首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eggplant Solanum melongena L., is often colonized by two early season insect defoliators. The Colorado potato beetle (CPB), Leptinotarsa decemlineata (Say), and flea beetles Epitrix spp., emerge from their overwintering sites in early spring and seek out emerging host plants such as eggplant. During the 2009 and 2010 growing season, field studies were conducted to investigate the impact of inter‐planting eggplant into a crimson clover (CC), Trifolium incarnatum L., winter cover crop on populations of flea beetles, CPB and their associated arthropod predators. The experiment consisted also of two levels of insecticide usage such as an application of azadirachtins plus pyrethrins followed by several applications of spinosad or no insecticide sprays as subplot treatments. During both study years, significantly fewer (adults, larvae and egg masses) were found on eggplant inter‐planted into CC than in bare‐ground (BG) eggplant plots. Although flea beetle abundance was greater in BG eggplant during 2010, they appeared to be less influenced by the presence of CC than were CPB. Additionally, there was no apparent impact of insecticide treatment on CPB populations on eggplant inter‐planted into CC. However, there was a decline in CPB following treatments with insecticides in BG eggplant plots. This suggests that a winter cover crop such as CC can be used to help manage CPB in eggplant, however, using this tactic in tandem with insecticide sprays may not result in greater CPB management.  相似文献   

2.
As part of the ongoing evaluation of different systemic insecticides for prophylactic treatment of trees, responses of the beetle Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae) to different doses of four systemic neonicotinyl insecticides were studied. Adult beetles were provided with twigs or leaves of trees treated with different concentrations of imidacloprid to evaluate the toxicity of the insecticide through ingestion or contact or through both. Adult beetles also were provided with twigs of host plant treated with clothianidin, dinotefuran, and thiamethoxam to establish dose response of the beetle to these insecticides. Levels of individual insecticides in twigs and leaves were determined by using the "parent" method with high-performance liquid chromatography, and these levels were compared with the applied concentrations to determine their relationship. The LC50 values for detected level of each insecticide in twigs was 5.1 ppm at 24 h, 2.9 at 48 h, and 1.9 ppm at 72 h for imidacloprid; 1.1 ppm at 72 h for clothianidin; 2.2 ppm at 72 h for dinotefuran; and 1.0 ppm at 72 h for thiamethoxam. Our results indicate that mortality of adult beetles resulted not only from the ingestion and contact toxicity but also possibly from the antifeedant effect of imidacloprid.  相似文献   

3.
Laboratory bioassays and field tests were conducted to compare the effectiveness of the new insecticides, imidacloprid, indoxacarb, pyriproxyfen, spinosad, thiacloprid, and thiamethoxam, against apple maggot. The activity ranking of the compounds in reducing oviposition in laboratory bioassays was: imidacloprid, 95% reduction at 11 ppm > thiamethoxam, 91% and thiacloprid, 89% reduction at 100 ppm > spinosad, 98% reduction at 316 ppm > indoxacarb, 80% reduction at 1000 ppm > pyriproxyfen, 0% reduction at 38 ppm. In laboratory bioassays, the only insecticides that were toxic to flies at concentrations equal to or below the recommended field rates were imidacloprid, (50% of flies at 11 ppm), spinosad (90% of flies at rates > 10 ppm), and thiamethoxam (approximately 50% of flies at 32 ppm). In field trials, thiacloprid was the only material that consistently controlled apple maggot fruit infestation that was comparable to standard treatments of organophosphate insecticides. Spinosad applied at weekly intervals, and indoxacarb applied as biweekly sprays provided adequate control of apple maggot damage when infestation levels in the field were low, but were not effective in preventing damage in small plots when apple maggot pressure was high.  相似文献   

4.
From 2001 to 2004, field studies were conducted to evaluate the effect of the ecorational insecticides SpinTor (spinosad), BotaniGard (Beauveria bassiana), Neemix (azadirachtin), and Surround (kaolin) against crucifer flea beetle on canola, Brassica napus L., at the cotyledon stage. The ecorational treatments were compared with a standard foliar chemical insecticide, Capture (bifenthrin), and the chemical seed treatment insecticide Helix XTra (thiamethoxam). This study indicated that flea beetle injury was lower for Helix XTra, Capture, and the ecorational insecticide SpinTor. SpinTor was less effective when flea beetle populations were relatively high (200-300 per trap-week). Yields for chemical insecticide treatments were always greater than SpinTor, with differences being the smallest (68-374 kg/ha) at low levels of flea beetle feeding injury. Differences were greatest when canola seedling injury was high (775-1,364 kg/ha). Yield differences between the conventional insecticides and BotaniGard, Neemix, and Surround were 119-439 and 61-2,248 kg/ha at low and high flea beetle feeding injury, respectively. Although yield differences between SpinTor and chemical insecticides were relatively small at lower levels of flea beetle injury, net losses ranged from $47 to $151/ha when SpinTor was used as an alternative to a standard chemical seed treatment, Helix XTra. This suggests that SpinTor would not be a viable alternative to the chemical insecticide. Net losses ranged from $30 to $266/ha when BotaniGard, Neemix, and Surround were used as alternatives to the seed treatment.  相似文献   

5.
采用试管药膜法,测定了不同类型杀虫剂对日本刀角瓢虫Serangium japonicum Chapin的毒力。结果表明,灭多威和敌敌畏对日本刀角瓢虫具有极强的毒力,其25%推荐剂量即可导致日本刀角瓢虫全部死亡;氯虫苯甲酰胺、吡虫啉和噻虫嗪对日本刀角瓢虫也具有很强的毒力,其田间推荐剂量可导致日本刀角瓢虫全部死亡,其50%推荐剂量对日本刀角瓢虫的致死率也高达73.33%~100.00%;乐果、烯啶虫胺、丁醚脲田间推荐剂量对日本刀角瓢虫的致死率分别为40.00%、56.67%、50.00%,预示着上述这些杀虫剂的田间应用对刀角瓢虫具有很高的直接杀伤风险。高效氯氰菊酯、联苯菊酯、毒死蜱、甲氰菊酯、高效氯氟氰菊酯、虫螨腈、阿维菌素、吡蚜酮、噻嗪酮、定虫隆和氟虫脲对日本刀角瓢虫的毒力较低甚至没有直接致死作用。研究结果将为合理使用杀虫剂,协调利用化学防治与生物防治对烟粉虱进行综合防治提供依据。  相似文献   

6.
Ten insecticides representing seven chemical groups were applied at various concentrations topically by using a Potter Spray Tower to evaluate their relative toxicities on the European wireworm Agriotes obscurus L. (Coleoptera: Elateridae). Wireworms were stored at 15 degrees C after exposure to organophosphate (OP) (chlorpyrifos, diazinon), pyrethroid (tefluthrin), thianicotinoid (thiamethoxam, clothianidin), chloronicotinoid (imidacloprid, acetamiprid), phenyl pyrazole (fipronil), organochlorine (lindane), and spinosyn (spinosad) insecticides, and their postapplication health was evaluated weekly for up to 301 d. LC50, LC90, LT50, and LT90 values were calculated for each chemical except acetamiprid, and compared with those of lindane, clothianidin, and chlorpyrifos. Wireworms exposed to OPs died or recovered more quickly (LT50 < 20 d, LT90 < 50 d), than those exposed to all other insecticides tested except tefluthrin (LT50 = 25.5 d, LT90 = 66.5 d). Wireworms exposed to sublethal concentrations of all neonicotinoids quickly became moribund after application but made a full recovery. Wireworms exposed to fipronil at concentrations near the LC90 value showed no intoxication symptoms for up to 35 d, and they did not recover after symptoms developed. For each chemical, increasing the concentration increased the time required for wireworms to recover but decreased the time required to kill wireworms. Fipronil was highly toxic to wireworms (LC50 = 0.0001%), but acetamiprid (LC50 = 1.82%), imidacloprid (LC50 = 0.83%), tefluthrin (LC50 = 0.23%), diazinon (LC50 = 0.54%), and spinosad (LC50 = 0.51%) were not. The toxicity of both clothianidin (LC50 = 0.07%) and thiamethoxam (LC50 = 0.17%) were similar to those oflindane (LC50 = 0.06%) and chlorpyrifos (LC50 = 0.10%).  相似文献   

7.
Studies were done comparing the insecticides SpinTor (spinosad), BotaniGard (Beauveria bassiana), Neemix (azadirachtin), and Surround (kaolin, a clay) with conventional chemical insecticides Capture (bifenthrin) and Helix XTra (thiamethoxam), all applied at seven rates in a 7-d assay to assess their impact on adult crucifer flea beetle, Phyllotreta cruciferae (Goeze) (Coleoptera: Chrysomelidae). Lethal time (LT) required for 25, 50, and 75% mortality (LT25, LT50, and LT75) and relative potencies for the insecticide concentration groupings (0, 1X-1.5X, and 2X- 4X) were estimated for each treatment by using survival functions. P. cruciferae mortality increased in response to increasing concentrations, especially for Helix XTra, Capture and SpinTor. After 2 d of exposure in 2002, mortality ranged from 54 to 78% for Helix XTra, from 60 to 94% for Capture, and from 66 to 92% for SpinTor across concentrations. In 2003, flea beetle mortality ranged from 37 to 60%, from 29 to 63%, and from 23 to 52% on exposure to Helix XTra, Capture, and SpinTor, respectively, for 2 d. The LT50 and relative potencies of the insecticides were in the order of Helix XTra, Capture, and SpinTor > BotaniGard, Neemix, and Surround. In 2002, LT50 values were 1 and 2 d for Capture and SpinTor, 2 d for BotaniGard, and 3 d for Neemix and Surround. In 2003, LT50 values occurred between 2 and 4 d after exposure to Helix XTra, Capture, and SpinTor, with LT50 values of 5-7 d on exposure to BotaniGard, Neemix, and Surround. SpinTor seems to be a suitable ecorational insecticide in canola, Brassica napus L., for P. cruciferae management.  相似文献   

8.
The fumigant toxicity of 92 plant essential oils to adult Thrips palmi Karny (Thysanoptera: Thripidae) and Orius strigicollis Poppius (Heteroptera: Anthocoridae) was examined by using a vapor phase toxicity bioassay and compared with those of dichlorvos, emamectin benzoate, spinosad, and thiamethoxam, four commonly used insecticides. Responses varied according to oil type and insect species. As judged by 24-h LC50 values, pennyroyal oil (2.63 mg/liter air) was the most toxic fumigant and was 23.6-fold more toxic than dichlorvos (62.09 mg/liter air) against adult T. palmi. Potent fumigant toxicity (LC50, 11.03-19.21 mg/liter air) was observed in armoise, basil, cedarleaf, coriander, cypress, howood, hyssop, marjoram, myrtle, niaouli, rosemary, and sage (Dalmatia) oils. Neither emamectin benzoate, spinosad, nor thiamethoxam exhibited fumigant action. Against adult O. strigicollis, dichlorvos (LC50, 6.3 x 10(-6) mg/liter air) was the most toxic fumigant, whereas the LC50 values of the 13 essential oils ranged from 17.29 to 158.22 mg/liter air. O. strigicollis was 1.4-22.1 times less susceptible than T. palmi to the essential oils. The essential oils described merit further study as potential fumigants for the control of T. palmi in greenhouses.  相似文献   

9.
The effects of spinosad bait and various insecticides, the presence of sugar in insecticides, and diet on feeding responses and mortality in western cherry fruit fly, Rhagoletis indifferens Curran (Dipt., Tephritidae), were determined. Numbers of feeding events on insecticides with sugar were greater than on insecticides alone, but there was only a small effect of diet on feeding responses to insecticides with sugar. Feeding durations on imidacloprid, thiamethoxam and acetamiprid with sugar were shorter than on sugar water and spinosad bait, as the neonicotinoids paralysed flies quickly. Flies that fed on sugar only (nitrogen‐starved) suffered higher mortalities when exposed to spinosad, thiamethoxam and azinphos‐methyl than to imidacloprid, acetamiprid and indoxacarb, and mortality in between these two groups of treatments when exposed to spinosad bait. Mortalities were greater when sugar was added to insecticides, and were higher in nitrogen‐starved than fully‐fed (yeast extract + sugar fed) flies. Flies that fed once on thiamethoxam were killed more quickly than those that fed once on spinosad bait and spinosad. Results suggest that thiamethoxam is comparable to spinosad in its effects on mortality, and that using it with sugar in bait may also have similar results as using spinosad bait or spinosad. One benefit of using thiamethoxam with sugar may be that it kills flies more quickly, before they can oviposit, than spinosad bait, although whether a fly will feed on it may depend on how much sugar or nitrogenous food it has eaten.  相似文献   

10.
Imidacloprid, thiamethoxam (first and second generation neonicotinoid insecticides), and spinosad (a naturally derived biorational insecticide) were evaluated in the laboratory against adult eye gnats, Liohippelates collusor (Townsend), using two modes of exposure. Ingestion experiments revealed that toxicity was the highest for thiamethoxam (Platinum soluble concentrate) followed by technical thiamethoxam, imidacloprid (Admire 2 flowable concentrate), and spinosad (Success* soluble concentrate). When incorporated into 5% sucrose solutions, eye gnat mortality was significantly increased compared to the same concentrations of aqueous insecticide solutions. Contact toxicity experiments revealed that thiamethoxam formulation (Platinum) was the most toxic, followed by technical thiamethoxam, imidacloprid, and spinosad. Increasing the duration of exposure time from 15 min to 30 min significantly increased adult eye gnat mortality, but no further mortality occurred by extending exposure from 30 min to 60 min. Our results suggest that Platinum has good ingestion and contact activity against adult eye gnats. Admire and Success have appreciable ingestion toxicity but low contact activity against adult eye gnats.  相似文献   

11.
Diagnostic concentrations for several standard and experimental insecticides were determined for a laboratory reference strain of soybean looper, Pseudoplusia includens (Walker), using an insecticide diet overlay bioassay to evaluate the relative susceptibility of field (P) and F1 generations of four field-collected strains of third-, fourth-, and fifth-instar soybean loopers in 1996 and 1997. Diagnostic concentrations were defined as concentrations that killed 90-95% of the susceptible individuals and were 5 ppm for permethrin, 1,300 ppm for thiodicarb, 60 ppm for chlorfenapyr, 5 ppm for emamectin benzoate, and 60 ppm for spinosad. Field strains exhibited significantly greater percentage survival than the laboratory reference strain in the permethrin bioassays in 1996 and 1997 in both the P and F1 generation bioassays and in the thiodicarb bioassays in 1997. Larvae exposed to diagnostic concentrations of the experimental insecticides chlorfenapyr, emamectin benzoate, and spinosad usually did not exhibit significantly higher percentage survival than the reference strain.  相似文献   

12.
Use of insecticides with low toxicity to natural enemies is an important component of conservation biological control. In this study, we evaluated the toxicity of insecticides used in sweet corn, Zea mays L., and soybean, Glycine max (L.) Merr., to the multicolored Asian lady beetle, Harmonia axyridis (Pallas), under laboratory and field conditions. Field experiments conducted in sweet corn in 2003 and 2004 and in soybean in 2003, showed that H. axyridis was the most abundant predator. In sweet corn, densities of H. axyridis larvae in plots treated with spinosad or indoxacarb were generally higher than in plots treated with chlorpyrifos, carbaryl, bifenthrin, and A-cyhalothrin. In soybean, densities of H. axyridis larvae in plots treated with chlorpyrifos were higher than in plots treated with lambda-cyhalothrin. Laboratory experiments were conducted to evaluate the acute toxicity of insecticides to eggs, first and third instars, pupae, and adults. Spinosad, followed by indoxacarb, were the least toxic insecticides for all life stages of H. axyridis. Conventional insecticides showed high toxicity to H. axyridis when applied at field rates under laboratory conditions. Overall, first instars were most susceptible to the insecticides tested, followed by third instars and adults, eggs, and pupae. Our results suggest that spinosad, and to a lesser extent indoxacarb, offer reduced toxicity to H. axyridis and would be beneficial for conservation biological control in agricultural systems where H. axyridis is abundant.  相似文献   

13.
The acute toxicity of 10 conventional insecticides to adult of Trichogramma chilonis Ishii (Hymenoptera: Trichogrammatidae) was bioassayed by membrane method, and then their sublethal effects on the parasitoid were evaluated in the laboratory. Based on sublethal concentration (LC30) values at 8 h after treatment, we determined that adult T. chilonis were the most susceptible to chlorfenapyr, followed by fipronil, spinosad, avermectins, beta-cypermethrin, and cartap, with lethal concentration (LC)30 values of 0.3133, 0.3269, 1.5408, 3.2961, 6.1469, and 9.021 mg/liter, respectively. The field-recommended concentrations of chlorfluazuron, indoxacarb, Bacillus thuringiensis, and tebufenozide caused <30% mortality of treated adults; therefore, they were used to evaluate sublethal effects on the parasitoid. After treatment with sublethal concentration of fipronil and avermectins, the longevity of treated females (1.2 and 1.6 d) was significantly shortened and fecundity (34.7 and 1.6) was remarkably decreased; consequently, the life-table parameters (R0, r(m), lambda, and T) of T. chilonis were statistically lower than those in the control. Cartap and spinosad also reduced longevity (8 and 7.9 d) and fecundity (110.77 and 117.2) of treated adults, but cartap enhanced the female percentage of F1 offspring (61.6%), resulting a statistical higher R0, r(m), and lambda of treated T. chilonis. In contrast, chlorfluazuron and tebufenozide increased longevity (16.4 and 15.4 d) and fecundity (248 and 256.9) of treated adults but slightly decreased the female percentage of F1 offspring (31.4 and 38.1%). Although chlorfenapyr showed no adverse influence on longevity and fecundity, it remarkably reduced the female percentage of F1 offspring (13.5%), leading to a lower R0, r(m), and lambda of treated T. chilonis. Indoxacarb, B. thuringiensis, and beta-cypermethrin had no obvious sublethal effects on the longevity and fecundity of treated adults. Based on these results, we consider B. thuringienesis, chlorfluazuron, indoxacarb, beta-cypermethrin, and tebufenozide safe to T. chilonis, suggesting that these insecticides are compatible with this parasitoid when being used in the field. However, fipronil, chlorfenapyr, spinosad, and avermectins were very harmful to T. chilonis. Timing of application of these insecticides was critical.  相似文献   

14.
Effects of spinosad, spinosad bait, and the chloronicotinyl insecticides imidacloprid and thiacloprid on mortality of the adults and larvae of western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), were determined in the laboratory and the field. Spinosad and spinosad bait caused higher adult mortality than imidacloprid, which caused higher mortality than thiacloprid. Only spinosad bait prevented oviposition. All materials were more toxic to adults when ingested than when topically applied. Spinosad bait had the greatest residual toxicity on leaves, killing 100% of adults when aged for 14 d in the field. When materials were sprayed on infested cherries, numbers of live larvae in fruit after 8 d were lower in imidacloprid and thiacloprid than in spinosad and spinosad bait treatments, which did not differ from the control, but all materials reduced larval emergence over 30 d. In the field, spinosad and spinosad bait were as effective in suppressing larval infestations as azinphos-methyl and carbaryl, whereas imidacloprid was effective in most cases and thiacloprid was generally less effective than azinphos-methyl and carbaryl. Overall, results in the laboratory and field show that spinosad and chloronicotinyl insecticides differed significantly in their effectiveness against adults and larvae of R. indifferens but that spinosad, spinosad bait, and imidacloprid seem to be acceptable substitutes for organophosphate and carbamate insecticides for controlling this fruit fly.  相似文献   

15.
The strategy used most commonly in western North America to protect seedlings of canola (Brassica rapa L. and Brassica napus L.) from attack by adults of the flea beetles Phyllotreta cruciferae (Goeze) and Phyllotreta striolata (Fabricius) (Coleoptera: Chrysomelidae) involves planting seed coated with insecticide for systemic activity. Previous research determined that the two beetle species responded differently to the most commonly used neonicotinoid seed dressings. However, other insecticides that exploit different modes of action have commercial potential for managing infestations of these pests, but no information exists on their efficacies for these flea beetle species. Studies were conducted to compare effects of the neonicotinoid compounds, thiamethoxam and imidacloprid, to spinosyn and fipronil as systemic seed treatments for reducing feeding damage to canola seedlings and increasing mortality of P. cruciferae and P. striolata. Phyllotreta cruciferae experienced greater mortality and caused less feeding damage than P. striolata to seedlings treated with the neonicotinoid compounds. Mortality increased and feeding damage decreased significantly when beetles fed upon seedlings treated with fipronil, indicating its potential usefulness for control of these pests. However, spinosyn seed treatment was relatively ineffective against either beetle species. Higher rates of P. striolata mortality with fipronil than thiamethoxam suggest that fipronil may provide improved flea beetle control over hundreds of thousands of hectares in western North America where flea beetle populations are dominated by P. striolata, and control with thiamethoxam has been suboptimal.  相似文献   

16.
Anystis baccarum (L.) [=Anystis agilis (Banks)] (Acari: Anystidae) is a common predatory mite recently identified in apple (Malus spp.) orchards and in vineyards (Vitus spp.) in Québec, Canada. Studies of its susceptibility to pesticides used in these crops need to be carried out to encourage integrated pest management programs. A laboratory evaluation of methoxyfenozide, acetamiprid, thiamethoxam, imidacloprid, spinosad, phosmet, carbaryl, and lambda-cyhalothrin showed that residues of lambda-cyhalothrin, phosmet, and carbaryl were highly toxic in 48-h petri dish bioassays. The field rate of lambda-cyhalothrin is 0.0184 g (AI) /liter, which is 26-fold the estimated LC50 of 0.0007 g (AI) /liter) for this predator. The field rate for phosmet is 0.6000 g (AI) /liter, which is 118-fold the LC50 for phosmet, which is 0.0051 g (AI) /liter), and the field rate for carbaryl is 1.960 g (AI) /liter, which is 784-fold the estimated LC50 of 0.0025 g (AI) /liter). Five other insecticides, methoxyfenozide, acetamiprid, thiamethoxam, imidacloprid, and spinosad, were evaluated and found to be nontoxic.  相似文献   

17.
To assess the toxicity ofthiamethoxam and three mixtures of insecticides to oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae), we added the insecticides to diet and fed it to neonates of two laboratory colonies; mortality was assessed after 96 h. Thiamethoxam was much less toxic than insecticides previously tested. Five of six analyses of the joint action of chlorantraniliprole plus acetamiprid, esfenvalerate, or thiamethoxam indicated that toxicity was not independent and not correlated. For chlorantraniliprole plus acetamiprid, mortality was slightly lower than expected at low concentrations and greater than expected at high concentrations. For chlorantraniliprole plus esfenvalerate, mortality was less than expected at nearly all concentrations, suggesting antagonism despite the two compounds' different modes of action. For chlorantraniliprole plus thiamethoxam, observed mortality exceeded expected mortality at low concentrations, but this trend did not continue at higher concentrations. Although the null hypothesis of independent and uncorrelated toxicity was rejected for chlorantraniliprole plus acetamiprid and chlorantraniliprole plus thiamethoxam in three of four analyses, differences between observed and expected mortality were minor and inconsistent over the range of concentrations tested. We do not expect these mixtures to exhibit significant synergism or antagonism in the field. Apparent antagonism between chlorantraniliprole and esfenvalerate is particularly relevant because these insecticides (or chlorantraniliprole plus a different pyrethroid) may be used together in apples or peaches for control of oriental fruit moth and hemipteran pests. The effectiveness of each insecticide against oriental fruit moth might be reduced in such applications.  相似文献   

18.
The soybean looper Chrysodeixis includens (Lepidoptera: Noctuidae) is a pest of the soya bean, and increasing populations have been observed on several crops in Brazil. Control of this pest is accomplished using insecticides, particularly with new products recently launched in the market. The effectiveness of these insecticides against C. includens and their impact on natural enemies need further study. Therefore, this study aimed to determine the toxicity of nine insecticides for C. includens and their effects on the Blaptostethus pallescens. Toxicity was increased via the addition of an insecticide synergist, and behavioural changes in Blaptostethus pallescens, an anthocorid predator of C. includens, were assessed. Except for acephate, all other insecticides showed high toxicity to C. includens (mortality >80%). The estimated lethal time (LT50) for C. includens was shorter for methomyl, cartap and spinosad than others six insecticides tested in this work. Chlorantraniliprole, chlorfenapyr, deltamethrin, flubendiamide, indoxacarb and spinosad showed selectivity for the predator B. pallescens and exhibited a lower toxicity to the predator than to C. includens. The detoxifying enzymes monooxygenase and glutathione S‐transferase may be involved in the selectivity mechanisms of these insecticides for the predator based on the results obtained with the synergized insecticides. Only the insecticides cartap, indoxacarb and spinosad changed the behaviour of the predator B. pallescens. These three insecticides are repellent, and the predator avoids them. However, the predator tended to remain on the surface treated with flubendiamide longer. Our results suggest that the insecticides chlorfenapyr, chlorantraniliprole, flubendiamide, spinosad and indoxacarb are the most promising compounds for use against C. includens. These compounds also preserve populations of B. pallescens and allow more sustainable integrated pest management programmes.  相似文献   

19.
Toxicity of indoxacarb was bioassayed against eggs and young (first and second instars) and older larvae (third and fourth instars) of cabbage looper, Trichoplusia ni (Hübner), on cabbage (Brassicae oleracea variety capitata L.), and persistence of field-aged leaf residues of indoxacarb was bioassayed with second and third instars of T. ni on cabbage. Efficacies of indoxacarb and several other newer insecticides to T. ni were tested under field conditions for two seasons in south Texas. LC50 and LC90 values for T. ni eggs were relatively high, indicating that indoxacarb has little ovicidal effects on T. ni eggs. Indoxacarb was highly toxic to T. ni larvae, having low LC50 and LC90 values. Bioassays of field-aged leaf residues of indoxacarb tested in the spring of 1998 (0-, 3-, 5-, and 12-d-old residues) and the fall of 2000 (0-, 3-, 5-, 7-, 9-, and 13-d-old residues) indicated that ingesting indoxacarb was highly toxic to the second and third instars of T. ni, giving 100% mortality for the second instars at 2 d after exposure, and 100% mortality for third instars at 5 d after exposure. Two trials conducted under field conditions show that indoxacarb at 0.072 g (AI) /ha rate was effective against T. ni in cabbage, providing marketable cabbage with three applications per season. In addition, indoxacarb was as effective as spinosad and chlorfenapyr and significantly more effective than tebufenozide and emamectin benzoate.  相似文献   

20.
A study was conducted to determine the susceptibility of Anopheles sinensis larvae, malaria vector, from Paju‐shi (Gyonggi‐do) to 24 pesticides including 11 pyrethroids, 11 organophosphates, 1 pyrazole analogue and another pesticide. The mosquito larvae showed the most highly susceptible to chlorfenapyr with LC50 of 0.0063 ppm followed by spinosad, temephos, fenthion and beta‐cyfluthrin with 0.03, 0.0366, 0.0367 and 0.0998 ppm, respectively, and fluvalinate (>128 ppm) was the least susceptible. Also, 11 pesticides of them were compared with Goyang strain (Gyonggi‐do) of data 1992. The development of resistance was noticed to cypermethrin and permethrin as much of 73.59 and 6.23 folds at LC50, respectively, and also fluvalinate was showed high resistance development. In generally, the pyrethroid insecticides were showed higher development of resistance than organophosphorus insecticides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号