首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A characteristic feature of the platelet-derived growth factor (PDGF) beta-receptor is the presence of an insert sequence in the protein tyrosine kinase domain. A receptor mutant which lacks the entire insert of 98 amino acids was expressed in CHO cells, and its functional characteristics were compared with those of the wild-type receptor. The mutant receptor bound PDGF-BB with high affinity and mediated internalization and degradation of the ligand with efficiency similar to that of the wild-type receptor but did not transduce a mitogenic signal. It was found to display a decreased autophosphorylation after ligand stimulation and had a decreased ability to phosphorylate exogenous substrates; phosphofructokinase was not phosphorylated at all, whereas a peptide substrate was phosphorylated, albeit at a lower rate compared with phosphorylation by the wild-type receptor. Furthermore, the mutant receptor did not mediate actin reorganization but mediated an increase in c-fos expression. The data indicate that the insert in the kinase domain of the PDGF beta-receptor is important for the substrate specificity or catalytic efficiency of the kinase; the deletion of the insert interferes with the transduction of some, but not all, of the signals that arise after activation of the receptor.  相似文献   

2.
The tyrosine kinase domains of the platelet-derived growth factor (PDGF) and colony-stimulating factor-1 (CSF-1)/c-fms receptors are interrupted by kinase inserts (ki) which vary in length and amino acid sequence. To define the role of the ki in the human alpha PDGF receptor (alpha PDGFR), we generated deletion mutants, designated alpha R delta ki-1 and alpha R delta ki-2, which lacked 80 (710 to 789) and 95 (695 to 789) amino acids of the 104-amino-acid ki region, respectively. Their functional characteristics were compared with those of the wild-type alpha PDGFR following introduction into a naive hematopoietic cell line, 32D. Biochemical responses, including PDGF-stimulated PDGFR tyrosine phosphorylation, phosphatidylinositol (PI) turnover, and receptor-associated PI-3 kinase activity, were differentially impaired by the deletions. Despite a lack of any detectable receptor-associated PI-3 kinase activity, 32D cells expressing alpha R delta ki-1 showed only partially impaired chemotactic and mitogenic responses and were capable of sustained proliferation in vitro and in vivo under conditions of autocrine stimulation by the c-sis product. 32D transfectants expressing the larger ki deletion (alpha R delta ki-2) showed markedly decreased or abolished biochemical and biological responses. However, insertion of the highly unrelated smaller c-fms (685 to 750) ki domain into alpha R delta ki-2 restored each of these activities to wild-type alpha PDGFR levels. Since the CSF-1R does not normally induce PI turnover, the ability of the c-fms ki domain to reconstitute PI turnover in the alpha R delta ki-2 transfectant provides evidence that the ki domain of the alpha PDGFR does not directly couple with this pathway. Taken together, all od these bindings imply that their ki domains have evolved to play very similar roles in the known signaling functions PDGF and CSF-1 receptors.  相似文献   

3.
Three types of mutations were introduced into the platelet-derived growth factor (PDGF) receptor to cause a loss of PDGF-stimulated tyrosine kinase activity: (i) a point mutation of the ATP-binding site, (ii) a deletion of the carboxyl-terminal region, and (iii) replacement of the membrane-spanning sequences by analogous transmembrane sequences of other receptors. Transfectants expressing mutated receptors bind, 125I-labeled PDGF with a high affinity but had no PDGF-sensitive tyrosine kinase activity, phosphatidylinositol turnover, increase in the intracellular calcium concentration, change in cellular pH, or stimulation of DNA synthesis. However, PDGF-induced receptor down regulation was normal in the mutant cells. These results indicate that the transmembrane sequence has a specific signal-transducing function other than merely serving as a membrane anchor and that the receptor kinase activity is necessary for most responses to PDGF but is not required for receptor down regulation.  相似文献   

4.
The epidermal growth factor (EGF) receptor is phosphorylated by protein kinase C at Thr654. It has been proposed that the phosphorylation of this site is an important regulatory mechanism for the control of EGF receptor function. However, the physiological significance of the phosphorylation of EGF receptor Thr654 in intact cells is not understood. To address this question, the design of an experimental strategy is required that can be used to distinguish between the pleiotropic effects of kinase C activation and the specific effects of kinase C that are mediated by the phosphorylation of the EGF receptor at Thr654. The approach that we used was to examine the function of EGF receptors that are constitutively phosphorylated at residue 654. It was observed that the constitutive phosphorylation of the EGF receptor blocked mitogenic signal transduction by the receptor. These data are consistent with the hypothesis that the phosphorylation of the EGF receptor at residue 654 in intact cells inhibits EGF-stimulated cellular proliferation.  相似文献   

5.
Platelet-derived growth factor (PDGF) stimulates autophosphorylation of the PDGF receptor and association of the receptor with several cytoplasmic molecules, including phosphatidylinositol-3 kinase (PI3 kinase). In this study we examined the association of PI3 kinase with immunoprecipitated autophosphorylated PDGF receptor in vitro. The PI3 kinase from cell lysates bound to the wild-type receptor but not to a mutant receptor that had a deletion of the kinase insert region. A protein of an apparent size of 85 kDa bound to the receptor, consistent with previous observations that a protein of this size is associated with PI3 kinase activity. In addition, 110- and 74-kDa proteins bound to the phosphorylated receptor. Dephosphorylated receptors lost the ability to bind PI3 kinase activity as well as the 85-kDa protein. A 20-amino-acid peptide composed of a sequence in the kinase insert region that included one of the autophosphorylation sites of the receptor (tyrosine 719) as well as a nearby tyrosine (Y708) blocked the binding of PI3 kinase to the receptor, but only when the peptide was phosphorylated on tyrosine residues. A scrambled version of the peptide did not block PI3 kinase binding to the receptor even when it was phosphorylated on tyrosine. These tyrosine-phosphorylated peptides did not block binding of phospholipase C-gamma or GTPase-activating protein to the receptor. In separate experiments (receptor blots), soluble radiolabeled receptor bound specifically to an 85-kDa protein present in sodium dodecyl sulfate-polyacrylamide gel electrophoresis-fractionated 3T3 cell lysates that were transferred to nitrocellulose paper. The binding was blocked by the same tyrosine-phosphorylated peptides that prevented binding of PI3 kinase activity to immobilized receptors. These findings show that the PDGF receptor binds directly to an 85-kDa protein and to a PI3 kinase activity through specific sequences in the kinase insert region. The association of a 110-kDa protein with the receptor also involve these sequences, suggesting that this protein may be a subunit of the PI3 kinase. Phosphotyrosine is an essential structure required for the interactions of these proteins with the PDGF receptor.  相似文献   

6.
Signal transduction by tyrosine kinase growth factor receptors involves ligand-induced phosphorylation of substrates for the kinase, resulting in mediation of common or receptor-specific biological signals. We have compared signal transduction pathways for the fibroblast growth factor receptor-1 (FGFR-1), the platelet-derived growth factor beta-receptor (PDGFR-beta), and a chimeric FGFR-1 molecule, FGFRchim, in which the FGFR-1 kinase insert was replaced with that of the PDGFR-beta. The different receptors were characterized and found to be functional as ligand-stimulatable kinases, after expression of the respective human cDNAs in porcine aortic endothelial cells. Substrates for the receptors were analyzed by ligand stimulation of [32P]orthophosphate-labeled cells and immunoprecipitation with phosphotyrosine antiserum. A number of phosphoproteins were induced in all the different types of cells, but components specifically induced after stimulation of FGFR-1 and PDGFR-beta expressing cells could also be detected. Examination of receptor-associated substrates by in vitro kinase assays revealed phosphoproteins of 65 and 85 kDa, which were associated with PDGFR-beta and FGFRchim, but not with FGFR-1. The 85-kDa phosphoprotein could correspond to the regulatory subunit of phosphatidylinositol 3' kinase (PI3-K), since phosphatidylinositol 3' kinase activity was detected after ligand stimulation of FGFRchim- and PDGFR-beta- but not FGFR-1-expressing cells. In addition, ligand stimulation of FGFRchim- and PDGFR-beta-expressing cells, but not FGFR-1-expressing cells, led to induction of actin reorganization in the form of circular membrane ruffling. Thus, replacement of a discrete segment of the intracellular domain of the FGFR-1 with the corresponding stretch from the PDGFR-beta resulted in transfer of PDGFR-beta-specific signaling properties to the chimeric molecule.  相似文献   

7.
We report efficient methods for using functional proteomics to study signal transduction pathways in mouse fibroblasts following stimulation with PDGF. After stimulation, complete cellular proteins were separated using two-dimensional electrophoresis and phosphorylated proteins were detected with anti-phosphotyrosine and anti-phosphoserine antibodies. About 260 and 300 phosphorylated proteins were detected with the anti-phosphotyrosine and anti-phosphoserine antibodies, respectively, at least 100 of which showed prominent changes in phosphorylation as a function of time after stimulation. Proteins showing major time-dependent changes in phosphorylation were subjected to in-gel digestion with trypsin and identified by mass spectroscopy using MALDI-TOF mass fingerprinting and ESI peptide sequencing. We have observed phosphorylated proteins known to be part of the PDGF signal transduction pathway such as ERK 1, serine/threonine protein kinase akt and protein tyrosine phosphatase syp, proteins such as proto-oncogene tyrosine kinase fgr previously known to participate in other signal transduction pathways, and some proteins such as plexin-like protein with no previously known function in signal transduction. Information about the phosphorylation site was obtained for proto-oncogene tyrosine kinase fgr and for cardiac alpha-actin. The methods used here have proven to be suitable for the identification of time-dependent changes in large numbers of proteins involved in signal transduction pathways.  相似文献   

8.
Deletion scanning mutagenesis within the transforming region of the v-sis oncogene was used to dissect structure-function relationships. Mutations affecting codons within a domain encoding amino acids 136 through 148 had no effect upon homodimer formation or recognition by antisera which detect determinants dependent upon native intrachain disulfide linkages, yet the same mutations completely abolished transforming activity. A platelet-derived growth factor B (PDGF B) monoclonal antibody that prevents its interaction with PDGF receptors recognized v-sis, delta 142 (deletion of codon 142), and delta 148 but not delta 136, delta 137, or delta 139 mutants. These findings mapped the epitope recognized by this monoclonal antibody to include amino acid residues 136 to 139. Furthermore, mutations in the codon 136 to 148 domain caused markedly impaired ability to induce PDGF receptor tyrosine phosphorylation. Thus, subtle conformational alterations in this small domain critically affect PDGF receptor recognition and/or functional activation.  相似文献   

9.
The activated platelet-derived growth factor (PDGF) receptor physically associates with p85, a subunit of phosphatidylinositol-3 kinase. Although this interaction may activate phosphatidylinositol-kinase and is crucial for PDGF-induced mitogenesis, it has not been shown whether p85 is modified in the process. p85 contains two SH2 (Src homology) domains, designated SH2-N and SH2-C. Recent experiments have shown that the SH2-C domain alone determines high-affinity binding of p85 to the PDGF receptor. The function of SH2-N, which binds receptors with lower affinity, is unknown. In this study, using a receptor-blotting technique, we find that p85 is modified by PDGF stimulation of intact cells. This modification involves inhibition of binding of the SH2-N region of p85 to the PDGF receptor. Studies with vanadate suggest that tyrosine phosphorylation of p85 is responsible for the modification of p85 detected by receptor blotting. Furthermore, recombinant p85 is modified in a similar manner when it is tyrosine phosphorylated in vitro by PDGF receptors. Tyrosine phosphorylation of p85 does not block binding of the SH2-C domain and therefore does not release p85 from high-affinity binding sites on the receptor in vitro. Instead, phosphorylation may regulate the ability of the SH2-N of p85 to bind to a different portion of the PDGF receptor or to another molecule in the signaling complex. This study provides the first evidence that p85 is tyrosine phosphorylated upon PDGF stimulation of cells and suggests that tyrosine phosphorylation of p85 regulates its activity or its interaction with other proteins.  相似文献   

10.
A differentiated liver cell (HepG2), which exhibits a dose-dependent growth-stimulatory and growth-inhibitory response to heparin-binding fibroblast growth factor type 1 (FGF-1), displays high- and low-affinity receptor phenotypes and expresses specific combinatorial splice variants alpha 1, beta 1, and alpha 2 of the FGF receptor (FGF-R) gene (flg). The extracellular domains of the alpha and beta variants consist of three and two immunoglobulin loops, respectively, while the intracellular variants consist of a tyrosine kinase (type 1) isoform and a kinase-defective (type 2) isoform. The type 2 isoform is also devoid of the two major intracellular tyrosine autophosphorylation sites (Tyr-653 and Tyr-766) in the type 1 kinase. An analysis of ligand affinity, dimerization, autophosphorylation, and interaction with src homology region 2 (SH2) substrates of the recombinant alpha 1, beta 1, and alpha 2 isoforms was carried out to determine whether dimerization of the combinatorial splice variants might explain the dose-dependent opposite mitogenic effects of FGF. Scatchard analysis indicated that the alpha and beta isoforms exhibit low and high affinity for ligand, respectively. The three combinatorial splice variants dimerized in all combinations. FGF enhanced dimerization and kinase activity, as assessed by receptor autophosphorylation. Phosphopeptide analysis revealed that phosphorylation of Tyr-653 was reduced relative to phosphorylation of Tyr-766 in the type 1 kinase component of heterodimers of the type 1 and type 2 isoforms. The SH2 domain substrate, phospholipase C gamma 1 (PLC gamma 1), associated with the phosphorylated type 1-type 2 heterodimers but was phosphorylated only in preparations containing the type 1 kinase homodimer. The results suggest that phosphorylation of Tyr-653 within the kinase catalytic domain, but not Tyr-766 in the COOH-terminal domain, may be stringently dependent on a trans intermolecular mechanism within FGF-R kinase homodimers. Although phosphotyrosine 766 is sufficient for interaction of PLC gamma 1 and other SH2 substrates with the FGF-R kinase, phosphorylation and presumably activation of substrates require the kinase homodimer and phosphorylation of Tyr-653. We propose that complexes of phosphotyrosine 766 kinase monomers and SH2 domain signal transducers may constitute unactivated presignal complexes whose active or inactive fate depends on homodimerization with a kinase or heterodimerization with a kinase-defective monomer, respectively. The results suggest a mechanism for control of signal transduction by different concentrations of ligand through heterodimerization of combinatorial splice variants from the same receptor gene.  相似文献   

11.
The platelet-derived growth factor (PDGF) alpha- and beta-receptors both mediate a mitogenic response, but only the beta-receptor mediates circular actin reorganization and chemotaxis. The tyrosine kinase domains of the receptors contain noncatalytic inserts of about 100 residues. In order to determine the role of these domains in the differential signaling of the two receptors, we constructed chimeric PDGF receptors and expressed the constructs in porcine aortic endothelial cells. The chimeric receptors were similar to the wild-type receptors in their ability to induce mitogenicity in response to ligand. Examination of receptor-associated substrates by in vitro kinase assays revealed that phosphoproteins of 72 and 110 kilodaltons were associated with the kinase insert of the alpha-receptor, whereas a phosphoprotein of 130 kilodaltons was associated with the kinase insert of the beta-receptor. Actin reorganization in the form of circular membrane ruffling was seen after ligand stimulation of the beta-receptor and the alpha-receptor containing the beta-receptor kinase insert but not after stimulation of the alpha-receptor or the beta-receptor containing the alpha-receptor kinase insert. These data indicate that the PDGF beta-receptor kinase insert has an essential function in the signal transduction pathway leading to circular membrane ruffling.  相似文献   

12.
Epidermal growth factor (EGF) treatment of NIH 3T3 cells transfected with wild-type EGF receptor induced tyrosine phosphorylation of phospholipase C-gamma (PLC-gamma). The EGF receptor and PLC-gamma were found to be physically associated such that antibodies directed against PLC-gamma or the EGF receptor coimmunoprecipitated both proteins. The association between PLC-gamma and wild-type EGF receptor was dependent on the concentration of EGF, but EGF did not enhance the association between PLC-gamma and a kinase-negative mutant of the EGF receptor. Oligomerization of the EGF receptor was not sufficient to induce association of the EGF receptor with PLC-gamma, since the kinase-negative mutant receptor underwent normal dimerization in response to EGF yet did not associate with PLC-gamma. The form of PLC-gamma associated with the EGF receptor appeared to be primarily the non-tyrosine-phosphorylated form. It is concluded that the kinase activity of the EGF receptor is essential for association of PLC-gamma with the EGF receptor, possibly by stimulating receptor autophosphorylation.  相似文献   

13.
Amino acid substitutions at the Lys-650 codon within the activation loop kinase domain of fibroblast growth factor receptor 3 (FGFR3) result in graded constitutive phosphorylation of the receptor. Accordingly, the Lys-650 mutants are associated with dwarfisms with graded clinical severity. To assess the importance of the phosphorylation level on FGFR3 maturation along the secretory pathway, hemagglutinin A-tagged derivatives were studied. The highly activated SADDAN (severe achondroplasia with developmental delay and acanthosis nigricans) mutant accumulates in its immature and phosphorylated form in the endoplasmic reticulum (ER), which fails to be degraded. Furthermore, the Janus kinase (Jak)/STAT pathway is activated from the ER by direct recruitment of Jak1. Abolishing the autocatalytic property of the mutated FGFR3 by replacing the critical Tyr-718 reestablishes the receptor full maturation and inhibits signaling. Differently, the low activated hypochondroplasia mutant is present as a mature phosphorylated form on the plasma membrane, although with a delayed transition in the ER, and is completely processed. Signaling does not occur in the presence of brefeldin A; instead, STAT1 is activated when protein secretion is blocked with monensin, suggesting that the hypochondroplasia receptor signals at the exit from the ER. Our results suggest that kinase activity affects FGFR3 trafficking and determines the spatial segregation of signaling pathways. Consequently, the defect in down-regulation of the highly activated receptors results in the increased signaling capacity from the intracellular compartments, and this may determine the severity of the diseases.  相似文献   

14.
B A Irving  A Weiss 《Cell》1991,64(5):891-901
The function of the T cell antigen receptor (TCR) invariant chains, CD3 gamma, delta, epsilon, and zeta, is poorly understood. Evidence suggests that CD3 couples receptor ligand binding to intracellular signaling events. To examine the role of the CD3 zeta chain in TCR-mediated signal transduction, a chimeric protein linking the extracellular and transmembrane domains of CD8 to the cytoplasmic domain of the zeta chain was constructed. The CD8/zeta chimera is expressed independently of the TCR and is capable of transducing signals that, by criteria of early and late activation, are indistinguishable from those generated by the intact TCR. These data indicate that CD8/zeta can activate the appropriate signal transduction pathways in the absence of CD3 gamma, delta, and epsilon, and suggest that the role of CD3 zeta is to couple the TCR to intracellular signal transduction mechanisms.  相似文献   

15.
Several lines of evidence now exist to suggest an interaction between the platelet-derived growth factor (PDGF) growth-stimulatory signal transduction pathway and the beta interferon (IFN-beta) growth-inhibitory signal transduction pathway. The most direct examples are inhibition of PDGF-mediated gene induction and mitogenesis by IFN-beta and the effects of activators and inhibitors of the IFN-inducible double-stranded RNA-dependent eIF2 kinase on expression of PDGF-inducible genes. To further investigate the nature of this PDGF/IFN-beta interaction, we selected BALB/c-3T3 cells for resistance to growth inhibition by IFN-beta and analyzed the phenotypes of resulting clonal lines (called IRB cells) with respect to PDGF signal transduction. Although selected only for IFN resistance, the IRB cells were found to be defective for induction of growth-related genes c-fos, c-myc and JE in response to PDGF. This block to signal transduction was not due to loss or inactivation of PDGF receptors, as immunoprecipitation of PDGF receptors with antiphosphotyrosine antibodies showed them to be present at equal levels in the BALB/c-3T3 and IRB cells and to be autophosphorylated normally in response to PDGF. Furthermore, treatment with other peptide growth factors (PDGF-AA, fibroblast growth factor, and epidermal growth factor) also failed to induce c-fos, c-myc, or JE expression in IRB cells. All of these growth factors, however, were able to induce another early growth-related gene, Egr-1. The block to signaling was not due to a defect in inositol phosphate metabolism, as PDGF treatment induced normal calcium mobilization and phosphotidylinositol-3-kinase activation in these cells. Activation of protein kinase C by phorbol esters did induce c-fos, c-myc, and JE in IRB cells, indicating that signalling pathways distal to this enzyme remained intact. We have previously shown that IFN-inducible enzyme activities, including double-stranded RNA-dependent eIF2 kinase and 2',5'-oligoadenylate synthetase, are normal in IRB cells. The finding that the induction of multiple growth-related genes by several independent growth factors is inhibited in these IFN-resistant cells suggests that there is a second messenger common to both growth factor and IFN signaling pathways and that this messenger is defective in these cells.  相似文献   

16.
We have cloned and characterized a new member of the receptor tyrosine kinase family. The cDNA clone, isolated from a rat olfactory cDNA library, has considerable homology to the family of receptors that includes the colony-stimulating factor 1 receptor, the c-kit proto-oncogene, and the platelet-derived growth factor (PDGF) receptors. Analysis of DNA sequence homology, ligand-binding, and ligand-stimulated phosphorylation data suggests that this clone encodes the rat PDGF-A/B or alpha-receptor. Comparison of its sequence to those of other receptors allows us to postulate a mechanism for receptor dimerization and activation. The expression of the rat alpha-PDGF receptor in nonneuronal cells of the olfactory epithelium and in the olfactory bulb is consistent with a role for PDGF in glial cell generation.  相似文献   

17.
Platelet-derived growth factor AA (PDGF AA), in contrast to PDGF AB and BB, is a poor mitogen for smooth muscle cells (SMC). However, together with basic fibroblast growth factor (bFGF) it acts synergistically on DNA synthesis of these cells. Northern blot analysis revealed that bFGF selectively increases the PDGF-receptor alpha subtype (PDGF-R alpha) mRNA level without a significant effect on the PDGF-R beta mRNA level. The amount of PDGF-R alpha protein is also selectively increased after stimulating SMC with bFGF as shown by immunoprecipitation of lysates from SMC with anti-PDGF-R alpha antibodies. The number of binding sites for 125I-PDGF AA is more than doubled after bFGF-treatment, whereas the specific binding for PDGF AB and BB increased only by approximately 30 and 20%, respectively. The increase in the number of PDGF-R alpha renders the SMC responsive for PDGF AA as demonstrated by the induction of the proto-oncogene c-fos as well as by an increased cell proliferation. The enhanced PDGF binding after bFGF treatment may in fact explain the observed synergistic behavior. These data are discussed with regard to a possible role of growth factor-induced transmodulation of receptor expression during atherogenesis.  相似文献   

18.
The murine myeloid progenitor cell line 32D was recently shown to undergo monocytic differentiation when protein kinase C-delta (PKC-delta) was overexpressed and activated by 12-O-tetradecanoylphorbol-13-acetate (TPA) (H. Mischak, J.H. Pierce, J. Goodnight, M.G. Kazanietz, P.M. Blumberg, and J.F. Mushinski, J. Biol. Chem. 268:20110-20115, 1993). Tyrosine phosphorylation of PKC-delta occurred when PKC-delta-transfected 32D cells were stimulated by TPA (W. Li, H. Mischak, J.-C. Yu, L.-M. Wang, J.F. Mushinski, M.A. Heidaran, and J.H. Pierce, J. Biol. Chem. 269:2349-2352, 1994). In order to elucidate the role played by PKC-delta in response to activation of a receptor tyrosine kinase, we transfected platelet-derived growth factor beta receptor (PDGF-beta R) alone (32D/PDGF-beta R) or together with PKC-delta (32D/PDGF-beta R/PKC-delta) into 32D cells. NIH 3T3 cells which endogenously express both PDGF-alpha R and PDGF-beta R were also transfected with PKC-delta (NIH 3T3/PKC-delta). Like TPA treatment, PDGF-BB stimulation caused striking phosphorylation of PKC-delta in vivo and translocation of some PKC-delta from the cytosol fraction to the membrane fraction in both cell systems. Some of the phosphorylation induced by PDGF-BB treatment was found to be on a tyrosine residue(s). Tyrosine-phosphorylated PKC-delta was observed only for the membrane fraction after stimulation with PDGF-BB or TPA. The enzymatic activity of PKC-delta in the membrane fraction also increased after stimulation with TPA or PDGF, providing a positive correlation between PKC-delta tyrosine phosphorylation and its activation. Overnight treatment of 32D/PDGF-beta R/PKC-delta cells with PDGF-BB induced monocytic differentiation as judged by an increase in expression of cell surface macrophage differentiation markers. PDGF-BB had much weaker effects on 32D/PDGF-beta R cell differentiation, suggesting that increased PKC-delta expression enhanced monocytic differentiation. These results indicate that PKC-delta is a downstream molecule in the PDGFR signaling pathway and may play a pivotal role in PDGF-beta R-mediated cell differentiation.  相似文献   

19.
We have utilized site-directed mutants to study the role of autophosphorylation of the epidermal growth factor (EGF) receptor in the regulation of receptor kinase activity and ligand-induced endocytosis. A single mutation of the major autophosphorylation site, Y1173, and a double mutation of two autophosphorylation sites, Y1173 and Y1148, did not inhibit kinase activity in vivo, using PLC gamma 1 as a specific substrate for the EGF receptor kinase. The simultaneous mutation of three major autophosphorylation sites (Y1173, Y1148, Y1068), however, caused more than a 50% decrease in EGF-induced tyrosine phosphorylation of PLC gamma 1. The triple mutation also resulted in a substantial inhibition of the EGF-receptor endocytic system. We have used three types of experiments to analyze internalization, recycling, and degradation of EGF in cells with these mutants or the wild-type receptor. Using a simple mathematical model we have shown that the internalization rate constant is 2-fold lower in cells expressing the triple mutation receptor (F3 cells) than in cells expressing wild-type EGF receptor (wild-type cells). However, the rate constant for recycling was similar in both cell types. The EGF degradation rate constant was also lower in F3 cells. EGF-induced EGF receptor degradation was slower in F3 cells (t1/2 = 4 h) than in wild-type cells (t1/2 = 1 h). Therefore, our results suggest that multiple autophosphorylations of the carboxyl terminus of the EGF receptor are required for EGF receptor kinase activation, and for the internalization and intracellular processing of the EGF.receptor complex.  相似文献   

20.
A monoclonal antibody (mAb), sis 1, generated against human c-sis-encoded platelet-derived growth factor (PDGF) BB, was shown by enzyme-linked immunosorbent assay and Western blot (immunoblot) analysis to recognize human PDGF BB and human platelet PDGF AB but not the human PDGF AA. This monoclonal antibody potently inhibited PDGF receptor-binding and mitogenic activities of both human PDGF BB and PDGF AB but had no effect on PDGF AA. Finally, we demonstrated that an immunoaffinity-purified anti-c-sis peptide antibody (anti-V4) which also blocked binding of PDGF BB to its cognate receptor and competed with mAb sis 1 for binding to PDGF BB. All of these results suggest that mAb sis 1 recognizes an epitope of the c-sis gene product, PDGF BB, that spatially overlaps the V4 surface domain of PDGF BB, immunochemically localizing a region of PDGF BB critical for PDGF receptor binding and activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号