首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to investigate whether N-methyl-D-aspartate (NMDA) receptors with distinct pharmacological properties are differentially distributed within the retinal layers, the spatial distribution and temporal regulation of all NMDA receptor subunits was analyzed in parallel on the protein level in the rat retina during development. Immunohistochemistry was performed on retinal sections at different developmental ages between embryonic (E) days 20/21 and the adult stage using specific antibodies against NMDA subunits (NR1, NR2A-D). All NMDA subunits were expressed in the rat retina postnatally but showed different spatial patterns. In particular, and in contrast to previous in situ hybridization studies, labeling of NR2 subunits was observed in horizontal cell bodies and in the outer plexiform layer, indicating that functional NMDA receptors are expressed in this retinal cell type in the rat. Expression of NR2D was restricted to the inner retina and seemed to be involved in neurotransmission within the rod pathway. In the inner plexiform layer (IPL), distinct patterns of labeling were observed for different NMDA subunits. NR1 was found in two bands which can be related to the off- and on-signal pathways, whereas NR2A and NR2B were located in two bands within the off-sublaminae of the IPL. The antibody against NR2C was distributed throughout the whole IPL, and NR2D was expressed exclusively in the innermost part of the IPL where rod bipolar cell terminals terminate. Distinct bands of immunoreactivity in the IPL were observed only from P14 on. In conclusion, there are clear differences in the spatial distribution and temporal expression of NMDA receptor subtypes in the rodent retina. This indicates that specific retinal cells selectively express glutamate receptors composed of different subunit combinations and thus display different pharmacological and kinetic properties.  相似文献   

2.
Functional characterization of wild-type and mutant cloned N-methyl-D-aspartate (NMDA) receptors has been used to deduce their subunit stoichiometry and quaternary structure. However, the results reported from different groups have been at variance and are thus inconclusive. This study has employed a biochemical approach to determine the number of NMDA R2 (NR2) subunits/receptor together with the NMDA R1 (NR1)/NR2 subunit ratio of both cloned and native NMDA receptors. Thus, human embryonic kidney 293 cells were transfected with the NR1-1a and NR2A NMDA receptor subunits in combination with both FLAG- and c-Myc epitope-tagged NR2B subunits. The expressed receptors were detergent-extracted and subjected to double immunoaffinity purification using anti-NR2A and anti-FLAG antibody immunoaffinity columns in series. Immunoblotting of the double immunopurified NR2A/NR2B(FLAG)-containing material demonstrated the presence of anti-NR1, anti-NR2A, anti-FLAG, and, more important, anti-c-Myc antibody immunoreactivities. The presence of anti-c-Myc antibody immunoreactivity in the double immunoaffinity-purified material showed the co-assembly of three NR2 subunits, i.e. NR2A/NR2B(FLAG)/NR2B(c-Myc), within the same NMDA receptor complex. Control experiments excluded the possibility that the co-immunopurification of the three NR2 subunits was an artifact of the solubilization procedure. These results, taken together with those previously described that showed two NR1 subunits/oligomer, suggest that the NMDA receptor is at least pentameric.  相似文献   

3.
Antagonists to the N-methyl-D-aspartate (NMDA) receptor bind to various extraneuronal tissues. We therefore assessed the expression of the main NMDA subunit, NR1, in various tissues. We demonstrate that NR1 appears to be most abundant in the rat kidney and heart. NR1 is present in total rat kidney, cortex, and medulla. Of the NR2 subunits, only the NR2C subunit protein is present in the kidney. The abundance of the NR1 subunit protein increases with kidney development. Both NR1 and NR2C are present in opossum kidney, Madin-Darby canine kidney, and LLC-PK(1) cells. Immunohistochemistry studies show that the NR1 subunit is present in the renal proximal tubule. NR1 is abundant in the atrium and ventricle but is also expressed in the aorta and pulmonary artery. The NR2 subunits are not expressed in the heart. NR1 subunit protein expression is constant throughout heart development. Finally, the NR1 subunit protein is expressed in heart cells (H9c2) grown in culture. These studies reveal the presence of the NMDA receptor in the kidney and the cardiovascular system.  相似文献   

4.
5.
6.
N-methyl-D-aspartate (NMDA) receptors play crucial roles in excitatory synaptic transmission as well as in excitotoxicity. A growing body of evidence suggests that the regulation of both subunit composition and the number of NMDA receptors reaching the surface membrane are tightly regulated. Recently, we have shown that the third membrane domains (M3) of both NR1 and NR2B subunits contain endoplasmic reticulum (ER) retention signals that prevent the unassembled subunits from leaving the ER. Furthermore, these membrane domains together with NR1 M4 are necessary for negating the ER retention signals found in M3 of NR1 and NR2B. In this addendum, we present new electrophysiological data showing that mutation of the HLFY motif, located immediately after M4 of the NR2B subunit, abolishes the surface trafficking of full-length NR1/NR2B complexes (supporting previous immunofluorescent experiments from our lab); however, the deletion of the NR2B C-terminus including the HLFY motif did not affect the formation of functional receptors when two pieces of the NR2B subunit, NR2B truncated before M4 and NR2B M4, were co-expressed together with the NR1 subunit. These observations will help to uncover the processes involved in the assembly of NR1 and NR2 subunits into functional NMDA receptors.  相似文献   

7.
N-methyl-D-aspartate (NMDA) receptors play crucial roles in excitatory synaptic transmission as well as in excitotoxicity. A growing body of evidence suggests that the regulation of both subunit composition and the number of NMDA receptors reaching the surface membrane are tightly regulated. Recently, we have shown that the third membrane domains (M3) of both NR1 and NR2B subunits contain endoplasmic reticulum (ER) retention signals that prevent the unassembled subunits from leaving the ER. Furthermore, these membrane domains together with NR1 M4 are necessary for negating the ER retention signals found in M3 of NR1 and NR2B. In this addendum, we present new electrophysiological data showing that mutation of the HLFY motif, located immediately after M4 of the NR2B subunit, abolishes the surface trafficking of full-length NR1/NR2B complexes (supporting previous immunofluorescent experiments from our lab); however, the deletion of the NR2B C-terminus including the HLFY motif did not affect the formation of functional receptors when two pieces of the NR2B subunit, NR2B truncated before M4 and NR2B M4, were co-expressed together with the NR1 subunit. These observations will help to uncover the processes involved in the assembly of NR1 and NR2 subunits into functional NMDA receptors.  相似文献   

8.
Protein kinase CK2 (CK2) is highly expressed in rat forebrain where its function is not well understood. Subcellular distribution studies showed that the catalytic subunit of CK2 (CK2alpha) was enriched in postsynaptic densities (PSDs) by 68%. We studied the putative role of CK2 activity on N-methyl-D-aspartate receptor (NMDAR) function using isolated, patch-clamped PSDs in the presence of 2 mM extracellular Mg(2+). The usual activation by phosphorylation of the NMDARs in the presence of ATP was inhibited by the selective CK2 inhibitor 5,6-dichloro-1-beta-ribofuranosyl benzimidazole (DRB). This inhibition was voltage-dependent, i.e., 100% at positive membrane potentials, while at negative potentials, inhibition was incomplete. Endogenous CK2 substrates were characterized by their ability to use GTP as a phosphoryl donor and susceptibility to inhibition by DRB. Immunoprecipitation assays and 2D gels indicated that PSD-95/SAP90, the NMDAR scaffolding protein, was a CK2 substrate, while the NR2A/B and NR1 NMDAR subunits were not. These results suggest that postsynaptic NMDAR regulation by CK2 is mediated by indirect mechanisms possibly involving PSD-95/SAP90.  相似文献   

9.
Differential assembly of N-methyl-D-aspartate (NMDA) receptor subunits determines their functional characteristics. Using in situ hybridization, we found a selective increase of the subunits NR1 and NR2A mRNA at 24 h in ventral motor neurons (VMN) caudal to a standardized spinal cord contusion injury (SCI). Other neuronal cell populations and VMN rostral to the injury site appeared unaffected. Significant up-regulation of NR2A mRNA also was seen 1 month after SCI in thoracic and lumbar VMN. The selective effects on VMN caudal to the injury site suggest that the loss of descending innervation leads to increased NMDA receptor subunit expression in these cells after SCI, which may alter their responses to glutamate. In contrast, protein levels determined by western blot analysis show decreased levels of NR2A 1 month after SCI in whole thoracic segments of spinal cord that included the injury sites. No effects of injury were seen on subunit levels in cervical or lumbar segments. Taken together with our previous study showing alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor subunit down-regulation after injury, our data suggest that glutamate receptor composition is significantly altered after SCI. These changes need to be taken into account to properly understand the function of, and potential pharmacotherapy for, the chronically injured spinal cord.  相似文献   

10.
In animal models of diabetes mellitus, such as the streptozotocin-diabetic rat (STZ-rat), spatial learning impairments develop in parallel with a reduced expression of long-term potentiation (LTP) and enhanced expression of long-term depression (LTD) in the hippocampus. This study examined the time course of the effects of STZ-diabetes and insulin treatment on the hippocampal post-synaptic glutamate N-methyl-D-aspartate (NMDA) receptor complex and other key proteins regulating hippocampal synaptic transmission in the post-synaptic density (PSD) fraction. In addition, the functional properties of the NMDA-receptor complex were examined. One month of STZ-diabetes did not affect the NMDA receptor complex. In contrast, 4 months after induction of diabetes NR2B subunit immunoreactivity, CaMKII and Tyr-dependent phosphorylation of the NR2A/B subunits of the NMDA receptor were reduced and alphaCaMKII autophosphorylation and its association to the NMDA receptor complex were impaired in STZ-rats compared with age-matched controls. Likewise, NMDA currents in hippocampal pyramidal neurones measured by intracellular recording were reduced in STZ-rats. Insulin treatment prevented the reduction in kinase activities, NR2B expression levels, CaMKII-NMDA receptor association and NMDA currents. These findings strengthen the hypothesis that altered post-synaptic glutamatergic transmission is related to deficits in learning and plasticity in this animal model.  相似文献   

11.
Glutamate-activated N-methyl-D-aspartate (NMDA) receptors are ligand-gated ion channels, which mediate synaptic transmission, long-term potentiation, synaptic plasticity and neurodegeneration via conditional Ca(2+) signalling. Recent crystallographic studies have focussed on solving the structural determinant of the ligand binding within the core region of NR1 and NR2 subunits. Future structural analysis will help to understand the mechanism of native channel activation and regulation during synaptic transmission. A number of NMDA receptor ligands have been identified which act as positive or negative modulators of receptor function. There is evidence that the lipid bilayer can further regulate the activity of the NMDA receptor channels. Modulators of NMDA receptor function offer the potential for the development of novel therapeutics to target neurological disorders associated with this family of glutamate ion channel receptors. Here, we review the recent literature concerning structural and functional properties, as well as the physiological and pathological roles of NMDA receptor channels.  相似文献   

12.
Previous studies have shown that Csk plays critical roles in the regulation of neural development, differentiation and glutamate-mediated synaptic plasticity. It has been found that Csk associates with the NR2A and 2B subunits of N-methyl-D-aspartate receptors (NMDARs) in a Src activity-dependent manner and serves as an intrinsic mechanism to provide a “brake” on the induction of long-term synaptic potentiation (LTP) mediated by NMDARs. In contrast to the NR2A and 2B subunits, no apparent tyrosine phosphorylation is found in the NR1 subunit of NMDARs. Here, we report that Csk can also associate with the NR1 subunit in a Src activity-dependent manner. The truncation of the NR1 subunit C-tail which contains only one tyrosine (Y837) significantly reduced the Csk association with the NR1-1a/NR2A receptor complex. Furthermore, we found that either the truncation of NR2A C-tail at aa 857 or the mutation of Y837 in the NR1-1a subunit to phenylalanine blocked the inhibition of NR1-1a/NR2A receptors induced by intracellular application of Csk. Thus, both the NR1 and NR2 subunits are required for the regulation of NMDAR activity by Csk.  相似文献   

13.
It has been proposed that assembly of the final NMDA receptor complex may be modified by prenatal ethanol exposure, resulting in long-term alterations of NMDA receptor pharmacology. We investigated the effect of prenatal and postnatal ethanol exposure on the developmental profile of mRNAs encoding NMDA receptor subunits in rat hippocampus. Female Sprague-Dawley rats were chronically intoxicated for 4 weeks with a 10% (v/v) ethanol solution administered throughout pregnancy and lactation. Hippocampus and cerebellum were isolated from pups (postnatal days 1-28) of the ethanol-exposed and ad libitum groups. Our results, using a semiquantitative RT-PCR technique, showed a selective effect of ethanol exposure on the various NMDA receptor subunits. Ethanol exposure significantly increased the levels of NR1(1XX), NR1(X11) and NR2(D) mRNAs on postnatal days 7 and 14 and decreased the level of NR2(C) on postnatal day 1. Immunoblot analyses demonstrated that NR2(D) protein levels were increased on postnatal day 7 after ethanol exposure. However, the developmental profile of mRNAs encoding for NR2(A-B), NR3(L/S), GBP and Gly/TCP-BP subunits were not affected. Moreover, no significant effects of ethanol exposure were observed on the developmental transition from expression of NR1(0XX) to NR(1XX) splice variants occurring in the cerebellum on postnatal day 19. Unexpectedly, [(3) H]MK-801 binding experiments showed that ethanol exposure increased the B (max) values of high-affinity sites on postnatal days 14 and 28, with no change of K (d) values. These findings indicate that prenatal and/or postnatal ethanol exposure alters the hippocampal levels of mRNAs encoding for certain subunits and the density of high-affinity [(3) H]MK-801 binding sites. As these subunits have been shown to modulate the functional properties of NMDA receptors, these results suggest that this altered expression could be involved in the neurodevelopmental disorders associated with fetal ethanol exposure.  相似文献   

14.
Postmortem studies in schizophrenic patients revealed alterations in NMDA receptor binding and gene expression of specific subunits. Because most of the patients had been treated with antipsychotics over long periods, medication effects might have influenced those findings. We treated animals with haloperidol and clozapine in clinical doses to investigate the effects of long-term antipsychotic treatment on NMDA receptor binding and gene expression of subunits. Rats were treated with either haloperidol (1,5 mg/kg/day) or clozapine (45 mg/kg/day) given in drinking water over a period of 6 months. Quantitative receptor autoradiography with [3H]-MK-801 was used to examine NMDA receptor binding. In situ hybridization was performed for additional gene expression studies of the NR1, NR2A, NR2B, NR2C, and NR2D subunits. [3H]-MK-801 binding was found to be increased after haloperidol treatment in the striatum and nucleus accumbens. Clozapine was shown to up-regulate NMDA receptor binding only in the nucleus accumbens. There were no alterations in gene expression of NMDA subunits in any of the three regions. However, the NR2A subunit was down-regulated in the hippocampus and prefrontal cortex by both drugs, whereas only clozapine induced a down-regulation of NR1 in the dorsolateral prefrontal cortex. NR2B, 2C, and 2D subunits did not differ between treatment groups and controls. Both altered NMDA receptor binding and subunit expression strengthen a hyperglutamatergic function after haloperidol treatment and may contribute to some of our postmortem findings in antipsychotically treated schizophrenic patients. Because the effects seen in different brain areas clearly vary between haloperidol and clozapine, they may also be responsible for some of the differences in efficacy and side effects.  相似文献   

15.
N-methyl-d-aspartate (NMDA) receptors play major roles in synaptic transmission and plasticity, as well as excitotoxicity. NMDA receptors are thought to be tetrameric complexes mainly composed of NMDA receptor (NR)1 and NR2 subunits. The NR1 subunits are required for the formation of functional NMDA receptor channels, whereas the NR2 subunits modify channel properties. Biochemical and functional studies indicate that subunits making up NMDA receptors are organized into a dimer of dimers, and the N termini of the subunits are major determinants for receptor assembling. Here we used a biophysical approach, fluorescence resonance energy transfer, to analyze the assembly of intact, functional NMDA receptors in living cells. The results showed that NR1, NR2A, and NR2B subunits could form homodimers when they were expressed alone in HEK293 cells. Subunit homodimers were also found existing in heteromeric NMDA receptors formed between NR1 and NR2 subunits. These findings are consistent with functional NMDA receptors being arranged as a dimer of dimers. In addition, our data indicated that the conformation of NR1 subunit homodimers was affected by the partner NR2 subunits during the formation of heteromeric receptor complexes, which might underlie the mechanism by which NR2 subunits modify NMDA receptor function.  相似文献   

16.
N-methyl-D-aspartate receptors (NMDARs) are ligand-gated ion channels that contribute to fundamental physiological processes such as learning and memory and, when dysfunctional, to pathophysiological conditions such as neurodegenerative diseases, stroke, and mental illness. NMDARs are obligate heteromultimers typically composed of NR1 and NR2 subunits with the different subunits underlying the functional versatility of NMDARs. To study the contribution of the different subunits to NMDAR channel structure and gating, we compared the effects of cysteine-reactive agents on cysteines substituted in and around the M1, M3, and M4 segments of the NR1 and NR2C subunits. Based on the voltage dependence of cysteine modification, we find that, both in NR1 and NR2C, M3 appears to be the only transmembrane segment that contributes to the deep (or voltage dependent) portion of the ion channel pore. This contribution, however, is subunit specific with more positions in NR1 than in NR2C facing the central pore. Complimentarily, NR2C makes a greater contribution than NR1 to the shallow (or voltage independent) portion of the pore with more NR2C positions in pre-M1 and M3-S2 linker lining the ion-conducting pathway. Substituted cysteines in the M3 segments in NR1 and NR2C showed strong, albeit different, state-dependent reactivity, suggesting that they play central but structurally distinct roles in gating. A weaker state dependence was observed for the pre-M1 regions in both subunits. Compared to M1 and M3, the M4 segments in both NR1 and NR2C subunits had limited accessibility and the weakest state dependence, suggesting that they are peripheral to the central pore. Finally, we propose that Lurcher mutation-like effects, which were identified in and around all three transmembrane segments, occur for positions located at dynamic protein-protein or protein-lipid interfaces that have state-dependent accessibility to methanethiosulfonate (MTS) reagents and therefore can affect the equilibrium between open and closed states following reactions with MTS reagents.  相似文献   

17.
NMDA receptors are ionotropic glutamate receptors assembled of subunits of the NR1 and of the NR2 family (NR2A–NR2D). The subunit diversity largely affects the pharmacological properties of NMDA receptors and, hence, gives rise to receptor heterogeneity. As an overall result of studies on recombinant and native NMDA receptors, ethanol inhibits the function of receptors containing the subunits NR2A and/or NR2B to a greater extent than those containing NR2C or NR2D. For example, in rat cultured mesencephalic neurons, NR2C expression was developmentally increased, whereas expression of NR2A and NR2B was decreased. These changes coincided with a developmental loss of sensitivity of NMDA responses to ethanol and ifenprodil, a non-competitive NMDA receptor antagonist that shows selectivity for NR2B-containing receptors. Also in rat locus coeruleus neurons, the low ethanol sensitivity of somatic NMDA receptors could be explained by a prominent expression of NR2C. The inhibitory site of action for ethanol on the NMDA receptor is not yet known. Patch–clamp studies suggest a target site exposed to or only accessible from the extracellular environment. Apparently, amino acid residue Phe639, located in the TM3 domain of NR1, plays a crucial role in the inhibition of NMDA receptor function by ethanol. Since this phenylalanine site is common to all NMDA and non-NMDA receptor (AMPA/kainate receptor) subunits, this observation is consistent with accumulating evidence for a similar ethanol sensitivity of a variety of NMDA and non-NMDA receptors, but it cannot explain the differences in ethanol sensitivity observed with different NR2 subunits.  相似文献   

18.
The mRNA expression of the major subunits of N-methyl-d-aspartate receptors (NR1, NR2A and NR2B) following ischemia–reperfusion was studied in structures with different vulnerabilities to ischemic insult in the rat brain. The study was performed using quantitative real-time PCR on samples from 3-month-old male Sprague–Dawley rats after global transient forebrain ischemia followed by 48 h of reperfusion. Expression of NMDA receptor subunits mRNAs decreased significantly in all structures studied in the injured animals as compared to the sham-operated ones. The hippocampal subfields (CA1, CA3 and dentate gyrus) as well as the caudate-putamen, both reported to be highly ischemic-vulnerable structures, showed outstandingly lower mRNA levels of NMDA receptor subunits than the cerebral cortex, which is considered a more ischemic-resistant structure. The ratios of the mRNA levels of the different subunits were analyzed as a measure of the NMDA receptor expression pattern for each structure studied. Hippocampal areas showed changes in NMDA receptor expression after the insult, with significant decreases in the NR2A with respect to the NR1 and NR2B subunits. Thus, the NR1:NR2A:NR2B (1:1:2) ratios observed in the sham-operated animals became (2:1:4) in insulted animals. This modified expression pattern was similar in CA1, CA3 and the dentate gyrus, in spite of the different vulnerabilities reported for these hippocampal areas. In contrast, no significant differences in the expression pattern were observed in the caudate-putamen or cerebral cortex on comparing the sham-operated animals with the ischemia-reperfused rats. Our results support the notion that the regulation of NMDA receptor gene expression is dependent on the brain structure rather than on the higher or lower vulnerability of the area studied.  相似文献   

19.
20.
Chronic ethanol treatment of cultured neurons from various brain areas has been found to increase NMDA receptor function and to alter the levels of some NMDA receptor subunit proteins. Because the cultured neurons are exposed to ethanol during a period when the NMDA receptor is undergoing developmental changes in subunit expression, we wished to determine whether ethanol treatment alters this developmental pattern. We found that 3 days of treatment of cerebellar granule neurons with ethanol, which was previously reported to increase NMDA receptor function, resulted in a delay in the 'developmental switch' of the NR2A and NR2B subunits, i.e. the developmental decrease in NR2B and increase in NR2A protein expression. As a result, the level of NR2B was higher, and that of NR2A was lower, in the ethanol-treated cells than in control cells. Cross-linking experiments showed that the changes in total receptor subunit proteins levels were reflected in cell-surface expressed proteins, indicating changes in the amount of functional receptors. These results were confirmed by a higher potency of glycine at the NMDA receptor in the ethanol-treated cells, as determined by NMDA/glycine-induced increases in intracellular Ca(2+). The results suggest that the mechanism by which ethanol alters NMDA receptor expression in cultured neurons, where receptors are undergoing development, differs from the mechanism of ethanol's effect on NMDA receptors in adult brain. Changes in the proportion of NR2A and NR2B subunits may contribute to effects of ethanol on neuronal development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号