首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The expression of cytokinin oxidase/dehydrogenase (CKX EC: 1.5.99.12) is subject to fine regulation and it provides a rapid turnover of cytokinins, which serves as a signal for triggering developmental events during plant growth. The activity of this enzyme is believed to be responsible for the changes in cytokinin pool under adverse environmental conditions. CKX gene-specific assay to measure the expression in response to different stress treatments in the tissues of Pisum sativum plants was developed. Pea CKX genes were amplified and sequenced using primers designed from the sequences of Medicago truncatula CKX genes. Expression of two P. sativum CKX genes was assessed using relative-quantification in real time two-step RT-PCR, in leaves and roots of drought-, glufosinate- and atrazine-treated cv. Manuela pea plants. Varied CKX responses support the existence of complicated regulating mechanism of cytokinin oxidase/ dehydrogenase gene expression.  相似文献   

2.
Changes in endogenous cytokinin (CK) content and cytokinin oxidase/dehydrogenase activity (CKX) in response to gibberellic acid (GA3) in two pea cultivars with different life span were assessed. The control leaves of cv. Scinado, which developed faster, had higher initial cytokinin content and lower CKX activity, while opposite trend was observed in cv. Manuela with longer life span. Increased CKX and decreased CK content were detected in leaves of cv. Scinado after treatments with 0.5, 1 and 5 μM GA3. Changes in CK content and CKX activity in GA3-treated cv. Manuela leaves were reciprocal to those in cv. Scinado. CK content and CKX activity in roots were not significantly influenced by the application of GA3. The slight repression of CKX activity in some of the root samples was accompanied by increased isopentenyladenine and isopentenyladenine riboside content. Obtained results suggest that CKX was responsible for the changes in endogenous cytokinin pool in GA3-treated plants and most probably this enzyme represents an important link in GA/cytokinin cross talk.  相似文献   

3.
Changes in cytokinin pool and cytokinin oxidase/dehydrogenase activity (CKX EC: 1.5.99.12) in response to increasing abscisic acid (ABA) concentrations (0.5–10 μM) were assessed in the last fully expanded leaves and secondary roots of two pea (Pisum sativum) varieties with different vegetation periods. Certain organ diversity in CKX response to exogenous ABA was observed. Treatment provoked altered cytokinin pool in the aboveground parts of both studied cultivars. Specific CKX activity was influenced significantly basically in roots of the treated plants. Results suggest that ABA-mediated cytokinin pool changes are leaf-specific and involve certain root signals in which CKX activity presents an important link. This enzymatic activity most probably regulates vascular transport of active cytokinins from roots to shoots.  相似文献   

4.
We studied changes in physiological parameters of whole leaves and in antioxidant protection of chloroplasts during ageing and senescence of tobacco (Nicotiana tabacum L. cv. Samsun NN) leaves with enhanced cytokinin oxidase/dehydrogenase activity (CKX) or without it (WT). Old leaves of CKX plants maintained higher pigment content and photosystem 2 activity compared to WT leaves of the same age. Chloroplasts of old CKX plants showed better antioxidant capacity represented by higher superoxide dismutase, dehydroascorbate reductase and glutathione reductase activities.  相似文献   

5.
The responses of antioxidant enzymes (AOE) ascorbate peroxidase (APX), glutathione reductase (GR), superoxide dismutase (SOD), and catalase (CAT) in soluble protein extracts from leaves and roots of tobacco (Nicotiana tabacum L. cv. Samsun NN) plants to the drought stress, salinity and enhanced zinc concentration were investigated. The studied tobacco included wild-type (WT) and transgenic plants (AtCKX2) harbouring the cytokinin oxidase/dehydrogenase gene under control of 35S promoter from Arabidopsis thaliana (AtCKX2). The transgenic plants exhibited highly enhanced CKX activity and decreased contents of cytokinins and abscisic acid in both leaves and roots, altered phenotype, retarded growth, and postponed senescence onset. Under control conditions, the AtCKX2 plants exhibited noticeably higher activity of GR in leaves and APX and SOD in roots. CAT activity in leaves always decreased upon stresses in WT while increased in AtCKX2 plants. On the contrary, the SOD activity was enhanced in WT but declined in AtCKX2 leaves. In roots, the APX activity prevailingly increased in WT while mainly decreased in AtCKX2 in response to the stresses. Both WT and AtCKX2 leaves as well as roots exhibited elevated abscisic acid content and increased CKX activity under all stresses while endogenous CKs and IAA contents were not much affected by stress treatments in either WT or transgenic plants.  相似文献   

6.
The impact of water deficit progression on cytokinin (CK), auxin and abscisic acid (ABA) levels was followed in upper, middle and lower leaves and roots of Nicotiana tabacum L. cv. Wisconsin 38 plants [wild type (WT)]. ABA content was strongly increased during drought stress, especially in upper leaves. In plants with a uniformly elevated total CK content, expressing constitutively the trans -zeatin O-glucosyltransferase gene ( 35S::ZOG1 ), a delay in the increase of ABA was observed; later on, ABA levels were comparable with those of WT.
As drought progressed, the bioactive CK content in leaves gradually decreased, being maintained longer in the upper leaves of all tested genotypes. Under severe stress (11 d dehydration), a large stimulation of cytokinin oxidase/dehydrogenase (CKX) activity was monitored in lower leaves, which correlated well with the decrease in bioactive CK levels. This suggests that a gradient of bioactive CKs in favour of upper leaves is established during drought stress, which might be beneficial for the preferential protection of these leaves.
During drought, significant accumulation of CKs occurred in roots, partially because of decreased CKX activity. Simultaneously, auxin increased in roots and lower leaves. This indicates that both CKs and auxin play a role in root response to severe drought, which involves the stimulation of primary root growth and branching inhibition.  相似文献   

7.
Cytokinin metabolism in plants is very complex. More than 20 cytokinins bearing isoprenoid and aromatic side chains were identified by high performance liquid chromatography-mass spectrometry (HPLC-MS) in pea (Pisum sativum L. cv. Gotik) leaves, indicating diverse metabolic conversions of primary products of cytokinin biosynthesis. To determine the potential involvement of two enzymes metabolizing cytokinins, cytokinin oxidase/dehydrogenase (CKX, EC 1.5.99.12) and zeatin reductase (ZRED, EC 1.3.1.69), in the control of endogenous cytokinin levels, their in vitro activities were investigated in relation to the uptake and metabolism of [2−3H]trans-zeatin ([2−3H]Z) in shoot explants of pea. Trans-zeatin 9-riboside, trans-zeatin 9-riboside-5′-monophosphate and cytokinin degradation products adenine and adenosine were detected as predominant [2−3H]Z metabolites during 2, 5, 8, and 24 h incubation. Increasing formation of adenine and adenosine indicated extensive degradation of [2−3H]Z by CKX. High CKX activity was confirmed in protein preparations from pea leaves, stems, and roots by in vitro assays. Inhibition of CKX by dithiothreitol (15 mM) in the enzyme assays revealed relatively high activity of ZRED catalyzing conversion of Z to dihydrozeatin (DHZ) and evidently competing for the same substrate cytokinin (Z) in protein preparations from pea leaves, but not from pea roots and stems. The conversion of Z to DHZ by pea leaf enzyme was NADPH dependent and was significantly inhibited or completely suppressed in vitro by diethyldithiocarbamic acid (DIECA; 10 mM). Relations of CKX and ZRED in the control of cytokinin levels in pea leaves with respect to their potential role in establishment and maintenance of cytokinin homeostasis in plants are discussed.  相似文献   

8.
The effect of strong and weak cytokinin antagonists, belonging to the groups of triazolo[4,5-d]pyrimidines (TP), and pyridyl-phenylurea derivatives (PU), on cytokinin oxidase/dehydrogenase activity (CKX) in the tissues of young pea plants was studied. Tested anticytokinins, with the exception of the most efficient one – PU-1, were able to promote increased CKX activity in roots, when applied alone, but they had no significant influence on the enzymatic activity in leaves. N6-benzyladenine (BA) and 1-(2-chloropyridin-4-yl)-3-phenylurea (CPPU) provoked strong increase in CKX activity in roots, while in leaves considerable inhibition of enzymatic activity was observed. Different types of anticytokinins exhibited diverse preference towards taking off the action of purine and phenylurea cytokinins over CKX activity.  相似文献   

9.
The recalcitrant nature and increased regenerative capacity in relation to in vitro subcultures in two cactus genera Rhipsalidopsis (Easter cactus) and Schlumbergera (Christmas cactus) were studied by examining the endogenous concentrations of several endogenous phytohormones and enzyme activities. Leaf tissue from greenhouse-grown mother plants, in vitro subcultures 1 and 3, and callus tissues were analyzed and correlated with regenerative ability. The cytokinins present in the two cacti genera were mainly isopentenyl-type derivatives. The total content of isopentenyl-type cytokinins in greenhouse-grown leaves of Rhipsalidopsis was more than twice the amount found in greenhouse-grown leaves of Schlumbergera. The total cytokinin content decreased during subculturing. Cytokinin oxidase/dehydrogenase (CKX, EC 1.4.3.18/1.5.99.12) activity increased during subculturing. In Schlumbergera there is no effect of subculturing on CKX and related cytokinin homeostasis. The total peroxidase (POX, EC 1.11.1.7) activity in greenhouse-grown leaves of both genera was low, and the activity increased significantly during subculturing, more specifically in the tissue of Rhipsalidopsis. The results clearly indicated that an enhanced auxin metabolism (biosynthesis, conjugation/deconjugation, and POX activity), in combination with an enhanced CKX activity, shifts the auxin and cytokinin pool, favoring adventitious shoot formation in Rhipsalidopsis, whereas the low level of POX activity, together with auxin autotrophy/conjugation, makes Schlumbergera more recalcitrant. S. S. and E. P. contributed equally to this work  相似文献   

10.
 以抗旱性不同的两个小麦品种(‘晋麦33’和‘温麦8’)(Triticum aestivum cv. Jinmai 33 and Wenmai 8)为材料,研究了干旱胁迫下多胺含量和多胺氧化酶活性的变化。结果表明:旱过程中,幼苗根、叶中腐胺(Put)、亚精胺(Spd)、精胺(Spm)3种多胺含量和多胺氧化酶(PAO)活性先迅速升高,而后下降。与抗旱性弱的‘晋麦33’相比,抗旱性强的品种‘温麦8’幼苗根、叶中Spd、Spm 含量初期升高幅度大,之后下降速率减慢;PAO活性的变化与之相反,‘晋麦33’的PAO活性提高的幅度大于‘温麦8号’。多胺含量和PAO活性在小麦幼苗的根与叶之间呈极显著正相关。干旱初期,小麦根、叶中多胺迅速积累可能是干旱胁迫反应的一个信号,随后较高的Spd、Spm 水平有利于增强小麦幼苗的抗旱性。  相似文献   

11.
12.
13.
In the present study cytokinin dehydrogenase (CKX) activity was for the first time found in a conifer species, Pinus sylvestris. The activities were correlated with the endogenous cytokinin contents. Several enzyme substrates and two different electron acceptors were used to search for the enzyme activity in the extract from seeds, seedlings and plantlets. The highest specific activity was found in one-year-old plantlets with isopentenyladenine as the substrate and 2,6-dichlorophenolindophenol as the electron acceptor, at pH 8. An enhancement in the CKX specific activity corresponded to increasing contents of cytokinins, mainly isopentenyladenine and isopentenyladenosine, indicating that the enzyme activity is affected by the endogenous supply of cytokinins. CKX affinity for the ribosylated form of isopentenyladenine was dependent on the developmental stage, being higher in seeds than in seedlings, and not detectable in plantlets. The results are indicative of the presence of different isoenzymes throughout the development.  相似文献   

14.
Plant ageing and senescence are associated with increased levels of reactive oxygen species. Level of cytokinins, the apparent inhibitors of plant senescence, is controlled by their irreversible degradation catalysed by cytokinin oxidase/dehydrogenase (CKX). We investigated the CKX activity, cytokinin concentration, and activities of antioxidative enzymes in tobacco (Nicotiana tabacum L. cv. Samsun NN) overexpressing the Arabidopsis gene for AtCKX2, targeted for extracellular secretion pathway. The control and AtCKX2 plants differed substantially in their phenotypes. When the lowest leaves in controls became yellow all leaves in AtCKX2 tobacco still remained green. Activities of antioxidant enzymes decreased with leaf age in both tobacco plants except for ascorbate peroxidase (APX) in the old leaves and glutathione reductase (GR) in young leaves. Enhancement of GR activity at all leaf stages, an increase of superoxide dismutase and a decline of catalase in young leaves, as well as an increase of APX in the oldest leaves were observed in AtCKX2 plant compared to control. Similar changes were detected after determination of isoenzymes on zymograms. It is evident that AtCKX2 plants had postponed onset of senescence despite the significantly lowered level of cytokinins. Enhanced antioxidant protection, especially in the oldest leaves, could subsidise this phenomenon.  相似文献   

15.
Common sage (Salvia officinalis L.) plants grown in water culture to the stage of 4–5 true leaves were treated for 12, 24, 36, or 48 h with proline added to nutrient medium to a final concentration of 5 mM, or irradiated with UV-B light (12.3 kJ/m2 for 10 min), or subjected to combined action of these factors. In these plants, activity of proline dehydrogenase (PDH), the content of proline, and the contents of free and conjugated polyamines were determined in the leaves and roots. It was shown that, in control plants, the content of endogenous proline was close to zero. In the presence of proline in medium, its total content in the roots was 9 μmol/g fr wt in 12 h of exposure, whereas in the leaves the content of proline increased only in 24 h and achieved only 1 μmol/g fr wt. The content of free putrescine increased in the leaves and especially in the roots after 10-min irradiation with UV-B light. The biosynthesis of putrescine was induced in the presence of proline in medium and was observed earlier than after UV-B irradiation. UV-B irradiation affected not only the synthesis of putrescine but also that of spermidine and spermine; it also induced accumulation of their soluble conjugates. Exogenous proline enhanced putrescine synthesis but inhibited the formation of polyamine soluble conjugates. At combined treatment of the two factors, the content of free putrescine in the leaves displayed a tendency to the rise and in the roots, to the decrease. At the same time, the content of polyamine free conjugates increased in both leaves and roots. All these facts could be considered as an indirect indication of relationship between proline and polyamine biosyntheses. We can also state that an artificially created high proline concentration in common sage tissues characterized of its low constitutive level resulted in disturbances in the homeostasis of low-molecular cell metabolites and induced a requirement in its restoration by diverse ways. This agrees with activation of PDH, a key enzyme of proline degradation. Induction of polyamine biosynthesis and changes in the content of their soluble conjugates might be one of the ways for such restoration. Under stress conditions, the high proline concentration is not toxic for plants because polyamines and proline are the components of the plant defense system, thus weakening damaging effects of abiotic stressors.  相似文献   

16.
The influence of increasing salinity stress on plant growth, antioxidant enzymes and proline metabolism in two cultivars of Vigna radiata L. (cv. Pusa Bold and cv. CO 4) was investigated. Salt stress was imposed on 30-days-old cultivars with four different concentrations of NaCl (0, 100, 200 and 300 mM). The roots and shoots of CO 4 showed greater reduction in fresh weight, dry weight and water content when compared to Pusa Bold with increasing salt stress. Under salinity stress, the roots and shoots of CO 4 exhibited higher Na+: K+ ratio than Pusa Bold. The activities of reactive oxygen species (ROS) scavenging enzymes and reduced glutathione (GSH) concentration were found to be higher in the leaves of Pusa Bold than in CO 4, whereas oxidized glutathione (GSSG) concentration was found to be higher in the leaves of CO 4 compared to those in Pusa Bold. Our studies on oxidative damage in two Vigna cultivars showed lower levels of lipid peroxidation and H2O2 concentration in Pusa Bold than in CO 4 under salt stress conditions. High accumulation of proline and glycine betaine under salt stress was also observed in Pusa Bold when compared to CO 4. The activities of proline biosynthetic enzymes were significantly high in Pusa Bold. However, under salinity stress, Pusa Bold showed a greater decline in proline dehydrogenase (ProDH) activity compared to CO 4. Our data in this investigation demonstrate that oxidative stress plays a major role in salt-stressed Vigna cultivars and Pusa Bold has efficient antioxidative characteristics which could provide better protection against oxidative damage in leaves under salt-stressed conditions.  相似文献   

17.
18.
We have investigated the response of two peanut cultivars (TEGUA and UTRE) with different growth habits and branching pattern structures to different nitrogen (N) sources, namely, N-fertilizer or N2 made available by symbiotic fixation, and analysed the pattern of nitrate reductase (NR) activity in these cultivars. Nitrate and amino acid contents were also examined under these growth conditions. In terms of nitrogen source, cv. TEGUA showed a better response to inoculation with Bradyrhizobium sp. SEMIA 6144 at 40 days after planting, while cv. UTRE responded better to N-fertilizer (5 mM KNO3). Both cultivars showed different patterns of NR activity in the analyzed plant organs (leaves, roots, and nodules), which were dependent on the N source. When nitrogen became available to the plant through symbiotic N2 fixation, the patterns of NR activity distribution were different in the two cultivars, with cv. TEGUA showing a higher NR activity in the nodules than in the leaves and roots, and cv. UTRE showing no difference in terms of NR activity among organs. The nitrate and amino acid contents showed a similar trend between the two cultivars, with the highest nitrate content in the leaves of fertilized plants and the highest amino acid content in the nodules. The high nitrate content of the leaves of cv. UTRE indicated the better response of this cultivar to N-fertilizer.  相似文献   

19.
The effect of pre-treatment with 200 mM NaCl on the response of four barley cultivars (Hordeum vulgare L. cv. Bülbül-89, Kalaycı-97, Tarm-92 and Tokak-157/37) to UV-B radiation was investigated. Salt stress as well as UV-B irradiation led to a decrease of the total chlorophyll (chl) content in all cultivars, except in Kalaycı-97. While carotenoids are almost not affected by NaCl treatment, UV-B irradiation caused an increase by 5–20% of carotenoid content of all cultivars. UV-B induced damages of photosynthetic apparatus were estimated by the rate of photosynthetic electron transport measured by chl fluorescence and the rate of oxygen evolution, the latter being more affected. Pre-treatment with NaCl alleviated harmful effect of UV-B irradiation on F v/F m and ETR, but not on oxygen evolution. UV-B-induced and UV-B-absorbing compounds with absorption at 300 and 438 nm increased as a result of UV-B treatment. The level of stress marker proline increased considerably as a result of NaCl treatment, while UV-B irradiation resulted in a pronounced increase of the level of H2O2. MDA enhanced in the seedlings subjected to salt and UV-B stress. Established cross-acclimation to UV-B as a result of salt treatment could be due to the increased free proline and the level of UV-B absorbing compounds in barley seedlings subjected to NaCl.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号