首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rspo1 (R-spondin 1)是分泌型Rspos (R-spondins)蛋白家族的成员,在雌性发育、血管生成和癌症等多个方面具有调控作用。为了研究Rspo1在早期胚胎发育中的功能,以斑马鱼(Danio rerio)作为模式生物,利用反转录PCR及原位杂交技术检测rspo1基因的时空表达模式;通过显微注射rspo1 mRNA或rspo1反义寡核苷酸(Morpholino, MO)对rspo1进行过表达或敲降;通过形态观察及原位杂交技术检测胚胎汇聚延伸(Convergence and extension, CE)运动是否正常;利用荧光素酶活性检测实验测定Wnt/PCP信号通路活性水平;通过蛋白印迹法检测表征Wnt/PCP信号通路活性的磷酸化JNK (Jun N-terminal kinase)蛋白的水平。结果显示:rspo1为母源基因,在12hpf前胚胎中呈全身性表达, rspo1的过表达或敲降均影响胚胎的CE运动;过表达rspo1降低Wnt/PCP信号通路报告质粒的活性,而敲降rspo1则增加其活性,与之相一致, rspo1敲降的胚胎中磷酸化JNK的水平显著升高;此外, rsp...  相似文献   

2.
The coordinated movement of cells is indispensable for normal vertebrate gastrulation. Several important players and signaling pathways have been identified in convergence and extension (CE) cell movements during gastrulation, including non-canonical Wnt signaling. Fyn and Yes, members of the Src family of kinases, are key regulators of CE movements as well. Here we investigated signaling pathways in early development by comparison of the phosphoproteome of wild type zebrafish embryos with Fyn/Yes knockdown embryos that display specific CE cell movement defects. For quantitation we used differential stable isotope labeling by reductive amination of peptides. Equal amounts of labeled peptides from wild type and Fyn/Yes knockdown embryos were mixed and analyzed by on-line reversed phase TiO(2)-reversed phase LC-MS/MS. Phosphorylated and non-phosphorylated peptides were quantified, and significant changes in protein expression and/or phosphorylation were detected. We identified 348 phosphoproteins of which 69 showed a decrease in phosphorylation in Fyn/Yes knockdown embryos and 72 showed an increase in phosphorylation. Among these phosphoproteins were known regulators of cell movements, including Adducin and PDLIM5. Our results indicate that quantitative phosphoproteomics combined with morpholino-mediated knockdowns can be used to identify novel signaling pathways that act in zebrafish development in vivo.  相似文献   

3.
4.
The zyxin-related LPP protein is localized at focal adhesions and cell–cell contacts and is involved in the regulation of smooth muscle cell migration. A known interaction partner of LPP in human is the tumor suppressor protein SCRIB. Knocking down scrib expression during zebrafish embryonic development results in defects of convergence and extension (C&E) movements, which occur during gastrulation and mediate elongation of the anterior–posterior body axis. Mediolateral cell polarization underlying C&E is regulated by a noncanonical Wnt signaling pathway constituting the vertebrate planar cell polarity (PCP) pathway. Here, we investigated the role of Lpp during early zebrafish development. We show that morpholino knockdown of lpp results in defects of C&E, phenocopying noncanonical Wnt signaling mutants. Time-lapse analysis associates the defective dorsal convergence movements with a reduced ability to migrate along straight paths. In addition, expression of Lpp is significantly reduced in Wnt11 morphants and in embryos overexpressing Wnt11 or a dominant-negative form of Rho kinase 2, which is a downstream effector of Wnt11, suggesting that Lpp expression is dependent on noncanonical Wnt signaling. Finally, we demonstrate that Lpp interacts with the PCP protein Scrib in zebrafish, and that Lpp and Scrib cooperate for the mediation of C&E.  相似文献   

5.
Convergent extension (CE) cell movements during gastrulation mediate extension of the anterior-posterior body axis of vertebrate embryos. Non-canonical Wnt5 and Wnt11 signalling is essential for normal CE movements in vertebrate gastrulation. Here, we show that morpholino (MO)-mediated double knock-down of the Fyn and Yes tyrosine kinases in zebrafish embryos impaired normal CE cell movements, resembling the silberblick and pipetail mutants, caused by mutations in wnt11 and wnt5, respectively. Co-injection of Fyn/Yes- and Wnt11- or Wnt5-MO was synergistic, but wnt11 or wnt5 RNA did not rescue the Fyn/Yes knockdown or vice versa. Remarkably, active RhoA rescued the Fyn/Yes knockdown as well as the Wnt11 knockdown, indicating that Fyn/Yes and Wnt11 signalling converged on RhoA. Our results show that Fyn and Yes act together with non-canonical Wnt signalling via RhoA in CE cell movements during gastrulation.  相似文献   

6.
Wnt proteins can activate distinct signaling pathways, but little is known about the mechanisms regulating pathway selection. Here we show that the metastasis-associated transmembrane protein Wnt-activated inhibitory factor 1 (Waif1/5T4) interferes with Wnt/β-catenin signaling and concomitantly activates noncanonical Wnt pathways. Waif1 inhibits β-catenin signaling in zebrafish and Xenopus embryos as well as in mammalian cells, and zebrafish waif1a acts as a direct feedback inhibitor of wnt8-mediated mesoderm and neuroectoderm patterning during zebrafish gastrulation. Waif1a binds to the Wnt coreceptor LRP6 and inhibits Wnt-induced LRP6 internalization into endocytic vesicles, a process that is required for pathway activation. Thus, Waif1a modifies Wnt/β-catenin signaling by regulating LRP6 subcellular localization. In addition, Waif1a enhances β-catenin-independent Wnt signaling in zebrafish embryos and Xenopus explants by promoting a noncanonical function of Dickkopf1. These results suggest that Waif1 modulates pathway selection in Wnt-receiving cells.  相似文献   

7.
The BMP signaling pathway plays a key role during dorsoventral pattern formation of vertebrate embryos. In zebrafish, all cloned mutants affecting this process are deficient in members of the BMP pathway. In a search for factors differentially expressed in swirl/bmp2b mutants compared with wild type, we isolated zebrafish Sizzled, a member of the secreted Frizzled-related protein family and putative Wnt inhibitor. The knockdown of sizzled using antisense morpholino phenocopied the ventralized mutant ogon (formerly also known as mercedes and short tail). By sequencing and rescue experiments, we demonstrate that ogon encodes sizzled. Overexpression of sizzled, resulting in strongly dorsalized phenotypes, and the expression domains of sizzled in wild type embryos, localized in the ventral side during gastrulation and restricted to the posterior end during segmentation stages, correlate with its role in dorsoventral patterning. The expanded expression domain of sizzled in ogon and chordino together with its downregulation in swirl suggests a BMP2b-dependent negative autoregulation of sizzled. Indicating a novel role for a secreted Frizzled-related protein, we show that, in addition to the BMP pathway, a component of the Wnt signaling pathway is required for dorsoventral pattern formation in zebrafish.  相似文献   

8.
Coordinated morphogenetic cell movements during gastrulation are crucial for establishing embryonic axes in animals. Most recently, the non-canonical Wnt signaling cascade (PCP pathway) has been shown to regulate convergent extension movements in Xenopus and zebrafish. Heparan sulfate proteoglycans (HSPGs) are known as modulators of intercellular signaling, and are required for gastrulation movements in vertebrates. However, the function of HSPGs is poorly understood. We analyze the function of Xenopus glypican 4 (Xgly4), which is a member of membrane-associated HSPG family. In situ hybridization revealed that Xgly4 is expressed in the dorsal mesoderm and ectoderm during gastrulation. Reducing the levels of Xgly4 inhibits cell-membrane accumulation of Dishevelled (Dsh), which is a transducer of the Wnt signaling cascade, and thereby disturbs cell movements during gastrulation. Rescue analysis with different Dsh mutants and Wnt11 demonstrated that Xgly4 functions in the non-canonical Wnt/PCP pathway, but not in the canonical Wnt/beta-catenin pathway, to regulate gastrulation movements. We also provide evidence that the Xgly4 protein physically binds Wnt ligands. Therefore, our results suggest that Xgly4 functions as positive regulator in non-canonical Wnt/PCP signaling during gastrulation.  相似文献   

9.
10.
Vertebrate gastrulation entails massive cell movements that establish and shape the germ layers. During gastrulation, the individual cell behaviors are strictly coordinated in time and space by various signaling pathways. These pathways instruct the cells about proliferation, shape, fate and migration into proper location. Convergence and extension (C&E) movements during vertebrate gastrulation play a major role in the shaping of the embryonic body. In vertebrates, the Wnt/Planar Cell Polarity (Wnt/PCP) pathway is a key regulator of C&E movements, essential for several polarized cell behaviors, including directed cell migration, and mediolateral and radial cell intercalation. However, the molecular mechanisms underlying the acquisition of Planar Cell Polarity by highly dynamic mesenchymal cells engaged in C&E are still not well understood. Here we review new evidence implicating the Wnt/PCP pathway in specific cell behaviors required for C&E during zebrafish gastrulation, in comparison to other vertebrates. We also discuss findings on the molecular regulation and the interaction of the Wnt/PCP pathway with other signaling pathways during gastrulation movements.  相似文献   

11.
Wnt genes play important roles in regulating patterning and morphogenesis during vertebrate gastrulation. In zebrafish, slb/wnt11 is required for convergence and extension movements, but not cell fate specification during gastrulation. To determine if other Wnt genes functionally interact with slb/wnt11, we analysed the role of ppt/wnt5 during zebrafish gastrulation. ppt/wnt5 is maternally provided and zygotically expressed at all stages during gastrulation. The analysis of ppt mutant embryos reveals that Ppt/Wnt5 regulates cell elongation and convergent extension movements in posterior regions of the gastrula, while its function in more anterior regions is largely redundant to that of Slb/Wnt11. Frizzled-2 functions downstream of ppt/wnt5, indicating that it might act as a receptor for Ppt/Wnt5 in this process. The characterisation of the role of Ppt/Wnt5 provides insight into the functional diversity of Wnt genes in regulating vertebrate gastrulation movements.  相似文献   

12.
13.
14.
During vertebrate gastrulation, mesodermal and ectodermal cells undergo convergent extension, a process characterised by prominent cellular rearrangements in which polarised cells intercalate along the medio-lateral axis leading to elongation of the antero-posterior axis. Recently, it has become evident that a noncanonical Wnt/Frizzled (Fz)/Dishevelled (Dsh) signalling pathway, which is related to the planar-cell-polarity (PCP) pathway in flies, regulates convergent extension during vertebrate gastrulation. Here we isolate and functionally characterise a zebrafish homologue of Drosophila prickle (pk), a gene that is implicated in the regulation of PCP. Zebrafish pk1 is expressed maternally and in moving mesodermal precursors. Abrogation of Pk1 function by morpholino oligonucleotides leads to defective convergent extension movements, enhances the silberblick (slb)/wnt11 and pipetail (Ppt)/wnt5 phenotypes and suppresses the ability of Wnt11 to rescue the slb phenotype. Gain-of-function of Pk1 also inhibits convergent extension movements and enhances the slb phenotype, most likely caused by the ability of Pk1 to block the Fz7-dependent membrane localisation of Dsh by downregulating levels of Dsh protein. Furthermore, we show that pk1 interacts genetically with trilobite (tri)/strabismus to mediate the caudally directed migration of cranial motor neurons and convergent extension. These results indicate that, during zebrafish gastrulation Pk1 acts, in part, through interaction with the noncanonical Wnt11/Wnt5 pathway to regulate convergent extension cell movements, but is unlikely to simply be a linear component of this pathway. In addition, Pk1 interacts with Tri to mediate posterior migration of branchiomotor neurons, probably independent of the noncanonical Wnt pathway.  相似文献   

15.
During vertebrate embryogenesis, secreted Wnt molecules regulate cell fates by signaling through the canonical pathway mediated by beta-catenin, and regulate planar cell polarity (PCP) and convergent extension movements through alternative pathways. The phosphoprotein Dishevelled (Dsh/Dvl) is a Wnt signal transducer thought to function in all Wnt signaling pathways. A recently identified member of the Formin family, Daam (Dishevelled--associated activator of morphogenesis), regulates the morphogenetic movements of vertebrate gastrulation in a Wnt-dependent manner through direct interactions with Dsh/Dvl and RhoA. We describe two mouse Daam cDNAs, mDaam1 and mDaam2, which encode proteins characterized by highly conserved formin homology domains and which are expressed in complementary patterns during mouse development. Cross-species comparisons indicate that the expression domains of Xenopus Daam1 (XDaam1) mirror mDaam1 expression. Our results demonstrate that Daams are expressed in tissues known to require Wnts and are consistent with Daams being effectors of Wnt signaling during vertebrate development.  相似文献   

16.
Stress‐induced Sapk/Jnk signaling is involved in cell survival and apoptosis. Recent studies have increased our understanding of the physiological roles of Jnk signaling in embryonic development. However, still unclear is the precise function of Jnk signaling during gastrulation, a critical step in the establishment of the vertebrate body plan. Here we use morpholino‐mediated knockdown of the zebrafish orthologs of the Jnk activators Mkk4 and Mkk7 to examine the effect of Jnk signaling abrogation on early vertebrate embryogenesis. Depletion of zebrafish Mkk4b led to abnormal convergent extension (CE) during gastrulation, whereas Mkk7 morphants exhibited defective somitogenesis. Surprisingly, Mkk4b morphants displayed marked upregulation of wnt11, which is the triggering ligand of CE and stimulates Jnk activation via the non‐canonical Wnt pathway. Conversely, ectopic activation of Jnk signaling by overexpression of an active form of Mkk4b led to wnt11 downregulation. Mosaic lineage tracing studies revealed that Mkk4b‐Jnk signaling suppressed wnt11 expression in a non‐cell‐autonomous manner. These findings provide the first evidence that wnt11 itself is a downstream target of the Jnk cascade in the non‐canonical Wnt pathway. Our work demonstrates that Jnk activation is indispensable for multiple steps during vertebrate body plan formation. Furthermore, non‐canonical Wnt signaling may coordinate vertebrate CE movements by triggering Jnk activation that represses the expression of the CE‐triggering ligand wnt11. J. Cell. Biochem. 110: 1022–1037, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
Noncanonical Wnt signals control morphogenetic movements during vertebrate gastrulation. Casein kinase I epsilon (CKIvarepsilon) is a Wnt-regulated kinase that regulates Wnt/beta-catenin signaling and has a beta-catenin-independent role(s) in morphogenesis that is poorly understood. Here we report the identification of a CKIvarepsilon binding partner, SIPA1L1/E6TP1, a GAP (GTPase activating protein) of the Rap small GTPase family. We show that CKIvarepsilon phosphorylates SIPA1L1 to reduce its stability and thereby increase Rap1 activation. Wnt-8, which activates CKIvarepsilon, enhances the CKIvarepsilon-dependent phosphorylation and degradation of SIPA1L1. In early Xenopus or zebrafish development, inactivation of the Rap1 pathway results in abnormal gastrulation and a shortened anterior-posterior axis. Although CKIvarepsilon also transduces Wnt/beta-catenin signaling, inhibition of Rap1 does not alter beta-catenin-regulated gene expression. Our data demonstrate a role for CKIvarepsilon in noncanonical Wnt signaling and indicate that Wnt regulates morphogenesis in part through CKIvarepsilon-mediated control of Rap1 signaling.  相似文献   

18.
Wnt11 is a secreted protein that signals through the non-canonical planar cell polarity pathway and is a potent modulator of cell behavior and movement. In human, mouse, and chicken, there is a single Wnt11 gene, but in zebrafish and Xenopus, there are two genes related to Wnt11. The originally characterized Xenopus Wnt11 gene is expressed during early embryonic development and has a critical role in regulation of gastrulation movements. We have identified a second Xenopus Wnt11-Related gene (Wnt11-R) that is expressed after gastrulation. Sequence comparison suggests that Xenopus Wnt11-R, not Wnt11, is the ortholog of mammalian and chicken Wnt11. Xenopus Wnt11-R is expressed in neural tissue, dorsal mesenchyme derived from the dermatome region of the somites, the brachial arches, and the muscle layer of the heart, similar to the expression patterns reported for mouse and chicken Wnt11. Xenopus Wnt11-R exhibits biological properties similar to those previously described for Xenopus Wnt11, in particular the ability to activate Jun-N-terminal kinase (JNK) and to induce myocardial marker expression in ventral marginal zone (VMZ) explants. Morpholino inhibition experiments demonstrate, however, that Wnt11-R is not required for cardiac differentiation, but functions in regulation of cardiac morphogenesis. Embryos with reduced Wnt11-R activity exhibit aberrant cell-cell contacts within the myocardial wall and defects in fusion of the nascent heart tube.  相似文献   

19.
20.
Wnt signaling is crucial for the regulation of numerous processes in development. Consistent with this, the gene families for both the ligands (Wnts) and receptors (Frizzleds) are very large. Surprisingly, while we have a reasonable understanding of the Wnt ligands likely to mediate specific Wnt-dependent processes, the corresponding receptors usually remain to be elucidated. Taking advantage of the zebrafish model''s excellent genomic and genetic properties, we undertook a comprehensive analysis of the expression patterns of frizzled (fzd) genes in zebrafish. To explore their functions, we focused on testing their requirement in several developmental events known to be regulated by Wnt signaling, convergent extension movements of gastrulation, neural crest induction, and melanocyte specification. We found fourteen distinct fzd genes in the zebrafish genome. Systematic analysis of their expression patterns between 1-somite and 30 hours post-fertilization revealed complex, dynamic and overlapping expression patterns. This analysis demonstrated that only fzd3a, fzd9b, and fzd10 are expressed in the dorsal neural tube at stages corresponding to the timing of melanocyte specification. Surprisingly, however, morpholino knockdown of these, alone or in combination, gave no indication of reduction of melanocytes, suggesting the important involvement of untested fzds or another type of Wnt receptor in this process. Likewise, we found only fzd7b and fzd10 expressed at the border of the neural plate at stages appropriate for neural crest induction. However, neural crest markers were not reduced by knockdown of these receptors. Instead, these morpholino knockdown studies showed that fzd7a and fzd7b work co-operatively to regulate convergent extension movement during gastrulation. Furthermore, we show that the two fzd7 genes function together with fzd10 to regulate epiboly movements and mesoderm differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号