首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ELIPs (early light-induced proteins) are thylakoid proteins transiently induced during greening of etiolated seedlings and during exposure to high light stress conditions. This expression pattern suggests that these proteins may be involved in the protection of the photosynthetic apparatus against photooxidative damage. To test this hypothesis, we have generated Arabidopsis (Arabidopsis thaliana) mutant plants null for both elip genes (Elip1 and Elip2) and have analyzed their sensitivity to light during greening of seedlings and to high light and cold in mature plants. In particular, we have evaluated the extent of damage to photosystem II, the level of lipid peroxidation, the presence of uncoupled chlorophyll molecules, and the nonphotochemical quenching of excitation energy. The absence of ELIPs during greening at moderate light intensities slightly reduced the rate of chlorophyll accumulation but did not modify the extent of photoinhibition. In mature plants, the absence of ELIP1 and ELIP2 did not modify the sensitivity to photoinhibition and photooxidation or the ability to recover from light stress. This raises questions about the photoprotective function of these proteins. Moreover, no compensatory accumulation of other ELIP-like proteins (SEPs, OHPs) was found in the elip1/elip2 double mutant during high light stress. elip1/elip2 mutant plants show only a slight reduction in the chlorophyll content in mature leaves and greening seedlings and a lower zeaxanthin accumulation in high light conditions, suggesting that ELIPs could somehow affect the stability or synthesis of these pigments. On the basis of these results, we make a number of suggestions concerning the biological function of ELIPs.  相似文献   

2.
The early light-induced proteins (ELIPs) belong to the multigenic family of pigment-binding light-harvesting complexes. ELIPs accumulate transiently and are believed to play a protective role in plants exposed to high levels of light. Constitutive expression of the ELIP2 gene in Arabidopsis resulted in a marked reduction of the pigment content of the chloroplasts, both in mature leaves and during greening of etiolated seedlings. The chlorophyll loss was associated with a decrease in the number of photosystems in the thylakoid membranes, but the photosystems present were fully assembled and functional. A detailed analysis of the chlorophyll-synthesizing pathway indicated that ELIP2 accumulation downregulated the level and activity of two important regulatory steps: 5-aminolevulinate synthesis and Mg-protoporphyrin IX (Mg-Proto IX) chelatase activity. The contents of glutamyl tRNA reductase and Mg chelatase subunits CHLH and CHLI were lowered in response to ELIP2 accumulation. In contrast, ferrochelatase activity was not affected and the inhibition of Heme synthesis was null or very moderate. As a result of reduced metabolic flow from 5-aminolevulinic acid, the steady state levels of various chlorophyll precursors (from protoporphyrin IX to protochlorophyllide) were strongly reduced in the ELIP2 overexpressors. Taken together, our results indicate that the physiological function of ELIPs could be related to the regulation of chlorophyll concentration in thylakoids. This seems to occur through an inhibition of the entire chlorophyll biosynthesis pathway from the initial precursor of tetrapyrroles, 5-aminolevulinic acid. We suggest that ELIPs work as chlorophyll sensors that modulate chlorophyll synthesis to prevent accumulation of free chlorophyll, and hence prevent photooxidative stress.  相似文献   

3.
4.
Chloroplast-to-chromoplast transitions during fruit ripening require massive transformation of the plastid internal membrane structure as the photosynthetic apparatus is disassembled. Early Light-Inducible Proteins (ELIPs) are known to accumulate in chloroplasts during thylakoid biogenesis and under stressful conditions. To determine if ELIP may also play a role in thylakoid disassembly during the chloroplast-to-chromoplast transition, ELIP mRNA expression was measured in tomato, Lycopersicon esculentum Mill. cv. Rutgers. An EST clone was identified in the Tomato Genome Project/Solanaceae Genomics Network database that has high sequence similarity with the amino acid sequence of Arabidopsis ELIP1 and ELIP2. It has complete identity in the two conserved regions of the protein. Genomic Southern blots indicate that the gene is a single copy in tomato. The genomic sequence shows the three-exon structure typical of ELIP sequences from other species. mRNA for this gene is barely detectable on northern blots from etiolated seedlings, but transiently accumulates to high levels 2 h after transfer to the light. Greenhouse-grown tomatoes were used to measure ELIP mRNA accumulation during fruit development and ripening. Tomato ELIP mRNA is detectable in all stages of fruit ripening, but is most abundant in the breaker/turning stage of development. A survey of tomato EST databases revealed that ELIP cDNA is also relatively abundant in developing flowers, which contain yellow chromoplasts. Combined, these results suggest that ELIP may play a newly-recognized role in the chloroplast-to-chromoplast transition process.  相似文献   

5.
6.
7.
8.
The structure of pea light-harvesting complex LHCII determined to 3.4 Å resolution by electron crystallography (Kühlbrandt, Wang and Fujiyoshi (1994) Nature 367: 614–621) was examined to determine the relationship between structural elements and sequence motifs conserved in the extended family of light-harvesting antennas (Chl a/b, fucoxanthin Chl a/c proteins) and membrane-intrinsic stress-induced proteins (ELIPs) to which LHCII belongs. It is predicted that the eukaryotic ELIPs can bind at least four molecules of Chl. The one-helix prokaryotic ELIP of Synechococcus was modelled as a homodimer based on the high degree of conservation of residues involved in the interactions of the first (B) and third (A) helices of LHCII.Abbreviations CAB Chl a/b-binding - ELIP early light-inducible protein - FCP fucoxanthin-Chl a/c protein - Lut1, Lut2 lutein molecules 1 and 2  相似文献   

9.
10.
Early light inducible proteins (ELIPs) are thylakoid proteins transiently induced by light. They are found in many species, most of which are annual plants. Studies on perennial plants are scarce and in grapevine almost nil. Because grapevines normally grow in sites with high radiation, we aimed to characterize the ELIP expression to evaluate whether they have a role in photoprotection in this species. ELIP expression was characterized in leaves at different temperatures, times of induction and natural light intensities. Very low expression was found in mature leaves. In young leaves, ELIP expression was high but began at temperatures higher than 13 °C. Maximal expression was obtained at 30 °C after 4 h of induction at 1000 μmol PAR m−2 s−1. At this intensity, the level of photoinhibition was also maximal. We conclude that in grapevine leaves, ELIP expression is developmentally dependent, occurring mainly in developing leaves, Finally, our results showed that the light intensity dependence of the ELIP expression correlated with the extent of photoinhibition indicating that ELIP induction is controlled by the strength of light stress and suggesting a role of these proteins in photoprotection.  相似文献   

11.
Within 1-2 h of illumination of etiolated barley plants the mRNAs of seven nuclear-coded proteins are transiently induced. It is proposed that at least some of these proteins are precursors to chloroplast membrane proteins since after posttranslational transport 2-h-specific bands of 18.5 kDa, 18 kDa and 13.5 kDa have been found bound to thylakoid membranes. cDNA clones for these early light-inducible proteins (ELIPs) have been isolated. Hybrid-release translation shows that part of their information must be homologous since the complete set of early light-inducible translation products is obtained with all investigated clones although the proportions of the translated bands vary for individual clones. From hybridization data it is concluded that two ELIP families of high (24-27 kDa) and of low (16-18 kDa) molecular mass exist which are induced in parallel. Induction of ELIPs occurs even at very low light intensities and is saturated at about 1000 lx. Therefore, ELIPs are not considered to represent light stress proteins but to play a regulatory role during development.  相似文献   

12.
In our previous work we found considerable accumulation of early light-inducible proteins (ELIPs) in barley during adaptation to combined high light and cold stress, an accumulation which occurred preferentially in the apical part of the leaves (M.-H. Montané et al., 1997, Planta 202: 293–302). Here we studied, under the same conditions, the effect of adaptation on the composition of thylakoid membrane proteins and pigments, particularly xanthophylls and chlorophyll, and their distribution within the barley leaf. It was observed that high light fluxes appeared to favour the trimerization of the light-harvesting complex of photosystem II (LHC II) whereas cold appeared to favour the monomers of LHC II. High light, cold or the combination of both factors had only a small effect on the protein composition of the thylakoid membranes except for the proteins of LHC II which were found to decrease under high light to a greater extent at 25 °C than at 5 °C. The total xanthophyll-cycle carotenoid content increased linearly with cellular development, the highest amount being observed in the apical part of the leaf. Cold and high light acted synergistically to induce less than a doubling in the amount of total xanthophylls, while chlorophylls a and b remained nearly constant. The fraction consisting of antheraxanthin plus zeaxanthin was up to 4- to 5-fold higher at 5 °C than at 25 °C. As determined previously (Montané et al. 1997), the same conditions caused a 15-fold increase in the accumulation of ELIPs. Consequently, neither the distribution of total xanthophylls nor that of antheraxanthin plus zeaxanthin along the leaf followed the same pattern as ELIP. Thus, the accumulation of xanthophylls cannot be stoichiometrically correlated with that of ELIPs. Using electrophoresis in the presence of decylmaltoside, we could demonstrate for the first time that ELIPs of 13.5 kDa are contained in high-molecular-mass complexes of >100 kDa, which are located in the unstacked stroma lamellar region of the thylakoid membranes. Received: 6 April 1998 / Accepted: 26 January 1999  相似文献   

13.
The PS II-S protein and the so-called early light-inducible proteins (ELIPs) are homologous to the chlorophyll a/b-binding (Cab) gene products functioning in light-harvesting. The functional significance of these two CAB homologues is not known although they have been considered to bind pigments and in the case of the PS II–S protein this has been experimentally supported. The role of these two proteins does not appear to be light-harvesting but instead they are suggested to play a role as quenchers of free chlorophyll molecules during biogenesis and/or degradation of pigment-binding proteins. Such a role would be essential to eliminate the toxic and damaging effects that can be induced by free chlorophyll in the light. To this end the expression and characteristics of the ELIPs and the PS II–S protein were investigated in spinach leaves acclimating from low to high light intensities. Under these conditions there is a reduction in the antenna size of Photosystem II due to proteolytic digestion of its major chlorophyll a/b-binding protein (LHC II). During this acclimative proteolysis, up to one third of LHC II can be degraded and consequently substantial amounts of chlorophyll molecules will lose their binding sites. Our results reveal that there is a close correlation between ELIP accumulation and the onset of the LHC II degradation as low light-grown spinach leaves are subjected to increased light intensities. In contrast, there was no change in the relative level of the PS II–S protein during the acclimation process. It is concluded that the role for the ELIPs may be related to binding of liberated chlorophyll molecules and quenching of the toxic effects during LHC II degradation. In addition it was shown that in spinach four different ELIP species can be expressed and that they show different accumulation patterns in response to increased light intensities.  相似文献   

14.
15.
16.
Four Arabidopsis thaliana ecotypes were grown at 14 degrees C and 22 degrees C under two light conditions (300 microE m-2 s-1 or 150 microE m-2 s-1) and the effect of temperature on their growth and flowering time was studied. Flowering occurred within 31 days (experimental period) at 22 degrees C, whereas a decrease in growth temperature resulted in a delay in flowering (63 days) under both light conditions. At 14 degrees C, membrane-bound APX (tAPX) activity decreased and total chlorophyll (Chl) content increased with growth under both light conditions. However, at 22 degrees C, the tAPX activity increased and total Chl content decreased with growth under both light conditions. These results suggest that at 22 degrees C oxidative stress was high under both light conditions and consequently Chl content decreased under stressful conditions or vice versa for all the four A. thaliana ecotypes studied. Under both the temperature and light conditions, soluble APX activity showed an irregular pattern of growth. The increase in tAPX activity, with growth only at 22 degrees C but not at 14 degrees C, suggests increased H2O2 formation in flowering plants at 22 degrees C for all the four A. thaliana ecotypes studied. Before flowering, the tAPX activity showed a significantly negative correlation with flowering time. Higher oxidative stress in the lower-latitude ecotypes might induce earlier flowering than the higher-latitude ecotypes. From these results, we propose a hypothesis that H2O2 is one of the possible factors in flower induction.  相似文献   

17.
Early light-inducible protein (ELIP) mRNA and protein levels were analyzed during maturation and senescence of barley (Hordeum vulgare L.) flag leaves under field conditions. The data clearly demonstrate that ELIP mRNA levels are related to the sunlight intensity before sample collection. Levels of mRNAs encoding both low and high molecular mass ELIPs fluctuate in parallel. Changes in mRNA levels are accompanied by corresponding changes in protein levels except for days when average temperatures are high. Comparison of flag leaves at different stages of development in spring and winter barley varieties suggests that light-stress-regulated ELIP gene expression is independent of the developmental stage of the leaves. Although chlorophyll content, photosystem II (PSII) efficiency, and 32-kD herbicide-binding protein of PSII levels decrease drastically after the onset of senescence, ELIP mRNA and protein still accumulate to high levels on bright days.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号