首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In South African Afrikaners, three point mutations in the gene coding for the low-density lipoprotein (LDL)-receptor are responsible for more than 95% of the cases of familial hypercholesterolemia (FH). To investigate whether one or more of these mutations originated in The Netherlands, a large group of Dutch heterozygous FH patients was screened for the presence of these three mutations. Of these, a missense mutation in exon 9 of the LDL-receptor gene, resulting in a substitution of Met for Val408, responsible for 15% of FH in Afrikaners, was found in 19 (1.5%) of 1268 FH patients of Dutch descent. Nine of the patients carrying the exon 9 mutation on one allele shared the LDL-receptor DNA haplotype with an FH patient from South Africa, who was homozygous for the same mutation. This would suggest that the mutation in these patients and in the South African patient have a common ancestral background. The remaining ten FH patients all shared a common haplotype, partly identical to the Afrikaner haplotype, which chould have arisen from a single recombinational event. This mutation has not been described in persons other than of Dutch ancestry and supports the hypothesis that this mutation in exon 9 originated in The Netherlands and, in all likelihood, was introduced into South Africa by early Dutch settlers in the seventeenth century.  相似文献   

2.
The majority of patients with the autosomal dominant disorder familial hypercholesterolemia (FH) carry novel mutations in the low density lipoprotein receptor (LDLR) that is involved in cholesterol regulation. In different populations the spectrum of mutations identified is quite different and to date there have been only a few reports of the spectrum of mutations in FH patients from Pakistan. In order to identify the causative LDLR variants the gene was sequenced in a Pakistani FH family, while high resolution melting analysis followed by sequencing was performed in a panel of 27 unrelated sporadic hypercholesterolemia patients. In the family a novel missense variant (c.1916T > G, p.(V639G)) in exon 13 of LDLR was identified in the proband. The segregation of the identified nucleotide change in the family and carrier status screening in a group of 100 healthy subjects was done using restriction fragment length polymorphism analysis. All affected members of the FH family carried the variant and none of the non-affected members nor any of the healthy subjects. In one of the sporadic cases, two sequence changes were detected in exon 9, one of these was a recurrent missense variant (c.1211C > T; p.T404I), while the other was a novel substitution mutation (c.1214 A > C; N405T). In order to define the allelic status of this double heterozygous individual, PCR amplified fragments were cloned and sequenced, which identified that both changes occurred on the same allele. In silico tools (PolyPhen and SIFT) were used to predict the effect of the variants on the protein structure, which predicted both of these variants to have deleterious effect. These findings support the view that there will be a novel spectrum of mutations causing FH in patients with hypercholesterolaemia from Pakistan.  相似文献   

3.
Familial hypercholesterolemia (FH) is an autosomal dominant disease caused by mutations in the LDL receptor gene. Here we characterize an LDL receptor mutation that is associated with a distinct haplotype and causes FH in the Druze, a small Middle Eastern Islamic sect with a high degree of inbreeding. The mutation was found in FH families from two distinct Druze villages from the Golan Heights (northern Israel). It was not found neither in another Druze FH family residing in a different geographical area nor in eight Arab and four Jewish FH heterozygote index cases whose hypercholesterolemia cosegregates with an identical LDL receptor gene haplotype. The mutation, a single-base substitution, results in a termination codon in exon 4 of the LDL receptor gene that encodes for the fourth repeat of the binding domain of the mature receptor. It can be diagnosed by allele-specific oligonucleotide hybridization of PCR-amplified DNA from FH patients.  相似文献   

4.
Four new mutations in the cystathionine beta-synthase (CBS) gene have been identified in Italian patients with homocystinuria. The first mutation is a G-to-A transition at base 374 in exon 3, causing an arginine-to-glutamic acid substitution at position 125 of the protein (R125Q). This mutation has been found in homozygosity in a patient partially responsive to pyridoxine treatment. The second mutation is a C-to-T transition at base 770 in exon 7, causing a threonine-to-methionine substitution at amino acid 257 of the protein (T257M). This mutation has been observed in homozygosity in a patient nonresponsive to the cofactor treatment. The third mutation, found in heterozygosity in a patient responsive to pyridoxine treatment, is an insertion of 68 bp in exon 8 at base 844, which introduces a premature termination codon. The fourth mutation is C-to-T transition in exon 2 at base 262, causing a proline-to-serine substitution at position 88 of the protein (P88S). This mutation is carried on a single allele in three affected sisters responsive to the cofactor treatment. In addition, six previously reported mutations (A114V, E131D, P145L, I278T, G307S, and A1224-2C) have been tested in 14 independent Italian families. Mutations A114V and I278T are carried by three and by seven independent alleles, respectively. The other four mutations--including G307S and A1224-2C, common among northern European patients--have not been detected.  相似文献   

5.
This report concerns two new mutations in the sterol 27-hydroxylase gene in two patients with cerebrotendinous xanthomatosis (CTX). In a Surinam-Creole patient (patient A), a G deletion on position cDNA 546/547 in exon 3 led to a frameshift and the introduction of a premature termination codon. In a Dutch patient (patient B), a C→T transition at position 496 in exon 3 also led to a premature termination codon. Patient A was homozygous for the mutation, whereas patient B was compound heterozygous, a C→T transition also being found in exon 6 at position 1204. The two new mutations were confirmed by restriction analysis with the restriction enzymes FokI and MaeI, respectively. Received: 24 July 1996 / Revised: 9 August 1996  相似文献   

6.
β-thalassaemia is a major health problem in Egypt. It has been estimated that of the 1.5 million live births, 1000 children with β-thalassaemia major are born annually. Although the available treatment has increased the life expectancy of patients, it is still unsatisfactory and represents a significant drain on the country’s resources. National screening and prenatal diagnosis programmes can be provided in Egypt once the spectrum of β-thalassaemia mutations has been identified within the Egyptian population. We have examined 16 DNA samples with 21 β-thalassaemia mutations that remained unidentified in a study of 54 patients reported by Rady and colleagues in 1996. Using the polymerase chain reaction and single strand conformation analysis we identified the following changes: frameshift (FS) codon (CD) 8/9 (+G), 4 FS CD 29 (–G) and 2 novel mutations in exon I (15 CD 22 A-C and 1 FS CD 28 –C). In addition, a silent, probably polymorphic mutation, CD 17 G-A was present in all chromosomes. Received: 19 August 1996 / Revised: 21 September 1996  相似文献   

7.
Familial hypercholesterolemia (FH) is a common genetic disorder caused by mutations of the LDL-receptor gene and transmitted as a co-dominant trait. However, there are some forms of hypercholesterolemia which have a recessive type of transmission. We have identified a subject with the clinical phenotype of heterozygous FH whose parents had normal plasma lipid values, suggesting a recessive type of transmission. The analysis of the LDL-receptor gene revealed that the patient was heterozygous for a G>C transversion in exon 4, which results in a serine for cysteine substitution at position 88 (C88S) of the receptor protein. Since this novel mutation was not found in the proband's parents and non-paternity was excluded, we concluded that the patient was a carrier of a "de novo" mutation. Haplotype analysis of LDL-receptor locus indicated that this "de novo" mutation occurred in the paternal germ line. The C88S mutation is the likely cause of LDL-receptor defect as it was present in the proband's hypercholesterolemic son and was not found in 200 chromosomes of control subjects.  相似文献   

8.
Citrullinemia is an autosomal recessive disease caused by a genetic deficiency of argininosuccinate synthetase. In order to characterize mutations in Japanese patients with classical citrullinemia, RNA isolated from 10 unrelated patients was reverse-transcribed, and cDNA amplified by PCR was cloned and sequenced. The 10 mutations identified included 6 missense mutations (A118T, A192V, R272C, G280R, R304W, and R363L), 2 mutations associated with an absence of an exon 7 or exon 13, 1 mutation with a deletion of the first 7 bp in exon 16 (which might be caused by abnormal splicing), and 1 mutation with an insertion of 37 bp within exons 15 and 16 in cDNA. The insertion mutation and the five missense mutations (R304W being excluded) are new mutations described in the present paper. These are in addition to 14 mutations (9 missense mutations, 4 mutations associated with an absence of an exon in mRNA, and 1 splicing mutation) that we identified previously in mainly American patients with neonatal citrullinemia. Two of these 20 mutations, a deletion of exon 13 sequence and a 7-bp deletion in exon 16, were common to Japanese and American populations from different ethnic backgrounds; however, other mutations were unique to each population. Furthermore, the presence of a frequent mutation--the exon 7 deletion mutation in mRNA, which accounts for 10 of 23 affected alleles--was demonstrated in Japanese citrullinemia. This differs from the situation in the United States, where there was far greater heterogeneity of mutations.  相似文献   

9.
Cystathionine beta-synthase (CBS) deficiency is an autosomal recessive disorder characterized by homocystinuria and multisystem clinical disease. Patients responsive to pyridoxine usually have a milder clinical phenotype than do nonresponsive patients, and we studied the molecular pathology of this disorder in an attempt to understand the molecular basis of the clinical variation. We previously reported a T833C transition in exon 8 causing a substitution of threonine for isoleucine at codon 278 (I278T). By PCR amplification and sequencing of exon 8 from genomic DNA we have now detected the I278T mutation in 7 of 11 patients with in vivo pyridoxine responsiveness and in 0 of 27 pyridoxine-nonresponsive patients. Two pyridoxine-responsive patients are homozygous and five are heterozygous for I278T. We have now observed the I278T mutation in 41% (9 of 22) of the independent alleles in pyridoxine-responsive patients of varied ethnic backgrounds. In two of the compound heterozygotes we identified a novel mutation (G139R and E144K) in the other allele. The finding that the two patients who are homozygous for I278T have only ectopia lentis and mild bone demineralization suggests that this mutation is associated with both in vivo pyridoxine responsiveness and mild clinical disease. Compound heterozygous patients who have one copy of this missense mutation are likely to retain some degree of pyridoxine responsiveness.  相似文献   

10.
To elucidate genetic abnormalities in type I CD36 deficiency, we analyzed 28 Japanese subjects whose platelets and monocytes/macrophages lacked CD36 on their surface. We identified two novel mutations in the CD36 gene. One was a complex deletion/insertion mutation, in which 3 bp, GAG, were deleted at nucleotide (nt) 839-841, and 5 bp, AAAAC, were inserted at the same position (839-841del-->insAAAAC). Mutation 839-841del-->insAAAAC led to a frameshift and appearance of a premature stop codon; it was also accompanied with a marked reduction in the amount of CD36 mRNA. The other was a 12-bp deletion at nt 1438-1449 (1438-1449del) accompanied with or without skipping of exon 9 (nt 959-1028). Mutation 1438-1449del led to an inframe 4-amino-acid deletion, whereas exon 9 skipping led to a frameshift and the appearance of a premature stop codon. Expression assay revealed that both 1438-1449del and exon 9 skipping directly caused impairment of the surface expression of CD36. A survey of the five known mutations including 839-841del-->insAAAAC and 1438-1449del in type I CD36-deficient subjects demonstrated that the five mutations covered more than 90% of genetic defects among them and that the substitution of T for C at nt 478 (478C-->T) was the most common mutation with more than 50% frequency. However, none of the four subjects that possessed isoantibodies against CD36 had 478C-->T, suggesting that 478C-->T prevents the production of isoantibodies against CD36.  相似文献   

11.
Familial adenomatous polyposis (FAP) is a disease characterized by the presence of hundreds of adenomatous polyps in the colon and rectum which, if not treated, develop into colorectal cancer. FAP is an autosomal dominantly inherited disorder caused by mutation in the APC gene. The aim of this study was to search for germ-line mutations of the APC gene in unrelated FAP families from southern Spain. By direct sequencing of all APC gene exons, we found the mutation in 13 of 15 unrelated FAP families studied. We identified eight novel mutations: 707delA (exon6), 730_731delAG (exon7), 1787C-->G and 1946_1947insG (exon14), 2496delC, 2838_2839delAT, 2977A-->T, and 3224dupA (exon15). Two patients presented de novo germ-line mutations. Genotype-phenotype correlations for extraintestinal and extracolonic manifestations were studied. Intrafamilial phenotypic variability was observed in two families with mutations in exon/intron boundary, probably due to alternative splicing.  相似文献   

12.
Two new point mutations have been detected in the low density lipoprotein (LDL) receptor gene of a patient with a clinical diagnosis of homozygous familial hypercholesterolemia (FH). The patient is a compound heterozygote, in whom the mutant allele inherited from his English father has a single base substitution of A for G in exon 3, changing the codon for residue 80 in the mature protein from glutamic acid to lysine. The mutant allele inherited from his mother, who is of Irish origin, has a single base pair deletion in the codon for residue 743 in exon 15 that causes a frameshift and introduces a new stop codon in the adjacent position. The glu80 to lys mutation results in a transport-defective phenotype and a mature protein that migrates abnormally slowly on nonreduced SDS-PAGE, but normally under reducing conditions; this was confirmed by site-directed mutagenesis and expression in vitro. The deletion in exon 15 results in a null phenotype in which the putative truncated receptor protein cannot be detected in cultured skin fibroblasts and the amount of mRNA derived from the allele is reduced. The glu80 to lys mutation was found in a further five unrelated individuals in a sample of 200 FH patients from the London area and in 11 from a sample of 77 FH patients from Manchester. Haplotype analysis suggested that all the patients had inherited this allele from a common ancestor. The deletion in exon 15 was not found in the London sample, nor in any unrelated individuals in the Manchester sample.  相似文献   

13.
We examined 25 breast tumor samples for somatic mutations in exon 20 and exon 9 of PIK3CA gene in South Indian population. Genomic DNA was isolated and amplified for PIK3CA gene, followed by direct sequencing of purified polymerase chain reaction products. We identified PI3K3CA mutations in 5 of 25 (20%), including four of the mutations in p.H1047R and one in p.H1047L. Nucleotide base substitution A to G (c.3140A > G) and A to T (c.3140A > T) results in p.H1047R and p.H1047L mutation in exon 20 of PIK3CA gene. We did not observe any mutation in exon 9 of PIK3CA gene. Furthermore, we investigated the effect of mutations on protein structure and function by the combination of sequence and structure-based in silico prediction methods. This determined the underlying relationship between the mutation and its phenotypic effects. Next step, we complemented by molecular dynamics simulation analysis (30 ns) of native and mutant structures that measured the effect of mutation on protein structure. The obtained results support that the application of computational methods helps predict the biological significance of mutations.  相似文献   

14.
We have identified 16 different mutations of the low-density lipoprotein receptor (LDLR) gene in 25 unrelated Korean patients with heterozygous familial hypercholesterolemia (FH), including five novel mutations, C83Y, 661del17, 1705insCTAG, C675X, and 941-1G>A. The 1705insCTAG mutation in which the four 3 cent -terminal nucleotides of exon 11 are duplicated was found to prevent splicing of exon 11 and would therefore generate a truncated polypeptide. The in-frame 36-bp deletion (1591del36) in exon 11, which had been reported only in one Korean FH patient, was also found. We showed that this change affects transport of the LDL receptor from the endoplasmic reticulum to the cell surface. In addition, we found 8 mutations (-136C>T, E119K, E207K, E207X, F382L, R574Q, 1846-1G>A, and P664L) that had been described in other ethnic groups but not in Koreans, and 2 mutations (R94H and D200N) that had been described in Koreans as well as other ethnic groups. 5 mutations (1591del36, E119K, E207X, E207K, and P664L) were found more than once in the Korean FH samples. Identification of the novel and recurring LDLR mutations in Korean FH patients should facilitate prenatal and early diagnosis in families at high risk of FH.  相似文献   

15.
Mutation analysis at the phenylalanine hydroxylase (PAH) locus was undertaken in 56 Egyptian hyperphenylalaninemic patients. Selected screening for 11 known mutations and denaturing Gradient gel electrophoresis (DGGE) analysis of the entire coding sequence and exon/intron boundaries led to the identification of a new mutation (I224T), four previously described mutations, and several polymorphisms. Overall, 18 mutant alleles could thus be characterized. In contrast to the high mutation detection rate typical of the DGGE-based scanning approach, only 6 of 16 mutant alleles tested were identified. Since BH4 deficiency could not be excluded in any of these patients, the latter results may be explained by the occurrence of mutations affecting the genes controlling the synthesis and recycling of tetrahydrobiopterin: the cofactor of PAH. An alternative hypothesis is also discussed. Received: 18 October 1995 / Revised: 30 January 1996  相似文献   

16.
Hereditary coproporphyria (HCP) is an autosomal dominant disease characterized by a deficiency of coproporphyrinogen oxidase. To date, four mutations of the gene have been reported. We report here another mutation in two Japanese families with HCP, which was revealed by analysis of polymerase chain reaction (PCR)-amplified DNA fragments of the gene by a direct-sequencing method. A point mutation, G to A, was found in exon 4 of the gene at position 538 of the cDNA from the reported putative translation initiation codon ATG. This mutation results in a glycine to arginine substitution at amino acid 180. Two carriers in the family were successfully diagnosed by detecting the mutation using restriction analysis of the PCR products. Received: 23 April 1996 / Revised: 15 July 1996  相似文献   

17.
Alkaptonuria (AKU), a rare hereditary disorder of phenylalanine and tyrosine catabolism, was the first disease to be interpreted as an inborn error of metabolism. AKU patients are deficient for homogentisate 1,2 dioxygenase (HGO); this deficiency causes homogentisic aciduria, ochronosis, and arthritis. We cloned the human HGO gene and characterized two loss-of-function mutations, P230S and V300G, in the HGO gene in AKU patients. Here we report haplotype and mutational analysis of the HGO gene in 29 novel AKU chromosomes. We identified 12 novel mutations: 8 (E42A, W97G, D153G, S189I, I216T, R225H, F227S, and M368V) missense mutations that result in amino acid substitutions at positions conserved in HGO in different species, 1 (F10fs) frameshift mutation, 2 intronic mutations (IVS9-56G-->A, IVS9-17G-->A), and 1 splice-site mutation (IVS5+1G-->T). We also report characterization of five polymorphic sites in HGO and describe the haplotypic associations of alleles at these sites in normal and AKU chromosomes. One of these sites, HGO-3, is a variable dinucleotide repeat; IVS2+35T/A, IVS5+25T/C, and IVS6+46C/A are intronic sites at which single nucleotide substitutions (dimorphisms) have been detected; and c407T/A is a relatively frequent nucleotide substitution in the coding sequence, exon 4, resulting in an amino acid change (H80Q). These data provide insight into the origin and evolution of the various AKU alleles.  相似文献   

18.
Cystic fibrosis (CF) is one of the most common severe autosomal recessive disorders in Caucasian populations. A mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene causes this disorder. Reported here is the first analysis of CF mutations in the Maine population. We have screened 263 CF chromosomes for 16 previously reported mutations. Analysis of DNA from 124 apparently unrelated CF patients and 15 obligate carrier parents (whose partner and affected child were unavailable for study) resulted in the identification of 91% of the CF alleles and complete genotyping of 85% of the patients. The frequencies (%) of these mutations in the Maine population are ΔF508 (75% of the chromosomes), G85E (0.76), R117H (0.76), I148T (1.1), 621+1G→T (1.1), 711+1G→T (3.0), A455E (1.1), 1717-1G→A (1.1), G542X (1.9), G551D (1.9), R560T (0.76), Y1092X (0.38), W1282X (0.38), and N1303K (1.5). The exon 10 mutation, ΔI507, and the exon 11 mutation, R553X, were not observed. Surprisingly, whereas only 5% of the alleles remain unidentified in the non-French population, the unidentified proportion in the French population is 19%. CF testing for the Maine population will be further improved as the as yet unidentified CF mutations in this population are characterized. Received: 17 January 1996 / Revised: 28 February 1996  相似文献   

19.
We have previously reported two common lipoprotein lipase (LPL) gene mutations underlying LPL deficiency in the majority of 37 French Canadians (Monsalve et al., 1990. J. Clin. Invest. 86: 728-734; Ma et al., 1991. N. Engl. J. Med. 324: 1761-1766). By examining the 10 coding exons of the LPL gene in another French Canadian patient, we have identified a third missense mutation that is found in two of the three remaining patients for whom mutations are undefined. This is a G to A transition in exon 6 that results in a substitution of asparagine for aspartic acid at residue 250. Using in vitro site-directed mutagenesis, we have confirmed that this mutation causes a catalytically defective LPL protein. In addition, the Asp250----Asn mutation was also found on the same haplotype in an LPL-deficient patient of Dutch ancestry, suggesting a common origin. This mutation alters a TaqI restriction site in exon 6 and will allow for rapid screening in patients with LPL deficiency.  相似文献   

20.
Inherited mutation of hypoxanthine guanine phosphoribosyltransferase, (HPRT) gives rise to Lesch-Nyhan syndrome or HPRT-related gout. We have identified a number of HPRT mutations in patients manifesting different clinical phenotypes, by analyzing all nine exons of the HPRT gene (HPRT1) from genomic DNA and reverse transcribed mRNA using the PCR technique coupled with direct sequencing. Recently, we detected two novel mutations: a single nucleotide substitution (430C > T) resulting in a nonsense mutation Q144X, and a deletion of HPRT1 exon 1 expressing no mRNA of HPRT. Furthermore, we summarized the spectrum of 56 Japanese HPRT mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号