首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The steady state kinetics of ATP synthesis and hydrolysis catalyzed by the chloroplast dicyclohexylcarbodiimide-sensitive ATPase reconstituted into phospholipid vesicles were studied as a function of the transmembrane proton gradient. Bacteriorhodopsin also was incorporated into the vesicles so that a constant pH gradient could be maintained by continuous illumination of the liposomes. The dependence of the initial rates of ATP synthesis and hydrolysis on substrate concentrations is consistent with Michaelis-Menten kinetics, with enzyme, ADP, and Pi forming a ternary complex. The Michaelis constants for both synthesis and hydrolysis are essentially independent of the pH gradient, while the maximum velocities depend strongly on it. The equilibrium constant for hydrolysis was calculated from the steady state kinetic parameters, and the dependence of the equilibrium constant on the pH gradient indicates that 3 protons are transported per ATP synthesized or hydrolyzed. The dependence of the steady state kinetic parameters on the pH gradient can be described by a mechanism in which the binding of substrates occurs before the transport of protons and the transport of the 3 protons is sequential rather than concerted.  相似文献   

2.
1. Divalent antibodies against chloroplast coupling factor 1 inhibited the factor ATPase, ATP synthesis, hydrolysis and Pi-ATP exchange in chloroplasts. These antibodies also inhibited coupled electron flow rates but not the basal or uncoupled rates. 2. Several types of non-precipitating, modified antibodies prepared from the original antibody preparation strongly inhibited the ATPase and Pi-ATP exchange reaction but had little effect on ATP formation. 3. It is suggested that the inhibition of ATP synthesis by the divalent antibodies is probably due to an indirect blocking of the active site, while the inhibition of ATP-utilizing reactions by the modified antibodies is related to their effect on the transfer of ATP from a non-catalytic to a catalytic site on coupling factor 1, via an energy-dependent conformational change.  相似文献   

3.
W D Frasch  B R Selman 《Biochemistry》1982,21(15):3636-3643
The reaction mechanism and substrate specificity of soluble chloroplast coupling factor 1 (CF1) from spinach were determined by using the purified isomers of chromium-nucleotide complexes either as substrates for the enzyme or as inhibitors of the Ca2+-dependent ATPase activity. The isolation of CrADP( [32P]Pi) formed upon the addition of the enzyme to [32P]Pi and lambda-bidentate CrADP and the observation that the lambda-bidentate CrADP epimer was 20-fold more effective in inhibiting the Ca2+-dependent ATPase activity than was the delta epimer suggest that the substrate of phosphorylation catalyzed by CF1 is the lambda-bidentate metal ADP epimer. Tridentate CrATP was hydrolyzed by soluble CF1 to CrADP(Pi) at an initial rate of 3.2 mumol (mg of CF1)-1 min-1, indicating that the tridentate metal ATP is the substrate for ATP hydrolysis. From these results a mechanism for the phosphorylation of ADP catalyzed by coupling factor 1 is proposed whereby the bidentate metal ADP isomer associates with the enzyme, phosphate inserts into the coordination sphere of the metal, and the oxygen of the beta-phosphate of ADP attacks the inorganic phosphate by an SN2 type reaction. The resulting product is the tridentate ATP ligand.  相似文献   

4.
T Takabe  G G Hammes 《Biochemistry》1981,20(24):6859-6864
The purified ATP-synthesizing complex from chloroplasts has been reconstituted into phospholipid vesicles with bacteriorhodopsin by use of octyl glucoside. Phosphorylation rates up to 90 mmol of ATP (mg of protein)-1 min-1 have been achieved. The dependence of the steady-state kinetic parameters on external and internal pH for both synthesis and hydrolysis was determined. The Michaelis constants are independent of the magnitude of the pH gradient at external pH values of 6.6 and 8.0. The dependence of the maximum velocity for ATP synthesis on the external pH is bell shaped at a constant pH gradient with a maximum at about pH 6.7. The variation of the maximum velocity with external pH is not dependent on the magnitude of the pH gradient. At external pH values of 6.6 and 8.0, the maximum velocity for ATP synthesis varies with approximately the 2.3 power of the internal hydrogen ion concentration. The maximum velocity for ATP hydrolysis also is dependent on the external pH, with a maximum at about pH 8.4; however, most of the ATPase activity is not coupled to the proton flux. Both Mg2+ and Mn2+ are good cofactors for ATP synthesis and hydrolysis whereas Ca2+ is completely ineffective for synthesis and only about 10% as effective as Mg2+ and Mn2+ for hydrolysis. The results obtained suggest that ATP synthesis or hydrolysis may be coupled to proton pumping indirectly, as, for example, by conformational changes.  相似文献   

5.
Isolated spinach CF1 (chloroplast coupling factor 1) forms enzyme-bound ATP without any supply of energy in the presence of high concentrations of Pi [Feldman and Sigman (1982) J Biol Chem 257: 1676-1683]. The final amount of CF1-bound ATP synthesized was increased greatly by 1,2-propanediol, and moderately by methanol, ethanol, and dimethyl sulfoxide, but decreased by glycerol and octyl glucoside. Methanol and ethanol greatly increased the initial rate of ATP synthesis, while 1,2-propanediol increased it only moderately. Low concentrations (10-8 -10-6 M) of tentoxin, which inhibit ATPase activity of isolated CF1, did not affect enzyme-bound ATP synthesis. However, high concentrations (>10-5 M) of tentoxin, which stimulate ATPase activity of isolated CF1, enhanced the initial rate of CF1-bound ATP synthesis without significant effect on the final amount of ATP synthesized in the presence of medium ADP. The substrate of enzyme-bound ATP synthesized came largely from tightly bound ADP, not medium ADP, and tentoxin did not affect this substrate profile. Tentoxin did not affect the binding of medium ADP to high affinity sites on CF1.  相似文献   

6.
A kinetic analysis of ATP binding to noncatalytic sites of chloroplast coupling factor CF1 was made. The ATP binding proved to be unaffected by reduction of the disulfide bridge of the CF1 -subunit. The first-order equation describing nucleotide binding to noncatalytic sites allowed for two vacant nucleotide binding sites different in their kinetics. As suggested by nucleotide concentration dependence of the rate of nucleotide binding, the tight binding was preceded by rapid reversible binding of nucleotides. Preincubation of CF1 with Mg2+ resulted in a decreased rate of ATP binding. ATP dissociation from noncatalytic sites was described by the first order equation for similar sites with a dissociation rate constant k d (ATP) 10–3 min–1. Noncatalytic sites of CF1 were shown to be not homogeneous. One of them retained the major part of endogenous ADP after precipitation of CF1 with ammonium sulfate. Its two other sites differed in kinetic parameters and affinity for ATP. Anions of phosphate, sulfite, and especially, pyrophosphate inhibited the interaction between ATP and the noncatalytic sites.  相似文献   

7.
ADP binding brought about by inorganic phosphate addition (Pi-dependent ADP binding) on membrane-bound chloroplast coupling factor was studied and the following results were obtained. Under energization by illumination or by acid-base transition, Pi brought about the binding of ADP with an apparent Km value of 0.22 mM. This effect of Pi was lost rapidly after turning the light off or after acid to base transition, concomitant with the loss of ATP synthesizing activity. Pi-dependent ADP binding was inhibited by phlorizin to nearly the same extent as was ATP synthesis. The inhibitory effects of phlorizin on both the Pi-dependent ADP binding and ATP synthesis increased with the decrease of Pi concentration. These results suggest that the Pi-dependent ADP binding reaction participates in the ATP synthesis reaction and that phlorizin inhibits the P1 binding process.  相似文献   

8.
1. The effect of energy transfer inhibitors on energy-dependent exchange of tightly bound adenine nucleotides with washed, broken spinach thylakoids has been studied. Energy transfer inhibitors that inhibit the ATPase activity of soluble chloroplast coupling factor 1 (CF1) (e.g. phloridzin and tentoxin) do not inhibit energy-dependent adenine nucleotide exchange. Energy transfer inhibitors that block proton flux through the hydrophobic protein proton channel (CF0) (e.g. dicyclohexylcarbodiimide and triphenyltin chloride) also block light-dependent adenine nucleotide exchange. 2. Tentoxin, at relatively high concentrations, stimulates an energy-independent exchange of adenosine diphosphate. 3. High concentrations of tentoxin elicit a Ca2+-dependent ATPase activity with soluble CF1, but has no effect on the Ca2+-dependent ATPase activity of membrane-bound CF1. 4. The trypsin-activated, Ca2+-dependent, membrane-bound ATPase is not affected by high concentrations of tentoxin, whereas the dithiothreitol-activated, Mg2+-dependent ATPase is markedly inhibited. 5. The reconstitution of chloroplasts, partially depleted in CF1, with soluble CF1 is correlated with the loss of tentoxin-induced, Ca2+-dependent ATPase activity associated with soluble CF1.  相似文献   

9.
The method of centrifugation of chloroplast thylakoids through silicone fluid, previously used to estimate the uptake of solutes by thylakoids, is shown to be an excellent method for measuring binding of nucleotides to thylakoids. This binding, which is probably an exchange (Harris, D. A. and Slater, E. C. (1975) Biochim. Biophys. Acta 387, 335-348), is enhanced by light and is sensitive to uncoupling. Half-maximal binding of adenosine 5'-triphosphate (ATP) or adenosine 5'-diphosphate (ADP) at 10 mjM was reached within less than 0.1 s. With illumination times sufficient to elicit maximal binding, saturation of the site(s) is approached at 20 muM nucleotide and dissociation constants of 5 muM and 7 muM were calculated for ADP and ATP, respectively. At saturation, the binding corresponds to 1 mol/mol of coupling factor 1 or less. Although the light-dependent binding of ADP does not require Mg2+, that of ATP is markedly enhanced by Mg2+. A 10-fold molar excess of guanosine di- or triphosphate or adenyl-5'-yl imidodiphosphate had little effect on the binding. Adenosine 5'-phosphosulfate, a competitive inhibitor of phosphorylation with respect to ADP, decreases the binding. Thylakoids, previously illuminated in the absence of added nucleotides, retain the capacity to bind ADP or ATP in the dark long after the H+ electrochemical gradient has decayed. The conformation of coupling factor 1 in darkened thylakoids following illumination in the absence of added nucleotides may thus differ from that in thylakoids either illuminated in the presence of nucleotides or kept in the dark. Approximately 20% of the ADP bound to coupling factor 1 in thylakoids is converted to ATP by a 2-s illumination. Bound inorganic phosphate, derived either from ATP or from inorganic phosphate itself, serves as the phosphoryl donor. Bound ADP may, therefore, be of catalytic significance in the mechanism of phosphorylation.  相似文献   

10.
11.
Decay of light-triggered ATP hydrolysis in the dark was diminished with a decrease in chloroplast concentration. The enhancing effect of NH4Cl on ATP hydrolysis decreased with dark time. The decrease was much faster than that in ATP hydrolysis activity. The NH4Cl effect increased with ATP preincubation time. Reactivation of ATP hydrolysis occurred with the progress of ATP hydrolysis. Pi enhanced the activation remarkably. These results suggest that ATP hydrolysis produces some energized state, which stimulates NH4C1 effect and makes coupling factor active in the presence of Pi and that to keep coupling factor active, energy is not necessarily needed.  相似文献   

12.
13.
The capacity of various ATPase preparations from beef heart mitochondria to catalyze exchange of phosphate oxygens with water has been evaluated. Oligomycin-sensitive ATPase preparations retain a capacity for considerable intermediate Pi equilibrium HOH exchange per Pi formed during ATP hydrolysis at relatively high ATP concentration (5 mM). Submitochondrial particles prepared by an ammonia-Sephadex procedure with 5 mM ATP showed more rapid ATPase, less oligomycin sensitivity, and less capacity for intermediate exchange. With these particles, intermediate Pi equilibrium HOH exchange per Pi formed was increased as ATP concentration was decreased. The purified, soluble ATPase from mitochondria catalyzed little or no intermediate Pi equilibrium HOH exchange at 5 mM ATP but showed pronounced increase in capacity for such exchange as ATP concentration was lowered. The ATPase also showed a weak catalysis of an ADP-stimulated medium Pi equilibrium HOH exchange. The results support the alternating catalytic site model for ATP synthesis or cleavage. They also demonstrate that a transmembrane protonmotive force is not necessary for oxygen exchange reactions. At lower ATP concentrations, ADP and Pi formed at a catalytic site appear to remain bound and continue to allow exchange of Pi oxygens until ATP binds at another site on the enzyme.  相似文献   

14.
15.
16.
17.
The regulatory effects of malate on chloroplast Mg2+-ATPase were investigated and the mechanism was discussed. Malate stimulated methanol-activated membrane-bound and isolated CF1 Mg2+-ATPase activity. The subunit of CF1 may be involved in malate regulation of the enzyme function. Modification of subunit at one site of the peptide by NEM may affect malate stimulation of ATPase while at another site may have no effect. The effect of malate on the Mg2+-ATPase was also controlled by the Mg2+/ATP ratio in the reaction medium. The enhancing effect of malate on Mg2+-ATPase activity depended on the presence of high concentrations of Mg2+ in the reaction mixture. Kinetic study showed that malate raised the Vmax of catalysis without affecting the Km for Mg2+ ATP. The experiments imply that the stimulation of Mg2+-ATPase by malate is probably correlated with the Pi binding site on the enzyme. The regulation of ATPase activity by malate in chloroplasts may be relevant to its function in vivo.Abbreviations CF1 chloroplast coupling factor 1 - CF1 (-) and CF1 (-) CF1 deficient in the and subunit - MF1 mitochondria coupling factor 1 - NEM N-ethylmaleimide - PMS phenazine methosulfate - OG n-octyl--d-glucopyranoside  相似文献   

18.
The pH-dependence of ADP and ATP affinity for CF1 tight nucleotide-binding sites was studied under conditions of equilibrium between bound and free labeled nucleotides. With the nucleotide/CF1 ratio>1, the ATP content in tightly bound nucleotides depended only slightly on medium pH. With the nucleotide/CF1 ratio approaching 1, tightly bound ATP content grew rapidly with decreasing pH. Calculations of ADP/ATP ratio in free and tightly bound nucleotides showed that decreasing the pH from 8.0 to 6.0 induced a 150 times greater affinity of the nucleotide-binding site for ATP than for ADP. The data indicates that ATP-ADP equilibrium at the CF1 tight nucleotide-binding site depends on protonation of specific acid-base groups of the enzyme.Abbreviations CF1, BF1, and MF1 coupling factors of chloroplasts, bacteria, and mitochondria, respectively - AdN adenine nucleotide  相似文献   

19.
On the soluble part of the coupling factor (CF1), extracted from spinach chloroplasts, three nucleotide-binding sites are identified. Three ADP are bound per CF1 when the enzyme is incubated with ADP either with or without Mg2+. Two ADP and one ATP are bound per CF1 when the enzyme is incubated with a limiting concentration of ATP, in the presence of Mg2+. At high ATP concentration, in the presence of Mg2+, one free ATP exchanges with one bound ADP and two ATP and one ADP remain bound per CF1. When Mg2+ is omitted from the incubation medium of ATP and CF1, only two ADP and around 0.5 ATP are bound per CF1. The three nucleotide binding sites of CF1 fall into two different and independent categories according to the ability of the bound nucleotides to be exchanged with free nucleotides. On one site the bound ADP is difficult to exchange. On the other two sites, the bound nucleotides. ADP or ATP, are readily exchangable. We propose that the two exchangeable sites form the catalytic part of the enzyme where ATP is hydrolyzed. When ATP concentration is high enough, in the presence of Mg2+, one ATP displaces one bound ADP and allows the ATP hydrolysis to proceed. We propose too that the site where ADP is difficult to exchange may represent the 'tight' ADP-binding site, different from the catalytic ones, which becomes exchangeable on the CF1 in vivo when the thylakoid membranes are energized by light, as stressed by Bickel-Sandk?tter and Strotman [(1976) FEBS Lett. 65, 102-106].  相似文献   

20.
1. [14C]ADP is incorporated into washed broken chloroplasts in the light. The bound labelled nucleotides which cannot be removed by washing are almost exclusively related to coupling factor CF1. [14C]ADP binding exhibits a monophasic concentration curve with a Km of 2 μM.2. By illumination of the chloroplasts, previously incorporated labelled nucleotides are released. A fast release is obtained in the presence of unlabelled ADP and ATP, indicating an energy-dependent exchange. A slow and incomplete release is induced by light in the absence of unlabelled adenine nucleotides. Obviously, under those conditions, an adenine nucleotide depleted CF1 conformation is established.3. Re-binding of [14C]ADP by depleted membranes is an energy-independent process. Even after solubilization of adenylate-depleted CF1, [14C]ADP is incorporated into the protein. By re-binding of ADP in the dark, CF1 is converted to a non-exchangeable form.4. Energy-dependent adenine nucleotide exchange on CF1 is suggested to include three different conformational states of the enzyme: (1) a stable, non-exchangeable form which contains firmly bound nucleotides, is converted to (2), an unstable form containing loosely bound adenine nucleotides. This conformation allows adenylate exchange; it is in equilibrium with (3) a metastable, adenylate-depleted form. The transition from state (1) to state (2) is the energy-requiring step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号