in the S phase nucleus, but suddenly dispersed into the cytoplasm at the M phase. The system developed in this study is useful for examining the cell cycle behavior of the cell cycle-regulating molecules in living Xenopus blastomeres by fluorescence microscopy in real time.  相似文献   

5.
Early developmental kinetics of nuclear transfer (NT) embryos reconstituted with blastomeres and parthenogenones produced by ionophore activation followed by either dimethylaminopurine (DMAP) or cycloheximide (CHX) treatment was studied. In vitro produced (IVP) embryos served as controls. Embryos were cultured to the hatched blastocyst stage, and images were recorded every 0.5 h throughout the culture period. The longest cell cycle shifted from 4th to 5th cycle (26 +/- 4 and 44 +/- 5 h) in NT-embryos compared to IVP-embryos (41 +/- 2 and 20 +/- 3 h) and showed greater asynchrony between blastomeres than any other embryo category. Compared to DMAP, CHX prolonged the 1(st) (23 +/- 1 vs. 33 +/- 1 h) and shortened the 3(rd) cell cycle (17 +/- 2 vs. 13 +/- 1 h). Moreover, though cytoskeleton activity was initialised, a larger proportion of CHX embryos was unable to accomplish first cleavage. The parthegenones differed from IVP embryos with respect to the lengths of the 1st, 3rd, and 4th cell cycles and time of hatching. The findings are discussed in relation to known ultrastructural, chromosomal and genomic aberrations found in NT embryos and parthenogenones. We hypothesize that the shift of the longest cell cycle in NT embryos is associated with a shift in the time of major genomic transition.  相似文献   

6.
During the early development of the sea urchins, Temnopleurus toreumaticus, Temnopleurus hardwickii and Hemicentrotus pulcherrimus , the division synchrony in all blastomeres lasted only until the 4th cleavage and a regional synchrony or a graded activity of cell division appeared. In the midblastula stage prior to hatching, the regional synchrony vanished simultaneously with the formation of cilia, then the division proceeded asynchronously. The analysis of cell pedigrees confirmed that a variable extension of intercleavage times occurred after the ciliogenesis. In blastomeres derived from mesomeres of T. toreumaticus embryos, the mean intercleavage time extended from 48 min of the 8th cycle (pre-ciliated) to 115 min of the 9th cycle (ciliated), and the coefficient of variation increased from 15% to 39%. We attempted a kinetic analysis of cell proliferation on the basis of the transition probability model of cell cycle control. We concluded that the minimum time required for the completion of the cell cycle was the decisive factor in the cell cycle succession of pre-ciliated blastomeres, and that a sudden and sharp decrease in the transition probability of the ciliated blastomeres probably interpreted the abrupt slowing and asynchronization of the cleavage cycle at the time of ciliogenesis.  相似文献   

7.
In the early development of the frog, Xenopus laevis, blastomeres undergo synchronous divisions at about the 12th cell cycle, followed by asynchronous divisions, which is referred to as mid-blastula transition (MBT). We investigated the distribution of several regulating factors for cell cycles around MBT using immunocytochemistry and confocal fluorescence microscopy. At the 8th cell cycle, most of the cdc2/cyclin B was localized in the cortical cytoplasm throughout the cell cycle, in the centrosomes and the nucleus at interphase and prometaphase, and in the spindles at metaphase and anaphase. Cdc2 was also localized in the chromatins at metaphase and anaphase. Cyclin B1 mRNA was localized in the periphery of the nucleus, but not in the cell cortex. At the 13th cell cycle, the amount of cdc2/cyclin B in the cortical cytoplasm decreased, and the inactive form of cdc2, phosphorylated at tyrosine 15, appeared in the nucleus and the centrosomes at interphase, indicating that the regulation of cdc2 by phosphorylation occurs around MBT. When the blastomeres were treated with nocodazole or latrunculin A at the 8th cell cycle, the amount of cortical cdc2 decreased, but that of cyclin B did not change. The cortical localization of cdc2 is dependent upon both microtubules and microfilaments. Most of the cdc27 was localized in the centrosomes, and in the spindle poles, but no significant difference was observed between the 8th and the 13th cell cycles. It is possible that the cortical MPF activity is regulated by the differential localization between cdc2 and cyclin B.  相似文献   

8.
Embryos of the freshwater oligochaete Tubifex exhibit asynchrony in division timing as early as the second cleavage; this cleavage asynchrony becomes pronounced as development proceeds. The present study was undertaken to elucidate the composition and duration of the cell cycles of early Tubifex embryos, with special reference to their cell lineages. No significant variations in lengths of cleavage cycles were found among early embryos. In all blastomeres up to the eighth cleavage cycle, the M phase was followed directly by a 30 min S phase, which suggested that early embryos lack G1 phase. The durations of the M phase did not change during this period of development, but did differ between cell lines. The M phase in the A and B cell lines lasted for about 130 min, while the M phase in the C and D cell lines lasted for about 95 min. An examination of chromosome cycles showed that this difference in M phase durations resulted from a longer stay by the A/B cell lines in prometaphase. Only G2 phase lengthened during early development. After several rounds of G2 phase extension, three classes of G2 phase duration were established: the most extended G2 phase (∼6 h) in the first quartette of micromeres (cells 1 a–1 d), the shortest G2 phase (∼1.58 h) in teloblasts, and an intermediate G2 phase (∼2.4 h) in the progeny of macromeres (i.e. endodermal cells). Experiments with syncytial blastomeres showed that the timing of entry into the M phase, hence the duration of the G2 phase, was affected by cytoplasmic compositions. The shortest G2 phase correlated closely with the presence of yolk-free cytoplasm called pole plasm.  相似文献   

9.
Analysis of the third and fourth cell cycles of mouse early development   总被引:1,自引:0,他引:1  
The third (4-cell) and fourth (8-cell) cell cycles of early mouse development have been analysed in populations of blastomeres synchronized to the preceding cleavage division. DNA content was measured microdensitometrically. The entry of blastomeres into these cell cycles showed considerable heterogeneity both within and between individual embryos. This heterogeneity was greater in the fourth than in the third cell cycle. The component phases of the third cell cycle were estimated as G1 = 1 h, S = 7 h, and G2 + M = 2-5 h, and those of the fourth cell cycle as G1 = 2 h, S = 7 h, and G2 + M = 1-3 h.  相似文献   

10.
Zhu XP  You F  Zhang PJ  Xu JH  Sun W 《Theriogenology》2007,68(6):873-881
Indirect immunofluorescence staining was used to detect cytological changes of isolated blastodisks during mitosis of flounder haploid eggs treated with hydrostatic pressure. Changes in microtubule structure and expected cleavage suppression were observed from blastodisk formation to the third cell cycle, with obvious differences between treated and control eggs. In most eggs, microtubules were disassembled and the nucleation capacity of the centrosome was temporarily inhibited after pressure treatment. Within 15-20 min after treatment, the nucleation capacity of the centrosome began to gradually recover, with slow regeneration of microtubules; approximately 25 min after treatment, the nucleation capacity of the centrosome recovered completely, regenerated distinct bipolar spindles, and the first mitosis ensued. During the second cell cycle, approximately 61% of the embryos were at the two-cell stage, with a monopolar spindle in each blastomere; that treatment was effective was based on second cleavage blockage. Approximately 15% of the eggs still remained at the one-cell stage and had a monopolar spindle (treatment was effective, according to the general model of first cleavage blockage). However, treatment was ineffective in approximately 15% of the embryos (bipolar spindle in each blastomeres) and in another 8% (bipolar spindle in one of the two blastomeres and a monopolar spindle in the other; both mechanisms operating in different parts of the embryo). This is the first report elucidating mitotic gynogenetic diploid induction by hydrostatic pressure in marine fishes and provides a cytological basis for developing an efficient method of inducing mitotic gynogenesis in olive flounder.  相似文献   

11.
Summary The effect of a heat shock (37.0–38.0°C, 10 min) during the third and fourth cleavage cycles ofLymnaea was investigated. The sensitivity with respect to the duration of the cell cycle and morphogenesis appeared to be periodic. The cycle extension curve has three maxima: at the beginning of the cycle, at the G2-phase, and at prometaphase. With regard to morphogenesis, the eggs become sensitive shortly before cleavage, when cleavage cannot be delayed any more.In eggs treated at the morphogenetically sensitive stages, mitotic abnormalities caused by an incomplete separation of the chromosomes during treatment were observed. Some cells were lethally affected, and the division chronology was abnormal in some embryos.It is concluded that heat shock disturbs a process relevant to the cell cycle. If applied before metaphase, an extension of the cell cycle permits a complete recovery and morphogenesis remains unaffected. If applied at metaphase or later, cell division is not delayed, but mitosis is seriously disturbed. This irreversible damage is the cause of abnormal morphogenesis. The type of malformation depends on the prospective significance of the affected blastomeres.  相似文献   

12.
Egg volume of a tropical sea urchin Echinometra mathaei is about one half that of other well-known species. We asked whether such a small size of eggs affected the timings of early developmental events or not. Cleavages became asynchronous from the 7th cleavage onward, and embryos hatched out before completion of the 9th cleavage. These timings were one cell cycle earlier than those in well-known sea urchins, raising the possibility that much earlier events, such as the increase in adhesiveness of blastomeres or the specification of dorso-ventral axis (DV-axis), would also occur earlier by one cell cycle. By examining the pseudopodia formation in dissociated blastomeres, it was elucidated that blastomeres in meso- and macromere lineages became adhesive after the 4th and 5th cleavages, respectively. From cell trace experiments, it was found that the first or second cleavage plane was preferentially employed as the median plane of embryo; the DV-axis was specified mainly at the 16-cell stage. Timings of these events were also one cell cycle earlier than those in Hemicentrotus pulcherrimus. The obtained results suggest that most of the early developmental events in sea urchin embryos do not depend on cleavage cycles, but on other factors, such as the nucleo-cytoplasmic ratio.  相似文献   

13.
Analysis of the fifth cell cycle of mouse development   总被引:2,自引:0,他引:2  
The 5th cell cycle of mouse development was analyzed to determine the lengths of each cell cycle phase. The DNA content of Feulgen-stained blastomere nuclei was measured at various times throughout the cell cycle by microdensitometry. To achieve precise timing of the start of the 5th cell cycle, experiments utilized isolated 16-cell blastomeres and cell pairs obtained by in-vitro division of isolated 8-cell blastomeres. The following estimates were made for a mixed population of polar and apolar 16-cell blastomeres: G1, less than or equal to 2 h; S, 8-9 h; G2 + M, 2 h. No significant difference was found in the timing of DNA synthesis between polar and apolar cells or between cell pairs and whole embryos.  相似文献   

14.
We have examined the regulation of maturation-promoting factor (MPF) activity in the mitotic and meiotic cell cycles of Xenopus laevis eggs and oocytes. To this end, we developed a method for the small scale extraction of eggs and oocytes and measured MPF activity in extracts by a dilution end point assay. We find that in oocytes, MPF activity appears before germinal vesicle breakdown and then disappears rapidly at the end of the first meiotic cycle. In the second meiotic cycle, MPF reappears before second metaphase, when maturation arrests. Thus, MPF cycling coincides with the abbreviated cycles of meiosis. When oocytes are induced to mature by low levels of injected MPF, cycloheximide does not prevent the appearance of MPF at high levels in the first cycle. This amplification indicates that an MPF precursor is present in the oocyte and activated by posttranslational means, triggered by the low level of injected MPF. Furthermore, MPF disappears approximately on time in such oocytes, indicating that the agent for MPF inactivation is also activated by posttranslational means. However, in the absence of protein synthesis, MPF never reappears in the second meiotic cycle. Upon fertilization or artificial activation of normal eggs, MPF disappears from the cytoplasm within 8 min. For a period thereafter, the inactivating agent remains able to destroy large amounts of MPF injected into the egg. It loses activity just as endogenous MPF appears at prophase of the first mitotic cycle. The repeated reciprocal cycling of MPF and the inactivating agent during cleavage stages is unaffected by colchicine and nocodazole and therefore does not require the effective completion of spindle formation, mitosis, or cytokinesis. However, MPF appearance is blocked by cycloheximide applied before mitosis; and MPF disappearance is blocked by cytostatic factor. In all these respects, MPF and the inactivating agent seem to be tightly linked to, and perhaps participate in, the cell cycle oscillator previously described for cleaving eggs of Xenopus laevis (Hara, K., P. Tydeman, and M. Kirschner, 1980, Proc. Natl. Acad. Sci. USA, 77:462- 466).  相似文献   

15.
Summary The animal and the dorsal side of five embryos of Xenopus laevis were studied in detail from the 7th to the 13th cleavage by means of time-lapse cinematography. At each cleavage the regionally ordered sequence of blastomere divisions is visible in the films as a cleavage wave, propagating about three times slower in the dorsal than in the animal view. In the dorsal view the waves run in an animal-vegetal direction, initially with a left-to-right deviation and in later cleavages converging on the region of the future blastopore. The lengthening of cleavage cycles begins at cycle 8 on the dorsal side, just above the future blastopore. From cycle 9 to 11 nearly equal lengthening occurs in each cycle at all animal-vegetal levels. In general, cycles lengthen a little more in median than in lateral sectors and a little more in right than in left sectors. Cycle 12 is longest in the sector above the future blastopore and shortest in the animal region. The results show that the initial pattern of a regionally ordered sequence of cleavage cycles of equal duration changes into a pattern of cycles of different durations as a result of gradual cycle lengthening, starting in the region just above the future blastopore and spreading in animal direction. The results are compared with data on the cleavage cycles of isolated blastomeres, and the possible relation with the induction of the mesoendoderm occurring during the stages studied is discussed.  相似文献   

16.
Many studies suggest that MPF activation depends on protein phosphorylation or that MPF is itself a protein kinase. In the present report, cyclic variations of MPF activity have been correlated in vivo with changes in the extent of protein phosphorylation or in vitro with changes of a major protein kinase during the first cell cycles of fertilized starfish eggs. This cycling protein kinase neither requires cAMP nor Ca2+. Neither colchicine nor aphidicoline, which inhibits cleavage and chromosome replication respectively, was found to suppress the synchronous and cyclic variations of both MPF and protein kinase activities. Protein synthesis was found to be required for both MPF and protein kinase activities to reappear after their simultaneous drop at the time of mitotic or meiotic cleavages. Production of either MPF or protein kinase activities is not the immediate result of protein synthesis since there is a delay at each cell cycle between the time when protein synthesis is required and the time when both MPF and protein kinase activities are produced. This suggests that both MPF and protein kinase activities might involve some post-translational modification of a precursor protein synthesized during the preceeding cell cycle.  相似文献   

17.
Summary We have examined the persistence of midbody channels during the second, third, and fourth cleavage cycles of the mouse using immunofluorescence to map the distribution of midbody microtubule bundles in intact embryos. Electron microscopy showed these bundles to be a characteristic feature of midbodies throughout the interphase period. In recently-divided embryos at each cleavage stage the number of midbodies was half the number of blastomeres, and declined towards zero as the next cleavage approached. This indicated to us that the only midbodies present in each stage were those which had arisen in the immediately-preceding division. Of those blastomeres which were in mitosis at the time of fixation, less than 4% were connected via a midbody to another blastomere, demonstrating that persistence of midbodies beyond a single cleavage cycle is a rare event. We conclude that midbody channels in our embryos are likely to connect only pairs of sister blastomeres because midbodies do not persist through multiple cleavage cycles. Midbody channels cannot, therefore, be regarded as providing extensive cell coupling in advance of the onset of gap junctional communication.  相似文献   

18.
Fourth cleavage of the sea urchin embryo produces 16 blastomeres that are the starting point for analyses of cell lineages and bilateral symmetry. We used optical sectioning, scanning electron microscopy and analytical 3-D reconstructions to obtain stereo images of patterns of karyokinesis and cell arrangements between 4th and 6th cleavage. At 4th cleavage, 8 mesomeres result from a variant, oblique cleavage of the animal quartet with the mesomeres arranged in a staggered, offset pattern and not a planar ring. This oblique, non-radial cleavage pattern and polygonal packing of cells persists in the animal hemisphere throughout the cleavage period. Contrarily, at 4th cleavage, the 4 vegetal quartet nuclei migrate toward the vegetal pole during interphase; mitosis and cytokinesis are latitudinal and subequatorial. The 4 macromeres and 4 micromeres form before the animal quartet divides to produce a 12-cell stage. Subsequently, macromeres and their derivatives divide synchronously and radially through 8th cleavage according to the Sachs-Hertwig rule. At 5th cleavage, mesomeres and macromeres divide first; then the micromeres divide latitudinally and unequally to form the small and large micromeres. This temporal sequence produces 28-and 32-cell stages. At 6th cleavage, macromere and mesomere descendants divide synchronously before the 4 large micromeres divide parasynchronously to produce 56- and 60-cell stages.  相似文献   

19.
Patterns of cleavage and cytoplasmic connections between blastomeres in the embryo of the zebrafish, Brachydanio rerio have been described. The cell division pattern is often very regular; in many embryos a blastomere's lineage may be ascertained from its position in the cluster through the 64-cell stage. At the 5th cleavage, however, significant variability in pattern is observed, and alternative patterns of the 5th cleavage are described. The early cleavages are partial, incompletely separating blastomeres from the giant yolk cell. The tracer fluorescein-dextran (FD) was injected into blastomeres to learn the extent of the cytoplasmic bridging. It was observed that until the 10th cleavage, blastomeres located along the blastoderm margin maintain cytoplasmic bridges to the yolk cell. Beginning with the 5th cleavage, FD injected into a nonmarginal blastomere either remains confined to the injected cell, or if the injection was early in the cell cycle, the tracer spreads to the cell's sibling, through a bridge persisting from the previous cleavage. On the other hand, injected Lucifer yellow spreads, presumably via gap junctions, widely among blastomeres in a pattern unrelated to lineage.  相似文献   

20.
Nuclear division and migration of cleavage nuclei in the embryos of Bradysia tritici (Diptera : Sciaridae) have been studied by light microscopy and nuclear staining. There are 8 cleavage cycles up to the syncytial blastoderm stage (4.5 hr), and during the 11th cycle cellularization begins (6.5 hr). The first 3 divisions take about 30 min each. During the 5th and 6th cycles, the maximum rate of division is reached (12 min/cycle at 22°C). After pole cell formation, the duration of the following mitotic cycles increases progressively. During nuclear migration, the presumptive germ line nuclei reach the egg cortex first, followed by anterior somatic nuclei and finally, posterior somatic nuclei reach the egg cortex. Possibly as a result of this region-specific nuclear migration, nuclear divisions become parasynchronous after 3 hr of embryogenesis (4th cycle). Several mitotic cycles later, between the 8th and 10th cycle in different embryos, X-chromosome elimination in somatic nuclei begins at the anterior egg pole and progresses in anteroposterior direction. Our observations suggest that the observed region-specific differences may be due to the activity of localized factors in the egg that control migration and nuclear cycle of the somatic nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号