首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Molecular genetics and evolutionary relationship of PCB-degrading bacteria   总被引:20,自引:0,他引:20  
Biphenyl-utilizing soil bacteria are ubiquitously distributed in the natural environment. They cometabolize a variety of polychlorinated biphenyl (PCB) congeners to chlorobenzoic acids through a 2,3-dioxygenase pathway, or alternatively through a 3,4-dioxygenase system. Thebph genes coding for the metabolism of biphenyl have been cloned from several pseudomonads. The biochemistry and molecular genetics of PCB degradation are reviewed and discussed from the viewpoint of an evolutionary relationship.Abbreviations BP biphenyl - bph BP/PCB-degradative gene - 23DHBP 2,3-dihydroxybiphenyl - HPDA 2-hydroxy-6-oxo-6-phenylhexa 2,4-dienoic acid - KF707 P. pseudoalcaligenes strain KF707 - LB400 Pseudomonas sp. strain LB400 - PCB polychlorinated biphenyls - Q1 P. paucimobilis strain Q1tod; toluene catabolic gene  相似文献   

2.
A report of the meeting 'Molecular Genetics of Bacteria and Phages', Cold Spring Harbor, USA, 20-24 August 2008.  相似文献   

3.
Molecular genetics of carbon-phosphorus bond cleavage in bacteria   总被引:5,自引:0,他引:5  
Phosphonates (Pn) are a large class of organophosphorus molecules that have direct carbon-phosphorus (C - P) bonds in place of the carbon-oxygen-phosphorus ester bond. In bacteria two pathways exist for Pn breakdown for use as a P source: the phosphonatase and C - P lyase pathways. These pathways differ both in regard to their substrate specificity and their cleavage mechanism. The phosphonatase pathway acts on the natural Pn -aminoethylphosphonate(AEPn). In a two-step process it leads to cleavage of the C - P bond by a hydrolysis reaction requiring an adjacent carbonyl group. In contrast the C - P lyase pathway has a broad substrate specificity. It leads to cleavage of substituted Pn (such as AEPn) as well as unsubstituted Pn by a mechanism involving redox or radical chemistry. Due to its broad substrate specificity, the C - P lyase pathway is generally thought to be responsible for the breakdown of Pn herbicides (such as glyphosate) by bacteria. As a way to gain a more in-depth understanding of these Pn degradative pathways, their respective genes have been isolated and characterized. In the absence of a biochemical assay for the C - P lyase pathway such molecular approaches have been especially valuable. The roles of individual genes have been inferred from DNA sequence analysis and mutational effects. Genes for the C - P lyase pathway exist in a fourteen-gene operon that appears to encode both a binding protein-dependent Pn transporter and a C - P lyase. Genes for the phosphonatase pathway also exist in a gene cluster containing Pn uptake and degradative genes. A combination of biochemistry, molecular biology, and molecular genetics approaches has provided more detailed understanding of the mechanisms of C - P bond cleavage. Such basic information may provide a new handle for improvement of Pn degradation capabilities in bacteria, or in other cells in which the respective genes may be introduced and expressed.Abbreviations AEPn -aminoethylphosphonate - C carbon - kbp kilobase pair - kDa kilodalton - MPn methylphosphonate - P phosphorus - P i inorganic phosphate - Pn phosphonate - psi phosphate starvation inducible  相似文献   

4.
5.
6.
DNA inversions in phages and bacteria   总被引:3,自引:0,他引:3  
In certain phages and bacteria, there is a recombination system that specifically promotes the inversion of a DNA fragment. These inversion events appear to act as genetic switches allowing the alternate expression of different sets of genes which in general code for surface proteins. The mechanism of inversion in one class of inversion systems (Gin/Hin) has been studied in detail. It involves the formation of a highly specific nucleoprotein complex in which not only the two recombination sites and the DNA invertase participate but also a recombinational enhancer to which the DNA-bending protein Fis is bound.  相似文献   

7.
8.
Molecular taxonomy of Lactobacillus phages   总被引:4,自引:0,他引:4  
Forty-eight strains of lactobacilli used as starter strains in the dairy industry were examined for lysogeny after treatment with mitomycin C. Two strains of L. delbrueckii subsp. bulgaricus were able to produce active phages. These temperate phages as well as 4 virulent phages isolated during abnormal fermentations were compared to a previously characterized phage mv4 which is temperate. All these phages were shown to be partially homologous by DNA-DNA hybridization. Genes that code for viral proteins seem to be well conserved since 2 major virion polypeptides of 18 (or 19) kD and 34 kD could be detected in the protein composition of each phage. Immunoblotting studies of the 7 phages using serum raised against phage mv4 confirmed that the proteins of the different phages were related. All these phages can be classified in the previously constituted group a, which now comprises 4 temperate and 15 virulent phages. These results show that some virulent phages appearing during abnormal fermentations and some temperate phages isolated by appearing during abnormal fermentations and some temperate phages isolated by induction of starter strains can be closely related genetically. Five virulent phages of L. helveticus were also compared according to their restriction pattern and their DNA homology. They were shown to be related to one another, but unrelated to phages of other lactic acid bacteria species.  相似文献   

9.
10.
CRISPR-Cas系统与细菌和噬菌体的共进化   总被引:4,自引:0,他引:4  
Li TM  Du B 《遗传》2011,33(3):213-218
细菌在适应噬菌体攻击的过程中,进化了多种防御系统,噬菌体在细菌的选择压力下,也在不断进化反防御策略,双方的这种进化关系与发生机制一直尚不完全清楚。近年在细菌和古细菌中发现一种新的免疫防御系统,即CRISPR-Cas(clustered regularly interspaced short palindromic repeats-CRISPR-associated system)系统。在对其功能和作用机制深入研究的同时,也不断地揭示了细菌和噬菌体之间的共进化关系。为此,文章在介绍原核细胞中CRISPR-Cas系统介导的免疫机制基础上,重点综述了CRISPR系统在细菌和噬菌体进化中的作用。  相似文献   

11.
12.
The model of bacteriophage predation on bacteria in a chemostat formulated by Levin et al. (Am Nat 111:3–24, 1977) is generalized to include a distributed latent period, distributed viral progeny release from infected bacteria, unproductive adsorption of phages to infected cells, and possible nutrient uptake by infected cells. Indeed, two formulations of the model are given: a system of delay differential equations with infinite delay, and a more general infection-age model that leads to a system of integro-differential equations. It is shown that the bacteria persist, and sharp conditions for persistence and extinction of phages are determined by the reproductive ratio for phage relative to the phage-free equilibrium. A novel feature of our analysis is the use of the Laplace transform.  相似文献   

13.
14.
15.
Physiology and genetics of methylotrophic bacteria   总被引:3,自引:0,他引:3  
Methylotrophic bacteria comprise a broad range of obligate aerobic microorganisms, which are able to proliferate on (a number of) compounds lacking carbon-carbon bonds. This contribution will essentially be limited to those organisms that are able to utilize methanol and will cover the physiological, biochemical and genetic aspects of this still diverse group of organisms. In recent years much progress has been made in the biochemical and genetic characterization of pathways and the knowledge of specific reactions involved in methanol catabolism. Only a few of the genetic loci hitherto found have been matched by biochemical experiments through the isolation or demonstration of specific gene products. Conversely, several factors have been identified by biochemical means and were shown to be involved in the methanol dehydrogenase reaction or subsequent electron transfer. For the majority of these components, their genetic loci are unknown. A comprehensive treatise on the regulation and molecular mechanism of methanol oxidation is therefore presented, followed by the data that have become available through the use of genetic analysis. The assemblage of methanol dehydrogenase enzyme, the role of pyrrolo-quinoline quinone, the involvement of accessory factors, the evident translocation of all these components to the periplasm and the dedicated link to the electron transport chain are now accepted and well studied phenomena in a few selected facultative methylotrophs. Metabolic regulation of gene expression, efficiency of energy conservation and the question whether universal rules apply to methylotrophs in general, have so far been given less attention. In order to expand these studies to less well known methylotrophic species initial results concerning such area as genetic mapping, the molecular characterization of specific genes and extrachromosomal genetics will also pass in review.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号