首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cholesterol analogs are often used to investigate lipid trafficking and membrane organization of native cholesterol. Here, the potential of various spin (doxyl moiety) and fluorescent (7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) group) labeled cholesterol analogs as well as of fluorescent cholestatrienol and the naturally occurring dehydroergosterol to mimic the unique properties of native cholesterol in lipid membranes was studied in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membranes by electron paramagnetic resonance, nuclear magnetic resonance, and fluorescence spectroscopy. As cholesterol, all analogs undergo fluctuating motions of large amplitude parallel to the bilayer normal. Native cholesterol keeps a strict orientation in the membrane with the long axis parallel to the bilayer normal. Depending on the chemical modification or the position of the label, cholesterol analogs may adopt an "up-side-down" orientation in the membrane or may even fluctuate between "upright" and up-side-down orientation by rotational motions about the short axis not typical for native cholesterol. Those analogs are not able to induce a comparable condensation of phospholipid membranes as known for native cholesterol revealed by 2H nuclear magnetic resonance. However, cholesterol-induced lipid condensation is one of the key properties of native cholesterol, and, therefore, a well suited parameter to assess the potential of steroid analogs to mimic cholesterol. The study points to extreme caution when studying cholesterol behavior by the respective analogs. Among seven analogs investigated, only a spin-labeled cholesterol with the doxyl group at the end of the acyl chain and the fluorophore cholestatrienol mimic cholesterol satisfactorily. Dehydroergosterol has a similar upright orientation as cholesterol and could be used at low concentration (about 1 mol %), at which its lower potential to enhance lipid packing density does not perturb membrane organization.  相似文献   

2.
《Biophysical journal》2022,121(13):2550-2556
The (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) moiety tethered to the headgroup of phosphatidylcholine (PC) lipid is employed in spin labeling electron paramagnetic resonance spectroscopy to probe the water dynamics near lipid bilayer interfaces. Due to its amphiphilic character, however, TEMPO spin label could partition between aqueous and lipid phases, and may even be stabilized in the lipid phase. Accurate assessment of the TEMPO-PC configuration in bilayer membranes is essential for correctly interpreting the data from measurements. Here, we carry out all-atom molecular dynamics (MD) simulations of TEMPO-PC probe in single-component lipid bilayers at varying temperatures, using two standard MD force fields. We find that, for a dipalmitoylphosphatidylcholine (DPPC) membrane whose gel-to-fluid lipid phase transition occurs at 314 K, while the TEMPO spin label is stabilized above the bilayer interface in the gel phase, there is a preferential location of TEMPO below the membrane interface in the fluid phase. For bilayers made of unsaturated lipids, 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), which adopt the fluid phase at ambient temperature, TEMPO is unequivocally stabilized inside the bilayers. Our finding of membrane phase-dependent positioning of the TEMPO moiety highlights the importance of assessing the packing order and fluidity of lipids under a given measurement condition.  相似文献   

3.
The intramembrane locations of several spin labeled probes in small egg phosphatidylcholine (egg PC) vesicles were determined from the enhancement of the 13C nuclear spin lattice relaxation of the membrane phospholipid. Electron paramagnetic resonance (EPR) spectroscopy was also used to measure the relative environmental polarities of the spin labels in egg PC vesicles, ethanol and aqueous solution. The binding location of the spin label group was determined for a pair of hydrophobic ion spin labels, a pair of long chain amphiphiles, and three stearates containing doxyl groups at the 5, 10 and 16 positions. The nuclear relaxation results indicate that the spin label groups on the stearates are located nearer to the membrane exterior than the analogous positions of the unlabeled phospholipid acyl chains. In addition, the spin label groups of the hydrophobic ions and long chain amphiphiles are located near the acyl chain methylene immediately adjacent to the carboxyl group. The relative polarities, determined by the EPR technique, are consistent with the nuclear relaxation results. This information, when combined with information on their electrical properties, allows for an assessment of the conformation and position of these voltage sensitive probes in membranes.  相似文献   

4.
The interaction of lipid soluble spin labels with wheat embryo axes has been investigated to obtain insight into the structural organization of lipid domains in embryo cell membranes, using conventional electron paramagnetic resonance (EPR) and saturation transfer EPR (ST-EPR) spectroscopy. Stearic acid spin labels (n-SASL) and their methylated derivatives (n-MeSASL), labelled at different positions of their doxyl group (n=5, 12 and 16), were used to probe the ordering and molecular mobility in different regions of the lipid moiety of axis cell membranes. The ordering and local polarity in relation to the position of the doxyl group along the hydrocarbon chain of SASL, determined over the temperature range from -50 to +20 degrees C, are typical for biological and model lipid membranes, but essentially differ from those in seed oil droplets. Positional profiles for ST-EPR spectra show that the flexibility profile along the lipid hydrocarbon chain does exist even at low temperatures, when most of the membrane lipids are in solid state (gel phase). The ordering of the SASL nitroxide radical in the membrane surface region is essentially higher than that in the depth of the membrane. The doxyl groups of MeSASLs are less ordered (even at low temperatures) than those of the corresponding SASLs, indicating that the MeSASLs are located in the bulk of membrane lipids rather than in the protein boundary lipids. The analysis of the profiles of EPR and ST-EPR spectral parameters allows us to conclude that the vast majority of SASL and MeSASL molecules accumulated in embryo axes is located in the cell membranes rather than in the interior of the oil bodies. The preferential partitioning of the doxyl stearates into membranes demonstrates the potential of the EPR spin-labelling technique for the in situ study of membrane behavior in seeds of different hydration levels.  相似文献   

5.
Lipid peroxidation plays a key role in the alteration of cell membrane's properties. Here we used as model systems multilamellar vesicles (MLVs) made of the first two products in the oxidative cascade of linoleoyl lecithin, namely 1-palmitoyl-2-(13-hydroperoxy-9,11-octadecanedienoyl)-lecithin (HpPLPC) and 1-palmitoyl-2-(13-hydroxy-9,11-octadecanedienoyl)-lecithin (OHPLPC), exhibiting a hydroperoxide or a hydroxy group at position 13, respectively. The two oxidized lipids were used either pure or in a 1:1 molar ratio mixture with untreated 1-palmitoyl-2-linoleoyl-lecithin (PLPC). The model membranes were doped with spin-labeled lipids to study bilayer alterations by electron paramagnetic resonance (EPR) spectroscopy. Two different spin-labeled lipids were used, bearing the doxyl ring at position (n) 5 or 16: γ-palmitoyl-β-(n-doxylstearoyl)-lecithin (n-DSPPC) and n-doxylstearic acid (n-DSA).Small changes in the acyl chain order in the sub-polar region and at the methyl-terminal induced by lipid peroxidation were detected by X-band EPR. Concomitantly, the polarity and proticity of the membrane bilayer in those regions were investigated at W band in frozen samples. Analysis of the gxx and Azz parameters revealed that OHPLPC, but mostly HpPLPC, induced a measurable increase in polarity and H-bonding propensity in the central region of the bilayer. Molecular dynamics simulation performed on 16-DSA in the PLPC–HpPLPC bilayer revealed that water molecules are statistically favored with respect to the hydroperoxide groups to interact with the nitroxide at the methyl-terminal, confirming that the H-bonds experimentally observed are due to increased water penetration in the bilayer. The EPR and MD data on model membranes demonstrate that cell membrane damage by oxidative stress cause alteration of water penetration in the bilayer.  相似文献   

6.
J J Yin  J B Feix    J S Hyde 《Biophysical journal》1987,52(6):1031-1038
Electron-electron double resonance (ELDOR) and saturation-recovery spectroscopy employing 14N:15N stearic acid spin-label pairs have been used to study the effects of cholesterol on lateral diffusion and vertical fluctuations in lipid bilayers. The 14N:15N continuous wave electron-electron double resonance (CW ELDOR) theory has been developed using rate equations based on the relaxation model. The collision frequency between 14N-16 doxyl stearate and 15N-16 doxyl stearate, WHex (16:16), is indicative of lateral diffusion of the spin probes, while the collision frequency between 14N-16 doxyl stearate and 15N-5 doxyl stearate, WHex (16:5), provides information on vertical fluctuations of the 14N-16 doxyl stearate spin probe toward the membrane surface. Our results show that: (a) cholesterol decreases the electron spin-lattice relaxation time Tle of 14N-16 doxyl stearate spin label in dimyristoylphosphatidylcholine (DMPC) and egg yolk phosphatidylcholine (egg PC). (b) Cholesterol increases the biomolecular collision frequency WHex (16:16) and decreases WHex (16:5), suggesting that incorporation of cholesterol significantly orders the part of the bilayer that it occupies and disorders the interior region of the bilayer. (c) Alkyl chain unsaturation of the host lipid moderates the effect of cholesterol on both vertical fluctuations and lateral diffusion of 14N-16 doxyl stearate. And (d), there are marked differences in the effects of cholesterol on lateral diffusion and vertical fluctuations between 0-30 mol% and 30-50 mol% of cholesterol that suggest an inhomogeneous distribution of cholesterol in the membrane.  相似文献   

7.
We have used both a protein spin label and a lipid spin probe to study some of the slow motions of proteins and of lipids, respectively, in intact erythrocyte membranes. Three electron paramagnetic resonance (EPR) methods, conventional (V1) EPR, second harmonic out-of-phase absorption saturation transfer (ST) EPR (V'2), and first harmonic out-of-phase dispersion ST EPR (U'1) were used to compare the experimental methods and spectral sensitivities with different kinds of molecular motions in human erythrocyte membranes under different experimental conditions. The results show that the V'2 display is relatively more sensitive to the protein motion, while the U'1 display appears more sensitive to the lipid motions, and the V'2 display is substantially more convenient to obtain than the U'1 display.  相似文献   

8.
The interaction of lipids, spin-labeled at different positions in the sn-2 chain, with cytochrome c oxidase reconstituted in gel-phase membranes of dimyristoylphosphatidylglycerol has been studied by electron paramagnetic resonance (EPR) spectroscopy. Nonlinear EPR methods, both saturation transfer EPR and progressive saturation EPR, were used. Interaction with the protein largely removes the flexibility gradient of the lipid chains in gel-phase membranes. The rotational mobility of the chain segments is reduced, relative to that for gel-phase lipids, by the intramembranous interaction with cytochrome c oxidase. This holds for all positions of chain labeling, but the relative effect is greater for chain segments closer to the terminal methyl ends. Modification of the paramagnetic metal-ion centers in the protein by binding azide has a pronounced effect on the spin-lattice relaxation of the lipid spin labels. This demonstrates that the centers modified are sufficiently close to the first-shell lipids to give appreciable dipolar interactions and that their vertical location in the membrane is closer to the 5-position than to the 14-position of the lipid chains.  相似文献   

9.
Permeation of oxygen into membranes is relevant not only to physiological function, but also to depth determinations in membranes by site-directed spin labeling. Spin-lattice (T(1)) relaxation enhancements by air or molecular oxygen were determined for phosphatidylcholines spin labeled at positions (n = 4-14, 16) of the sn-2 chain in fluid membranes of dimyristoyl phosphatidylcholine, by using nonlinear continuous-wave electron paramagnetic resonance (EPR). Both progressive saturation and out-of-phase continuous-wave EPR measurements yield similar oxygen permeation profiles. With pure oxygen, the T(2)-relaxation enhancements determined from homogeneous linewidths of the linear EPR spectra are equal to the T(1)-relaxation enhancements determined by nonlinear EPR. This confirms that both relaxation enhancements occur by Heisenberg exchange, which requires direct contact between oxygen and spin label. Oxygen concentrates in the hydrophobic interior of phospholipid bilayer membranes with a sigmoidal permeation profile that is the inverse of the polarity profile established earlier for these spin-labeled lipids. The shape of the oxygen permeation profile in fluid lipid membranes is controlled partly by the penetration of water, via the transmembrane polarity profile. At the protein interface of the KcsA ion channel, the oxygen profile is more diffuse than that in fluid lipid bilayers.  相似文献   

10.
Interaction of the cell‐penetrating peptide (CPP) cysteine‐transportan (Cys‐TP) with model lipid membranes was examined by spin‐label electron paramagnetic resonance (EPR). Membranes were labeled with lipophilic spin probes and the influence of Cys‐TP on membrane structure was studied. The influence of Cys‐TP on membrane permeability was monitored by the reduction of a liposome‐trapped water‐soluble spin probe. Cys‐TP caused lipid ordering in membranes prepared from pure dimyristoylphosphatidylcholine (DMPC) and in DMPC membranes with moderate cholesterol concentration. In addition, Cys‐TP caused a large increase in permeation of DMPC membranes. In contrast, with high cholesterol content, at which model lipid membranes are in the so‐called liquid‐ordered phase, no effect of Cys‐TP was observed, either on the membrane structure or on the membrane permeability. The interaction between Cys‐TP and the lipid membrane therefore depends on the lipid phase. This could be of great importance for understanding of the CPP–lipid interaction in laterally heterogeneous membranes, while it implies that the CPP–lipid interaction can be different at different points along the membrane. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
L W Fung  M S Ostrowski 《Life sciences》1984,35(20):2071-2078
Our earlier spin label electron paramagnetic resonance (EPR) studies of hereditary spherocytosis (HS) erythrocyte revealed the existence of structural alteration(s) when the membrane is subjected to heat stress. We have now used saturation transfer EPR to show restricted motion in membrane proteins even without subjecting membrane to stress. The abnormal motional behavior is amplified when membranes are incubated at 47 degrees C and is readily detectable by conventional EPR. Gel electrophoresis and lipid assays show that proteins but not lipids are released upon heating. Thus, the more restricted motions in HS membranes may be due to a different membrane protein organization, ultimately resulting in the abnormal morphology of HS cells.  相似文献   

12.
Phospholipid hydroperoxides and phospholipid alcohols are two of the major forms of oxidatively modified phospholipids produced during oxidant stress and lipid peroxidation. The process of lipid peroxidation is known to affect the physiological function of membranes. We, therefore, investigated the effects of lipid peroxidation products on the molecular interactions in membranes. Our study was specifically focused on the effects of lipid peroxidation products on static membrane structure (molecular orientational order) and on the reorientational dynamics of the probe molecules in lipid bilayers. The study was done by performing angle-resolved fluorescence depolarization measurements (AFD) on the fluorescent probe diphenylhexatriene (DPH) and by performing angle-resolved electron spin resonance (A-ESR) measurements on cholestane (CSL) nitroxide spin probes embedded in macroscopically oriented planar bilayers consisting of 2-10% 1-palmitoyl-2-(9/13-hydroperoxylinoleoyl)phosphatidylcholine (PLPC-OOH) or 1-palmitoyl-2-(9/13-hydroxylinoleoyl)phosphatidylcholine (PLPC-OH) in 1-palmitoyl-2-linoleoylphosphatidylcholine (PLPC) or dilinoleoylphosphatidylcholine (DLPC). Both probe molecules have rigid cylindrical geometries and report on the overall molecular order and dynamics. However, being more polar, the nitroxide spin probe CSL is preferentially located near the surface of the membrane, while the less polar fluorescent probe DPH reports preferentially near the central hydrophobic region of the lipid bilayers. The results show that the presence of relatively small amounts of oxidatively modified phospholipids within the PLPC or DLPC membranes causes pronounced structural effects as the molecular orientational order of the probe molecules is strongly decreased. In contrast, the effect on membrane reorientational dynamics is minimal.  相似文献   

13.
We report a simple new nuclear magnetic resonance (NMR) spectroscopic method to investigate order and dynamics in phospholipids in which inter-proton pair order parameters are derived by using high resolution 13C cross-polarization/magic angle spinning (CP/MAS) NMR combined with 1H dipolar echo preparation. The resulting two-dimensional NMR spectra permit determination of the motionally averaged interpair second moment for protons attached to each resolved 13C site, from which the corresponding interpair order parameters can be deducted. A spin-lock mixing pulse before cross-polarization enables the detection of spin diffusion amongst the different regions of the lipid molecules. The method was applied to a variety of model membrane systems, including 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/sterol and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/sterol model membranes. The results agree well with previous studies using specifically deuterium labeled or predeuterated phospholipid molecules. It was also found that efficient spin diffusion takes place within the phospholipid acyl chains, and between the glycerol backbone and choline headgroup of these molecules. The experiment was also applied to biosynthetically 13C-labeled ergosterol incorporated into phosphatidylcholine bilayers. These results indicate highly restricted motions of both the sterol nucleus and the aliphatic side chain, and efficient spin exchange between these structurally dissimilar regions of the sterol molecule. Finally, studies were carried out in the lamellar liquid crystalline (L alpha) and inverted hexagonal (HII) phases of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). These results indicated that phosphatidylethanolamine lamellar phases are more ordered than the equivalent phases of phosphatidylcholines. In the HII (inverted hexagonal) phase, despite the increased translational freedom, there is highly constrained packing of the lipid molecules, particularly in the acyl chain region.  相似文献   

14.
The stabilizing effect of cholesterol on oxidized membranes has been studied in planar phospholipid bilayers and multilamellar 1-palmitoyl-2-linoleoyl-phosphatidylcholine vesicles also containing either 1-palmitoyl-2-glutaroyl-phosphatidylcholine or 1-palmitoyl-2-(13-hydroxy-9,11-octadecanedienoyl)-phosphatidylcholine oxidized phosphatidylcholine in variable ratio. Lipid peroxidation-dependent membrane alterations in the absence and in the presence of cholesterol were analyzed using Electron Paramagnetic Resonance spectroscopy of the model membranes spin labelled with either cholestane spin label (3-DC) or phosphatidylcholine spin label (5-DSPC). Cholesterol, added to lipid mixtures up to 40% final molar ratio, decreased the inner bilayer disorder as compared to cholesterol-free membranes and strongly reduced bilayer alterations brought about by the two oxidized phosphatidylcholine species. Furthermore, Sepharose 4B gel-chromatography and cryo electron microscopy of aqueous suspensions of the lipid mixtures clearly showed that cholesterol is able to counteract the micelle forming tendency of pure 1-palmitoyl-2-glutaroyl-phosphatidylcholine and to sustain multilamellar vesicles formation. It is concluded that membrane cholesterol may exert a beneficial and protective role against bilayer damage caused by oxidized phospholipids formation following reactive oxygen species attack to biomembranes.  相似文献   

15.
The rotational motion of an ouabain spin label with sheep kidney Na,K-ATPase has been measured by electron paramagnetic resonance (EPR) and saturation transfer EPR (ST-EPR) measurements. Spin-labelled ouabain binds with high affinity to the Na,K-ATPase with concurrent inhibition of ATPase activity. Enzyme preparations retain 0.61 ± 0.1 mol of bound ouabain spin label per ATPase β dimer. The conventional EPR spectrum of the ouabain spin label bound to the ATPase consists almost entirely (> 99%) of a broad resonance which is characteristic of a strongly immobilized spin label. ST-EPR measurements of the spin labelled ATPase preparations yield effective correlation times for the bound labels of 209 ± 11 μs at 0°C and 44 ± 4 μs at 20°C. These rotational correlation times most likely represent the motion of the protein itself rather than the independent motion of mobile spin probes relative to a slower moving protein. Additional ST-EPR measurements with glutaraldehyde-crosslinked preparations indicated that the observed rotational correlation times predominantly represented the motion of entire Na,K-ATPase-containing membrane fragments, rather than the motion of individual monomeric or dimeric polypeptides within the membrane fragment. The strong immobilization of the ouabain spin label will make it an effective paramagnetic probe of the extracellular surface of the Na,K-ATPase for a variety of NMR and EPR investigations.  相似文献   

16.
We have used spin labels and electron paramagnetic resonance (EPR) to study the correlation between the rotational dynamics of protein and lipid in sarcoplasmic reticulum (SR) membranes. A short-chain maleimide spin label was used to monitor the submillisecond rotational mobility of the Ca-ATPase enzyme (using saturation transfer EPR); a free fatty acid spin label was used to monitor the submicrosecond rotational mobility of the bulk lipid hydrocarbon chains (using conventional EPR); and a fatty acid spin label derivative (long-chain maleimide) attached to the enzyme was used to monitor the mobility of hydrocarbon chains adjacent to the protein (i.e., boundary lipid). In the native SR membranes, the protein was highly mobile (effective correlation time 50 microseconds). The spectra of the hydrocarbon probes both contained at least two components. For the unattached probe, the major component indicated nearly as much mobility as in the absence of protein (effective rotational correlation time 3 ns), while a minor component, corresponding to 25-30% of the total signal, indicated strong immobilization (effective correlation time greater than or equal to 10 ns). For the attached hydrocarbon probe, the major component (approximately 70% of the total) was strongly immobilized, and the mobile component was less mobile than that of the unattached probe. When the lipid-to-protein ratio was reduced 55% by treatment with deoxycholate, protein mobility decreased considerably, suggesting protein aggregation. A concomitant increase was observed in the fraction of immobilized spin labels for both the free and attached hydrocarbon probes. The observed hydrocarbon immobilization probably arises in part from immobilization at the protein-lipid boundary, but protein-protein interactions that trap hydrocarbon chains may also contribute. When protein aggregation was induced by glutaraldehyde crosslinking, submillisecond protein mobility was eliminated, but there was no effect on either hydrocarbon probe. Thus protein aggregation does not necessarily cause hydrocarbon chain immobilization.  相似文献   

17.
Bimolecular collision rate of 8-anilinonaphthalene-1-sulfonic acid (ANS) and the nitroxide doxyl group attached to various carbons on stearic acid spin labels (n-SASL) in phosphatidylcholine-cholesterol membranes in the fluid phase was studied by observing dynamic quenching of ANS fluorescence by n-SASL's. The excited-state lifetime of ANS and its reduction by the n-SASL doxyl group were directly measured by the time-correlated single photon counting technique to observe only dynamic quenching separately from static quenching and were analyzed by using Stern-Volmer relations. The collision rate of ANS with the n-SASL doxyl group ranges between 1 X 10(7) and 6 X 10(7), and the extent of dynamic quenching by n-SASL is in the order of 5-much much greater than 6- greater than 7- less than 9- less than 10- less than 12- less than 16-SASL (less than 5-SASL) in dimyristoylphosphatidylcholine (DMPC) membranes. Collision rate of 16-SASL is only 10% less than that of 5-SASL. Since the naphthalene ring of ANS is located in the near-surface region of the membrane, these results indicate that the methyl terminal of SASL appears in the near surface area frequently, probably due to extensive gauche-trans isomerism of the methylene chain. The presence of 30 mol% cholesterol decreases the collision rate of ANS with 12- and 16-SASL doxyl groups but not with the 5-SASL doxyl group in DMPC membranes. On the other hand, in egg-yolk phosphatidylcholine membranes, inclusion of 30 mol% cholesterol does not affect the collision of ANS with either 5-SASL or 16-SASL doxyl groups, in agreement with our previous observation that alkyl chain unsaturation moderates cholesterol effects on lipid motion in the membrane (Kusumi et al., Biochim. Biophys. Acta 854, 307-317). It is suggested that dynamic quenching of ANS fluorescence by lipid-type spin labels is a useful new monitor of membrane fluidity that reports on various lipid mobilities in the membrane; a class of motion can be preferentially observed over others by selecting a proper spin label, i.e., rotational diffusion of lipid about its long axis and translational diffusion by using 5-SASL, wobbling motion of the lipid long axis by using 7-SASL or androstane spin label, and gauche-trans isomerism by using 16-SASL.  相似文献   

18.
Non-linear electron spin resonance (EPR) techniques suitable for measuring proximity relationships in membranes are reviewed. These were developed during the past decade in order to measure changes sensitively in the spin-lattice relaxation time (T1) of nitroxyl spin labels covalently attached to membrane lipids or proteins. In combination with paramagnetic quenching agents and double spin-labelling, the methods were further developed for distance measurements. Selected examples are given to illustrate different methods, and types of data obtained for both integral and peripheral membrane proteins.  相似文献   

19.
Kirby TL  Karim CB  Thomas DD 《Biochemistry》2004,43(19):5842-5852
We used EPR spectroscopy to probe directly the interaction between phospholamban (PLB) and its regulatory target, the sarcoplasmic reticulum Ca-ATPase (SERCA). Synthetic monomeric PLB was prepared with a single cytoplasmic cysteine at residue 11, which was then spin labeled. PLB was reconstituted into membranes in the presence or absence of SERCA, and spin label mobility and accessibility were measured. The spin label was quite rotationally mobile in the absence of SERCA, but became more restricted in the presence of SERCA. SERCA also decreased the dependence of spin label mobility on PLB concentration in the membrane, indicating that SERCA reduces PLB-PLB interactions. The spin label MTSSL, attached to Cys11 on PLB by a disulfide bond, was stable at position 11 in the absence of SERCA. In the presence of SERCA, the spin label was released and a covalent bond was formed between PLB and SERCA, indicating direct interaction of one or more SERCA cysteine residues with Cys11 on PLB. The accessibility of the PLB-bound spin label IPSL to paramagnetic agents, localized in different phases of the membrane, indicates that SERCA greatly reduces the level of interaction of the spin label with the membrane surface. We propose that the cytoplasmic domain of PLB associates with the lipid surface, and that association with SERCA induces a major conformational change in PLB in which the cytoplasmic domain is drawn away from the lipid surface by SERCA.  相似文献   

20.
The free radical-reducing activity and the membrane fluidity of liver microsomes from selenium-deficient (SeD) rats were examined by means of electron paramagnetic resonance (EPR) spin label method using nitroxyl-labeled stearic acids. Our findings show that the membrane fluidity and lipid peroxidation levels in SeD rat liver microsome were relatively unchanged compared with normal rat. In contrast, SeD caused the induction of liver microsomal cytochrome P-450 activity. The nitroxyl spin probes are substrates for reduction-relating cytochrome P-450. Previous in vivo studies suggested that the total liver free radical reduction activity in SeD rat was decreased. In contrast, SeD caused the induction of liver microsomal cytochrome P-450 activity, and the reduction rate of nitroxyl radical existing at shallow depth in membrane was increased. Selenium-deficient rats experienced an increase in hydrogen peroxide (H2O2) due to a pronounced loss of glutathione peroxidase (GSH-Px) activity. This masked the overall reduction rate of the nitroxyl spin probe by reoxidation of the hydroxylamine form. Although the SeD condition caused induction of liver cytochrome P-450 and chronic increased H2O2, this did not result in oxidative liver damage. An increased level of glutathione in SeD liver was also evident, likely due to the absence of GSH-Px activity. Using the EPR spin label method, we have shown that SeD causes complicated redox changes in the liver, notably, alterations in the levels of cytochrome P-450 and GSH-Px systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号