首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Giemsa C-banding pattern of the chromosomes of the native self-pollinatedAegilops comosa subsp.comosa var.comosa was studied. Six of the seven chromosomes of the haploid genome were found to be polymorphic for C-banding patterns. Chromosome A had four variants, chromosome E three variants and each of the chromosomes B, D, and F two variants. Chromosomes E and G were polymorphic for arm length and arm ratio.This paper is part of the doctoral dissertation ofA. Georgiou.  相似文献   

2.
The esterase and peroxidase patterns in five varieties ofAegilops caudata (genome type C) andAe. comosa (genome type M) were studied in order to elucidate the phylogenetic relationships within and between the two groups. The electrostarch gel electrophoresis technique was applied to extracts of shoot and root of 4-day-old seedlings, and the electropherograms were evaluated by gel densitometer traces. Inspite of considerable isozyme polymorphism, closer relationships in the banding patterns were found between different varieties of a single species than between varieties of the two different species. Esterase and peroxidase patterns of the twoAe. caudata varieties (caudata andpolyathera) are very similar and prove their close phylogenetic relationship. The isozyme affinities withinAe. comosa varieties are illustrated by the seriessubventricosa—biaristata—thessalica. The latter endemic variety has quite a number of characteristic bands and is relatively isolated. Altogether, the electrophoretic data agree well with morphological and cytological similarities (Zhukovsky 1928,Eig 1929,Karataglis 1973, 1975b).  相似文献   

3.
Four tetraploid (Aegilops ovata, Ae. biuncialis, Ae. columnaris, and Ae. triaristata) and one hexaploid (Ae. recta) species of the U-genome cluster were studied using C-banding technique. All species displayed broad C-banding polymorphism and high frequency of chromosomal rearrangements. Chromosomal rearrangements were represented by paracentric inversions and intragenomic and intergenomic translocations. We found that the processes of intraspecific divergence of Ae. ovata, Ae. biuncialis,and Ae. columnaris were probably associated with introgression of genetic material from other species. The results obtained confirmed that tetraploid species Ae. ovata and Ae. biuncialis occurred as a result of hybridization of a diploidAe. umbellulata with Ae. comosa and Ae. heldreichii, respectively. The dissimilarity of the C-banding patterns of several chromosomes of these tetraploid species and their ancestral diploid forms indicated that chromosomal aberrations might have taken place during their speciation. Significant differences of karyotype structure, total amount and distribution of C-heterochromatin found between Ae. columnarisand Ae. triaristata, on the one hand, and Ae. ovata and Ae. biuncialis, on the other, evidenced in favor of different origin of these groups of species. In turn, similarity of the C-banding patterns of Ae. columnaris and Ae. triaristata chromosomes suggested that they were derived from a common ancestor. A diploid species Ae. umbellulata was the U-genome donor of Ae. columnaris and Ae. triaristata;however, the donor of the second genome of these species was not determined. We assumed that these tetraploid species occurred as a result of introgressive hybridization. Similarity of the C-banding patterns of chromosomes of Ae. recta and its parental species Ae. triaristata and Ae. uniaristata indicated that the formation of the hexaploid form was not associated with large modifications of the parental genomes.  相似文献   

4.
Summary C-banding patterns were analysed in 19 different accessions of Aegilops caudata (= Ae. markgrafii, = Triticum dichasians) (2n = 14, genomically CC) from Turkey, Greece and the USSR, and a generalized C-banded karyotype was established. Chromosome specific C-bands are present in all C-genome chromosomes, allowing the identification of each of the seven chromosome pairs. While only minor variations in the C-banding pattern was observed within the accessions, a large amount of polymorphic variation was found between different accessions. C-banding analysis was carried out to identify Ae. caudata chromosomes in the amphiploid Triticum aestivum cv Alcedo — Ae. caudata and in six derived chromosome addition lines. The results show that the amphiploid carries the complete Ae. Caudate chromosome complement and that the addition lines I, II, III, IV, V and VIII carry the Ae. caudata chromosome pairs B, C, D, F, E and G, respectively. One of the two SAT chromosome pairs (A) is missing from the set. C-banding patterns of the added Ae. caudata chromosomes are identical to those present in the ancestor species, indicating that these chromosomes are not structurally rearranged. The results are discussed with respect to the homoeologous relationships of the Ae. caudata chromosomes.  相似文献   

5.
Summary Hybrids between different Aegilops species and Secale cereale were studied at metaphase I by means of a C-banding technique. On the basis of differences in the C-banding patterns of some of the chromosomes of these hybrids it was possible to carry out an accurate analysis of several types of Aegilops-Aegilops and Aegilops-Secale chromosome associations and, consequently, to establish intraspecific and intergeneric genome relationships. Genomes present in the majority of polyploid Aegilops species are shown to maintain similar patterns of evolutionary affinity to those reported for their proposed diploid parents although in some species there are differences indicating either that differentiations occurred during the evolution of the polyploid species or, on the contrary, that the diploid donors proposed are not the correct ones. On the other hand, differences in the relationships not only between the R genome and different Aegilops genomes but also among different homoeologous groups have been found.  相似文献   

6.
Background and Aims Aegilops markgrafii (CC) and its natural hybrids Ae. triuncialis (UtUtCtCt) and Ae. cylindrica (DcDcCcCc) represent a rich reservoir of useful genes for improvement of bread wheat (Triticum aestivum), but the limited information available on their genome structure and the shortage of molecular (cyto-) genetic tools hamper the utilization of the extant genetic diversity. This study provides the complete karyotypes in the three species obtained after fluorescent in situ hybridization (FISH) with repetitive DNA probes, and evaluates the potential of flow cytometric chromosome sorting.Methods The flow karyotypes obtained after the analysis of 4'',6-diamidino-2-phenylindole (DAPI)-stained chromosomes were characterized and the chromosome content of the peaks on the flow karyotypes was determined by FISH. Twenty-nine conserved orthologous set (COS) markers covering all seven wheat homoeologous chromosome groups were used for PCR with DNA amplified from flow-sorted chromosomes and genomic DNA.Key Results FISH with repetitive DNA probes revealed that chromosomes 4C, 5C, 7Ct, T6UtS.6UtL-5CtL, 1Cc and 5Dc could be sorted with purities ranging from 66 to 91 %, while the remaining chromosomes could be sorted in groups of 2–5. This identified a partial wheat–C-genome homology for group 4 and 5 chromosomes. In addition, 1C chromosomes were homologous with group 1 of wheat; a small segment from group 2 indicated 1C–2C rearrangement. An extensively rearranged structure of chromosome 7C relative to wheat was also detected.Conclusions The possibility of purifying Aegilops chromosomes provides an attractive opportunity to investigate the structure and evolution of the Aegilops C genome and to develop molecular tools to facilitate the identification of alien chromatin and support alien introgression breeding in bread wheat.  相似文献   

7.
Among a total of 43 accessions ofAlstroemeria aurea, A. ligtu andA. magnifica nuclear DNA amounts (2C-values) showed significant intraspecific variation, 1.09, 1.21 and 1.15 fold, respectively, when determined through flow cytometric measurements of fluorescence of propidium iodide (PI) stained nuclei. After staining with another fluorochrome, 4,6-diamidino-2-phenylindole (DAPI), an intraspecific variation of 1.10, 1.11 and 1.12 fold, respectively, was found. C-band polymorphisms were present among and within the accessions of all three species. In some cases only very small differences in C-banding pattern were observed. In other cases, however, differences were more prominent. Besides C-band polymorphism, there were also instances of chromosome length polymorphism, which concerned the total chromosome complement or single chromosomes. The variation in nuclear DNA amount inA. aurea andA. ligtu was more or less continuous, except for one accession ofA. ligtu subsp.simsii. Artificial selection and possibly introgression of chromosomes from other species may have moulded the karyotypes of some of the accessions ofA. aurea, a species that has been under cultivation for more than 160 years. The variation as observed inA. magnifica subsp.magnifica was discontinuous and could be due to a broad species concept.  相似文献   

8.
Summary Metaphase-I chromosome associations in every diploid and polyploid species of the genus Aegilops were studied using C-banding in order to analyse the cytogenetic behaviour of the whole complement as well as of specific genomes in different polyploid species. Differences were observed in the frequency of associations per cell among different species of the same ploidic level and even between species sharing the same genomic constitution. Differences were also found between different genomes within the same polyploid species and between the same genome when present in several diploid and polyploid species. Several factors proposed as having an influence on the frequency of metaphase-I associations, such as chromosome morphology, C-heterochromatin content, genetic control and genome interactions, are discussed. Most of the polyploid Aegilops species showed a diploid-like behaviour at metaphase I although multivalents involving homoeologous associations were occasionally observed in Ae. biuncialis, Ae. juvenalis and Ae. crassa(6x); therefore, the Aegilops diploidising genetic system is not equally effective in all polyploid species.  相似文献   

9.
This study was planned to identify the chromosomal location of esterase loci in wheat (Triticum aestivum), in comparison to Aegilops uniaristata, using wheat Ae. uniaristata disomic addition and translocation lines. Two loci (Est-N1 and Est-N8) were identified on 3N chromosome of Ae. uniaristata and their probable homoeoloci were, for the first time, mapped close to three RFLP probes (Xpsr56, Xpsr394, and Xpsr1196) on homoeologous group 3 wheat chromosomes.  相似文献   

10.
Summary The Ae. ventricosa and S. cereale genomes were distinguished at meiosis by the C-banding procedure. Only two plants of the amphiploid Ae. ventricosa-S. cereale were found to exhibit the high degree of asynapsis limited to Aegilops ventricosa genomes. In addition, these genomes showed higher homoeologous pairing than homologous pairing frequencies. These results can be explained by the existence of separate genome-specific control of meiotic pairing between the chromosomes of both species in these synaptic mutant plants.  相似文献   

11.
 Six polyploid Aegilops species containing the D genome were studied by C-banding and fluorescence in situ hybridization (FISH) using clones pTa71 (18S-5.8S-26S rDNA), pTa794 (5S rDNA), and pAs1 (non-coding repetitive DNA sequence) as probes. The C-banding and pAs1-FISH patterns of Ae. cylindrica chromosomes were identical to those of the parental species. However, inactivation of the NOR on chromosome 5D with a simultaneous decrease in the size of the pTa71-FISH site was observed. The Nv and Dv genomes of Ae. ventricosa were somewhat modified as compared with the N genome of Ae. uniaristata and the D genome of Ae. tauschii. Modifications included minor changes in the C-banding and pAs1-FISH patterns, complete deletion of the NOR on chromosome 5Dv, and the loss of several minor 18S-5.8S-26S rDNA loci on Nv genome chromosomes. According to C-banding and FISH analyses, the Dcr1 genome of Ae. crassa is more similar to the Dv genome of Ae. ventricosa than to the D genome of Ae. tauschii. Mapping of the 18S-5.8S-26S rDNA and 5S rDNA loci by multicolor FISH suggests that the second (Xcr) genome of tetraploid Ae. crassa is a derivative of the S genome (section Emarginata of the Sitopsis group). Both genomes of Ae. crassa were significantly modified as the result of chromosomal rearrangements and redistribution of highly repetitive DNA sequences. Hexaploid Ae. crassa and Ae. vavilovii arose from the hybridization of chromosomal type N of tetraploid Ae. crassa with Ae. tauschii and Ae. searsii, respectively. Chromosomal type T1 of tetraploid Ae. crassa and Ae. umbellulata were the ancestral forms of Ae. juvenalis. The high level of genome modification in Ae. juvenalis indicates that it is the oldest hexaploid species in this group. The occurrence of hexaploid Ae. crassa was accompanied by a species-specific translocation between chromosomes 4Dcr1 and 7Xcr. No chromosome changes relative to the parental species were detected in Ae. vavilovii, however, its intraspecific diversity was accompanied by a translocation between chromosomes 3Xcr and 3Dcr1. Received July 24, 2001 Accepted October 1, 2001  相似文献   

12.
Twenty enzyme loci were examined in the diploid species ofTriticum andAegilops for allelic variation by starch gel electrophoresis. SectionSitopsis, including the five species,Ae. speltoides, Ae. lingissima, Ae. sharonensis, Ae. bicornis andAe. searsii form a close subgroup withAe. speltoides slightly removed from the others.T. monococcum s. lat., was found to be closest to the species of theSitopsis group.Ae. comosa, Ae. umbellulata andAe. uniaristata form a second subgroup withAe. caudata most closely related to these species.Ae. squarrosa appears almost equally related to all of the species, showing no special affinity for any one species group. Nineteen out of twenty loci examined were polymorphic with a mean of 6.7 alleles per locus. Species could be, for most loci, characterized by the presence of predominant alleles. A conspicious genetic characteristic ofTriticum-Aegilops is the sharing of these predominant alleles between species. Within species variation is characterized by a diffuse distribution of secondary alleles.  相似文献   

13.
 Homoeologous pairing at metaphase I was analysed in the standard-type, ph2b and ph1b hybrids of Triticum aestivum (AABBDD) and Aegilops speltoides (SS). Data from relative pairing affinities were used to predict homoeologous relationships of Ae. speltoides chromosomes to wheat. Chromosomes of both species, and their arms, were identified by C-banding. The Ae. speltoides genotype carried genes that induced a high level of homoeologous pairing in the three types of hybrids analyzed. All arms of the seven chromosomes of the S genome showed normal homoeologous pairing, which implies that no apparent chromosome rearrangements occurred in the evolution of Ae. speltoides relative to wheat. A pattern of preferential pairing of two types, A-D and B-S, confirmed that the S genome is very closely related to the B genome of wheat. Although this pairing pattern was also reported in hybrids of wheat with Ae. longissima and Ae. sharonensis, a different behaviour was found in group 5 chromosomes. In the hybrids of Ae. speltoides, chromosome 5B-5S pairing was much more frequent than 5D-5S, while these chromosome associations reached similar frequencies in the hybrids of Ae. longissima and Ae. sharonensis. These results are in agreement with the hypothesis that the B genome of wheat is derived from Ae. speltoides. Received: 8 January 1998 / Accepted: 4 February 1998  相似文献   

14.
The karyotypes ofElymus dentatus from Kashmir andE. glaucescens from Tierra del Fuego, both carrying genomesS andH, were investigated by C- and N-banding. Both taxa had 2n = 4x = 28. The karyotype ofE. dentatus was symmetrical with large chromosomes. It had 18 metacentric, four submetacentric and six satellited chromosomes. The karyotype ofE. glaucescens resembled that ofE. dentatus, but a satellited chromosome pair was replaced by a morphologically similar, non-satellited pair. The C-banding patterns of both species had from one to five conspicuous and a few inconspicuous bands per chromosome. N-banding differentiated the chromosomes of the constituent genomes by producing bands in theH genome only. TheS genomes of both species were similar with five metacentric and two satellited chromosomes having most conspicuous C-bands at telomeric and distal positions. They resembled theS genome of the genusPseudoroegneria. TheH genomes had four similar metacentric and two submetacentric chromosomes. The seventhH genome chromosome ofE. dentatus was satellited, that ofE. glaucescens nonsatellited, but otherwise morphologically similar. The C-bands were distributed at no preferential positions. TheH genome ofE. dentatus resembles theH genomes of some diploidHordeum taxa.  相似文献   

15.
The karyotypes of diploidP. fragilis subsp.villosus (2n = 2x = 14) and tetraploid subsp.secaliformis (2n = 4x = 28) were studied by Giemsa C- and N-banding, and AgNO3 staining and compared with the karyotype of subsp.fragilis (2x). The complements of subsp.villosus and subsp.fragilis were similar, with 8 metacentric and 6 SAT-chromosomes, one metacentric and two submetacentric pairs, with small to minute, polymorphic, heterochromatic satellites. The complement of subsp.secaliformis on the whole agreed with a doubling of the complement of diploidP. fragilis, suggesting autopolyploidy. Only the presence of 12 nucleoli in interphases identified 6 SAT-chromosome pairs. In subsp.villosus one or two extra micronucleoli indicated a chromosome pair with very low nucleolusforming activity, bringing the number of SAT-chromosome pairs to 4. This number may be a characteristc ofPsathyrostachys. Besides very small, inconsistently observed bands, the C-banding pattern consisted of 0–3 small bands per chromosome at intercalary and terminal locations, and at NORs. The level of banding pattern polymorphism was low, but enough to indicate that the taxa are outbreeders. Similarities in chromosome morphology and C-banding patterns identified homology of all chromosomes of subsp.villosus, but for 12 pairs only in subsp.secaliformis. Between plants, reliable identification of homology and homoeology (subsp.secaliformis) was possible only for the SAT-chromosomes and the shortest metacentrics. Chromocentres were very small and the amount of constitutive heterochromatin was low. N-banding stained chromosomes uniformly. The basic karyotypes of theP. fragilis taxa were similar to those ofP. juncea, P. lanuginosa, andP. stoloniformis supporting a close relationship and the presence of a common genome, N. NORs had different nucleolus-forming activities. Meiotic analysis demonstrated a high level of bivalent pairing in the three taxa. A chromosomal rearrangement was suggested in subsp.villosus. The low multivalent frequency in subsp.secaliformis indicates the presence of a pairing regulation mechanism. The majority of chiasmata were interstitial. Pollen grain size discriminated between diploid and tetraploid taxa. The existence of a diploid cytotype of subsp.secaliformis is supported by pollen measurements of herbarium material.  相似文献   

16.
The somatic karyotypes of 10 taxa belonging toAllium subgen.Molium (Liliaceae) from the Mediterranean area have been investigated using Giemsa C-band and fluorochrome (Hoechst, Quinacrine) banding techniques. A wide range of banding patterns has been revealed. InAllium moly (2n = 14),A. oreophilum (2n = 16) andA. paradoxum (2n = 16) C-banding is restricted to a region on each side of the nucleolar organisers and the satellites show reduced fluorescence with fluorochromes. The satellites are also C-banded and with reduced fluorescence inA. triquetrum (2n = 18), but two other chromosome pairs also have telomeric bands which are not distinguished by fluorochrome treatment. InA. erdelii (2n = 16) 4 pairs of metacentric chromosomes have telomeric C-bands while 2 pairs of telocentric chromosomes have centromeric C-banding. InA. subhirsutum (2n = 14),A. neapolitanum (2n = 28),A. trifoliatum subsp.hirsutum (2n = 14) andA. trifoliatum subsp.trifoliatum (2n = 21) chromosomes with long centromeres, consisting of a centromere and nucleolar organiser are positively C-banded on each side of the constriction. InA. subhirsutum banding is confined to the pair of chromosomes with this feature, whereas inA. neapolitanum one additional chromosome pair has telomeric bands and inA. trifoliatum there are varying numbers of chromosomes with centromeric and telomeric bands, depending on the subspecies.A. zebdanense (2n = 18) shows no C-bands. The banding patterns in this subgenus are compared with those recorded for otherAllium species and with the sectional divisions in the genus. Evidence from the banding patterns for allopolyploidy inA. trifoliatum subsp.trifoliatum andA. neapolitanum is discussed.  相似文献   

17.
Summary Zymogram analysis was used to identify the Aegilops umbellulata chromosomes that carry the structural genes for particular isozymes. Wheat, Aegilops and wheat-Aegilops hybrid derivative lines (which contained identified Aegilops chromosomes) were tested by gel electrophoresis for isozymes of particular enzymes. It was found that Aegilops chromosome A (nomenclature according to G. Kimber 1967) carries a structural gene for 6-phosphogluconate dehydrogenase, Aegilops chromosome B carries structural genes for glucose phosphate isomerase and phosphoglucose mutase, Aegilops chromosome D carries genes for leaf peroxidases, Aegilops chromosome E carries structural genes for endosperm peroxidases, acid phosphatases and leaf esterases, Aegilops chromosome F carries a gene for embryo plus scutellum peroxidases and Aegilops chromosome G carries structural genes for endosperm alkaline phosphatases, leaf alkaline phosphatases and leaf esterases. The results obtained indicate that chromosome B is partially homoeologous of the wheat chromosomes of group 1 and 4, and chromosome E is partially homoeologous of wheat chromosomes of groups 7 and 4. Circumstantial evidence is also provided about the possible association between chromosomes C, D and A of A. umbellulata respectively with chromosomes 5, 2 and 1 of wheat.  相似文献   

18.
The C-banding technique was used to describe the chromosomes of a relatively recently-discovered Moroccan oat species, Avena agadiriana (2n=4x=28). A substantial amount of polymorphism for arm ratios and C-banding patterns was observed among five accessions of this species. However a common set of ten putatively homologous chromosomes was identifiable among the five accessions. The chromosomes of A. Agadiriana do not closely match those of any of the previously described diploid or tetraploid oat species in terms of their arm ratios and C-banding patterns. However, their overall C-banded appearance generally resembles the A/B/D groups of chromosomes of Avena species, rather than the more hetrochromatic C genomes. Implications of these findings in terms of chromosome evolution in the genus Avena are discussed.Contribution no. 95-490-J of the Kansas Agricultural Experiment Station, Kansas State University, Manhattan, KS, USA  相似文献   

19.
RFLP analyses were performed on wheat-Aegilops uniaristata Vis. addition and translocation lines to confirm the identity of added N-genome chromosomes. Complete 1N, 3N, 4N, 5N and 7N chromosome additions were identified, while the complete long arm and only part of the short arm was identified for chromosome 2N. There were no wheat-like 4/5 and 4/7 translocations in the Ae. uniaristata chromosomes. Chromosome 3N carried an asymmetric pericentric inversion, and the translocation line was a product of centric fusion between the long arms of chromosomes 3B and 3N. Chromosome-specific RAPD and microsatellite markers were also identified for all the added Ae. uniaristata chromosomes available in this set of addition lines. A new genomic in situ hybridization protocol combining pre-annealing of probe and blocking DNA and prehybridization with blocking DNA was developed to differentiate the very closely related genomes of Ae. uniaristata and wheat. Hybridization sites for the repetitive DNA sequences pAs1, pSc119.2 and pTa71 were identified on the N-genome chromosomes of Ae. uniaristata using the fluorescent in situ hybridization technique. Results showed deviation from the previously published ideogram of this species. A new ideogram, which shows the hybridization sites for the above sequences, was produced in which the chromosomes are arranged according to their homoeologous group. Received: 23 April 1999 / Accepted: 6 August 1999  相似文献   

20.
C-banding polymorphism was analyzed in 14 accessions of Triticum searsii from Israel, and a generalized idiogram of the species was established. One accession was homozygous for whole arm translocations T1SsS·4SsS and T1SsL·4SsL. C-banding analysis was also used to identify 7 T. aestivum cv Chinese Spring-T. searsii disomic chromosome addition lines, 14 ditelosomic chromosome addition lines, 21 disomic whole chromosome, and 31 ditelosomic chromosome substitution lines. The identity of these lines was further confirmed by meiotic pairing analysis. Sporophytic and gametophytic compensation tests were used to determine the homoeologous relationships of the T. searsii chromosomes. The results show that the T. searsii chromosomes do not compensate well for their wheat homoeologues. The C-banding patterns of T. searsii chromosomes are distinct from those of other S-genome species and from the B-genome chromosomes of wheat, indicating that T. searsii is not a direct B-genome donor species of T. turgidum and T. aestivum.Contribution No. 95-72-J from the Kansas Agricultural Experiment Station, Kansas State University, Manhattan, Kansas, USA  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号