首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IL-10 is well known to be a potent inhibitor of the synthesis of proinflammatory cytokines, but noninflammatory hemopoietic cells also express IL-10Rs. Here we show that IL-10 directly affects progenitor myeloid cells by protecting them from death following the removal of growth factors. Murine factor-dependent cell progenitors cultured in the absence of growth factors were 43 +/- 1% apoptotic after 12 h. Addition of IL-10 at a concentration as low as 100 pg/ml significantly reduced the apoptotic population to 32 +/- 3%. At 10 ng/ml, IL-10 caused a 4-fold reduction in the apoptotic population (11 +/- 1%). The anti-apoptotic activity of IL-10 was significantly inhibited with a neutralizing IL-10R Ab. Factor-dependent cell progenitor promyeloid cells expressed functional IL-10Rs, as assessed by precipitation of a 110-kDa protein with an Ab to the IL-10R and by the ability of IL-10 to activate Jak1 and Tyk2 and to phosphorylate tyrosine 705 on Stat-3. IL-10 increased tyrosyl phosphorylation of insulin receptor substrate-2 and stimulated the enzymatic activity of both phosphatidylinositol 3'-kinase and Akt. The anti-apoptotic activity of IL-10 was blocked by inhibition of phosphatidylinositol 3'-kinase. Wortmannin and LY294002 also totally inhibited activation of extracellular signal-related kinase (ERK)1/2 by IL-10. Direct inhibition of ERK1/2 with the mitogen-activated protein kinase/ERK kinase inhibitor PD98059 partially, but significantly, impaired the anti-apoptotic activity of IL-10. These data establish that activation of the IL-10R promotes survival of progenitor myeloid cells. This survival-promoting activity is totally due to IL-10 stimulating the insulin receptor substrate-2/PI 3-kinase/Akt pathway, which increases the anti-apoptotic activity of ERK1/2.  相似文献   

2.
Invariant NKT (iNKT) cells modulate innate and adaptive immune responses through activation of myeloid dendritic cells and macrophages and via enhanced clonogenicity, differentiation, and egress of their shared myeloid progenitors. Because these same progenitors give rise to osteoclasts (OCs), which also mediate the egress of hematopoietic progenitors and orchestrate bone remodeling, we hypothesized that iNKT cells would extend their myeloid cell regulatory role to the development and function of OCs. In this study, we report that selective activation of iNKT cells by α-galactosylceramide causes myeloid cell egress, enhances OC progenitor and precursor development, modifies the intramedullary kinetics of mature OCs, and enhances their resorptive activity. OC progenitor activity is positively regulated by TNF-α and negatively regulated by IFN-γ, but is IL-4 and IL-17 independent. These data demonstrate a novel role of iNKT cells that couples osteoclastogenesis with myeloid cell egress in conditions of immune activation.  相似文献   

3.
The growth and survival of committed hematopoietic progenitors is dependent upon cytokine signaling. However, serum is also required for optimal growth of these progenitors in culture ex vivo. Here we report that serum withdrawal leads to myeloid progenitor cell apoptosis. Although serum deprivation-induced cell death has many hallmarks typical of apoptosis, these cell deaths were not inhibited by hemopoietins, survival factors such as IGF-I, or treatment with a broad-spectrum caspase inhibitor. Rather, apoptosis due to serum withdrawal was associated with damage to mitochondria. Surprisingly the serum factor required for myeloid cell survival was identified as iron, and loss of iron led to marked reductions in ATP production. Furthermore, supplementing serum-deprived myeloid cells with bound or free iron promoted cell survival and prevented mitochondrial damage. Therefore, serum suppresses hematopoietic cell apoptosis by providing an obligate source of iron and iron homeostasis is critical for proper myeloid cell metabolism and survival.  相似文献   

4.
The mechanism of cell death caused by cytokine deprivation remains largely unknown. FL5.12 cells (a murine prolymphocytic cell line), following interleukin-3 (IL-3) withdrawal, undergo a decrease in intracellular glutathione (GSH) that precedes the onset of apoptosis. In the present study, the induction of apoptosis following IL-3 withdrawal or GSH depletion with DL-buthionine-[S,R,]-sulfoximine (BSO) was examined. Both conditions caused time-dependent increases in phosphatidylserine externalization, acridine orange and ethidium bromide staining, decreases in mitochondrial membrane potential, processing and activation of caspase-3 and proteolysis of the endogenous caspase substrate poly(adenosine diphosphate ribose)polymerase (PARP). Apoptosis induced by IL-3 deprivation but not BSO also caused lamin B1 cleavage, suggesting activation of caspase-6. Despite a more profound depletion of GSH after BSO than withdrawal of IL-3, the extent of apoptosis was somewhat lower. Benzyloxycarbonyl-Val-Ala-Asp(OMe)fluoromethyl ketone (z-VAD.fmk) blocked this caspase activity and prevented cell death after BSO exposure but not after IL-3 deprivation. Following IL-3 withdrawal, the caspase inhibitors z-VAD.fmk and boc-asp(OMe)fluoromethylketone (boc-asp.fmk) prevented the cleavage and activation of caspase-3, the breakdown of lamin B1 and partially mitigated PARP degradation. However, the externalization of phosphatidylserine, the fall in mitochondrial membrane potential and subsequent apoptotic cell death still occurred. These results suggest that IL-3 withdrawal may mediate cell death by a mechanism independent of both caspase activation and the accompanying loss of GSH.  相似文献   

5.
We studied monocytic differentiation of primary mouse progenitor cells to understand molecular mechanisms of differentiation. We found a tightly controlled non-apoptotic activation of caspase-3 that correlated with differentiation. Although caspase activity was already detected during monocytic differentiation, a caspase-3 target has not been identified yet. We show that hematopoietic progenitor kinase 1 (HPK1) is processed towards its N- and C-terminal fragments during monocytic differentiation. While HPK1 is an immunoreceptor-proximal kinase in T and B cells, its role in myeloid cells is elusive. Here, we show that the N-terminal cleavage product, HPK1-N, comprising the kinase domain, confers progenitor cell survival independent of the growth factor IL-3. Furthermore, HPK1-N causes differentiation of progenitor cells towards the monocytic lineage. In contrast to full-length kinase, HPK1-N is constitutively active causing sustained JNK activation, Bad phosphorylation and survival. Blocking of caspase activity during differentiation of primary mouse progenitor cells leads to reduced HPK1-N levels, suppressed JNK activity and attenuated monocytic differentiation. Our work explains growth factor-independent survival during monocytic differentiation by caspase-mediated processing of HPK1 towards HPK1-N.  相似文献   

6.
7.
Apoptosis plays an important role in red blood cell development, notably by regulating the fate of early erythroid progenitors. We show here that, by contrast, mature erythroblasts are resistant to apoptosis. Treatment of these cells with several apoptosis-inducing agents failed to trigger caspase activation and oligonucleosomal DNA fragmentation. Interestingly, we find that cytochrome c levels are dramatically reduced even though the cells contain mitochondria. Supplementation of cytosolic extracts from mature erythroblasts with cytochrome c, however, did not rescue caspase activation. This was not due to the presence of inhibitors of apoptosis, as these proteins were also missing in these cells. We also show that cytochrome c depletion is a normal event during erythroblast differentiation, which follows transient, developmentally induced caspase activation and correlates with the loss of response to cytokine withdrawal or drug-induced apoptosis. Our data therefore suggest that erythroblasts acquire resistance to apoptosis during maturation through the developmentally induced depletion of cytochrome c and other crucial regulators of the apoptotic machinery.  相似文献   

8.
The effect of IL-3 on the B lymphoid potential of human hemopoietic stem cells is controversial. Murine studies suggest that B cell differentiation from uncommitted progenitors is completely prevented after short-term exposure to IL-3. We studied B lymphopoiesis after IL-3 stimulation of uncommitted human CD34+CD38- cells, using the stromal cell line S17 to assay the B lymphoid potential of stimulated cells. In contrast to the murine studies, production of CD19+ B cells from human CD34+CD38- cells was significantly increased by a 3-day exposure to IL-3 (p < 0.001). IL-3, however, did not increase B lymphopoiesis from more mature progenitors (CD34+CD38+ cells) or from committed CD34-CD19+ B cells. B cell production was increased whether CD34+CD38- cells were stimulated with IL-3 during cocultivation on S17 stroma, on fibronectin, or in suspension. IL-3Ralpha expression was studied in CD34+ populations by RT-PCR and FACS. High IL-3Ralpha protein expression was largely restricted to myeloid progenitors. CD34+CD38- cells had low to undetectable levels of IL-3Ralpha by FACS. IL-3-responsive B lymphopoiesis was specifically found in CD34+ cells with low or undetectable IL-3Ralpha protein expression. IL-3 acted directly on progenitor cells; single cell analysis showed that short-term exposure of CD34+CD38- cells to IL-3 increased the subsequent cloning efficiency of B lymphoid and B lymphomyeloid progenitors. We conclude that short-term exposure to IL-3 significantly increases human B cell production by inducing proliferation and/or maintaining the survival of primitive human progenitors with B lymphoid potential.  相似文献   

9.
A C Perkins  S Cory 《The EMBO journal》1993,12(10):3835-3846
The murine myelomonocytic cell line WEHI-3B exhibits ectopic expression of the genes encoding the homeobox protein, Hox-2.4, and the myeloid growth factor, interleukin-3 (IL-3). We showed previously that concomitant expression of IL-3 and Hox-2.4 in bone marrow cells induced the development of transplantable growth factor-independent tumours resembling the WEHI-3B tumour. We have now investigated the effect of enforced expression of Hox-2.4 alone. Bone marrow cells were infected with Hox-2.4 retrovirus and then either cultured in agar or transplanted into irradiated mice. In vitro, colonies derived from virus-infected cells readily yielded IL-3-dependent, non-tumorigenic cell lines of the myelomonocytic, megakaryocytic and mast cell lineages. Surprisingly, both the establishment and maintenance of these lines required very high concentrations of IL-3 and reduced levels promoted differentiation. Transplanted mice analysed after 3 months appeared normal but their spleen and bone marrow contained abundant provirus-bearing progenitor cells, from which IL-3-dependent long-term cell lines could readily be established in vitro. Four of 18 animals monitored for up to 12 months eventually developed clonal leukaemia, associated in three cases with IL-3 production. Thus ectopic expression of Hox-2.4 enhances self-renewal of immature myeloid progenitors and progression to a fully malignant state is favoured by somatic mutations conferring autocrine production of IL-3.  相似文献   

10.
In mammals, apoptotic protease-activating factor 1 (Apaf-1), cytochrome c, and dATP activate caspase-9, which initiates the postmitochondrial-mediated caspase cascade by proteolytic cleavage/activation of effector caspases to form active approximately 60-kDa heterotetramers. We now demonstrate that activation of caspases either in apoptotic cells or following dATP activation of cell lysates results in the formation of two large but different sized protein complexes, the "aposome" and the "microaposome". Surprisingly, most of the DEVDase activity in the lysate was present in the aposome and microaposome complexes with only small amounts of active caspase-3 present as its free approximately 60-kDa heterotetramer. The larger aposome complex (M(r) = approximately 700,000) contained Apaf-1 and processed caspase-9, -3, and -7. The smaller microaposome complex (M(r) = approximately 200,000-300,000) contained active caspase-3 and -7 but little if any Apaf-1 or active caspase-9. Lysates isolated from control THP.1 cells, prior to caspase activation, showed striking differences in the distribution of key apoptotic proteins. Apaf-1 and procaspase-7 may be functionally complexed as they eluted as an approximately 200-300-kDa complex, which did not have caspase cleavage (DEVDase) activity. Procaspase-3 and -9 were present as separate and smaller 60-90-kDa (dimer) complexes. During caspase activation, Apaf-1, caspase-9, and the effector caspases redistributed and formed the aposome. This resulted in the processing of the effector caspases, which were then released, possibly bound to other proteins, to form the microaposome complex.  相似文献   

11.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) activates a broad range of myeloid cells through binding to high affinity surface membrane receptors. The effects of this hematopoietin are dependent upon the differentiation status of the myeloid cell and range from proliferation of early myeloid progenitor cells to activation of neutrophil and monocyte function. In addition, many of the biological effects of GM-CSF are shared with interleukin-3 (IL-3), a distantly related lymphokine. In this study, we have characterized the GM-CSF receptor of myeloid cells at various stages of differentiation by comparing the binding characteristics and surface regulation of this receptor in early versus late myeloid cells. Scatchard analysis revealed a single class of high affinity receptors on normal neutrophils, monocytes, and myeloblasts from patients with acute myeloid leukemia. Neutrophils expressed significantly higher numbers of receptors, with an approximately 2-fold lower affinity, when compared with other myeloid cells. Two different patterns of GM-CSF receptor regulation and binding were observed. In the first pattern, the GM-CSF receptor of neutrophils was rapidly down-regulated by GM-CSF itself, by phorbol myristate acetate (PMA), and by the calcium ionophore A23187, and it was not competed for by IL-3 (class I receptor). In contrast to the neutrophil receptor, the GM-CSF receptor of the myeloblast demonstrated resistance to the down-regulatory effects of GM-CSF itself, PMA, and A23187, and it was completely competed for by IL-3 (class II receptor). In some cases of acute myeloid leukemia and monocytes, a mixed pattern of partial PMA responsiveness and partial competition by unlabeled IL-3 was observed, suggesting the coexpression of both class I and II receptors in these cells. In these cells, after down-regulation of the class I receptor by PMA, the remaining receptors were shown to be completely cross-competed for by IL-3, further supporting the hypothesis that these cells have a mixture of class I and II receptors. Chemical cross-linking of radiolabeled GM-CSF to myeloid cells revealed the labeling of three proteins (156, 126, and 82 kDa) which were identical in cells expressing either class I or II binding sites. These data show that there are differentiation-associated differences in the regulation of the GM-CSF receptor which may have important physiological consequences.  相似文献   

12.
Curative properties of some medicinal plants such as the Feijoa sellowiana Bert. (Myrtaceae), have been often claimed, although the corresponding molecular mechanism(s) remain elusive. We report here that the Feijoa acetonic extract exerts anti-cancer activities on solid and hematological cancer cells. Feijoa extract did not show toxic effects on normal myeloid progenitors thus displaying a tumor-selective activity. In the Feijoa acetonic extract, fractionation and subsequent purification and analyses identified Flavone as the active component. Flavone induces apoptosis which is accompanied by caspase activation and p16, p21 and TRAIL over-expression in human myeloid leukemia cells. Use of ex vivo myeloid leukemia patients blasts confirms that both the full acetonic Feijoa extract and its derived Flavone are able to induce apoptosis. In both cell lines and myeloid leukemia patients blasts the apoptotic activity of Feijoa extract and Flavone is accompanied by increase of histone and non-histone acetylation levels and by HDAC inhibition. Our findings show for the first time that the Feijoa apoptotic active principle is the Flavone and that this activity correlates with the induction of HDAC inhibition, supporting the hypothesis of its epigenetic pro-apoptotic regulation in cancer systems.  相似文献   

13.
The interleukin 4 (IL-4) receptor was purified from the gibbon T cell line MLA 144. These cells were found to express high numbers of human IL-4-binding proteins (5000-6000 sites/cell) with an affinity constant (Kd) similar to that measured in human cell lines (Kd = 40-70 pM). Affinity cross-linking of 125I-IL-4 to human cell lines and MLA 144 cells demonstrated the labeling of three proteins of approximately 130, 75, and 65 kDa. Human IL-4-binding sites were solubilized from MLA 144 cells using Triton X-100 and then purified by carboxymethyl chromatography, which removed 50% of the protein without loss of IL-4-binding activity. Then sequential affinity purification over wheat germ agglutinin and a single IL-4 Affi-Gel 10 column resulted in a final 8000-fold purification of the IL-4 receptor. When analyzed on a silver-stained sodium dodecyl sulfate-polyacrylamide gel, the purified receptor migrated as a single molecular species of 130 +/- 5 kDa. Identification of the 130-kDa protein as the IL-4 receptor was demonstrated by cross-linking experiments and specific binding of 125I-IL-4 to nitrocellulose membranes after electrophoretic transfer of the purified receptor on sodium dodecyl sulfate-polyacrylamide gel.  相似文献   

14.
We previously reported that Schwann cells undergo apoptosis after serum withdrawal. Insulin-like growth factor-I, via phosphatidylinositol-3 kinase, inhibits caspase activation and rescues Schwann cells from serum withdrawal-induced apoptosis. In this study, we examined the role of c-jun N-terminal protein kinase (JNK) in Schwann cell apoptosis induced by serum withdrawal. Activation of both JNK1 and JNK2 was detected 1 h after serum withdrawal with the maximal level detected at 2 h. A dominant negative JNK mutant, JNK (APF), blocked JNK activation induced by serum withdrawal and Schwann cell apoptosis, suggesting JNK activation participates in Schwann cell apoptosis. Serum withdrawal-induced JNK activity was caspase dependent and inhibited by a caspase 3 inhibitor, Ac-DEVD-CHO. Because insulin-like growth factor-I and Bcl-X(L) are both Schwann cell survival factors, we tested their effects on JNK activation during apoptosis. Insulin-like growth factor-I treatment decreased both JNK1 and JNK2 activity induced by serum withdrawal. LY294002, a phosphatidylinositol-3 kinase inhibitor, blocked insulin-like growth factor-I inhibition on JNK activation, suggesting that phosphatidylinositol-3 kinase mediates the effects of insulin-like growth factor-I. Overexpression of Bcl-X(L) also resulted in less Schwann cell death and inhibition of JNK activation after serum withdrawal. Collectively, these results suggest JNK activation is involved in Schwann cell apoptosis induced by serum withdrawal. Insulin-like growth factor-I and Bcl family proteins rescue Schwann cells, at least in part, by inhibition of JNK activity.  相似文献   

15.
16.
To investigate the behavior of nuclear proteins in apoptotic cells, we examined the changes in nucleolin and proteins of the nucleolar organizing region during apoptosis in human osteoblastic cell lines, Saos-2 and MG63. Apoptosis was induced by treatment of these cells with okadaic acid. Proteins prepared from apoptotic cells were subjected to Western blot analysis and a modified Western blot method using silver nitrate. The anti-nucleolin antibody recognized the 110-kDa band and the staining intensity of this band decreased in the proteins prepared from the okadaic acid-treated apoptotic cells. The additional band of an 80-kDa was also detected in the proteins prepared from the apoptotic cells. Two major silver nitrate-stained bands, 110-kDa and 37-kDa, were detected among the proteins obtained from control cells. Like the Western blot analysis, the intensity of the 110-kDa silver nitrate-staining band decreased; an 80-kDa band appeared and its staining intensity increased in the lysate from the okadaic acid-treated cells. The signal intensity of the 37-kDa protein did not change in the sample from the apoptotic cells. In a cell-free apoptotic system, the 80-kDa protein was also detected and the amount of the 110-kDa protein decreased in the extract of Saos-2 cell nuclei incubated with apoptotic cytosol. The change in nucleolin in Saos-2 cells induced to undergo apoptosis was examined by an immunocytochemical procedure using the anti-nucleolin antibody and Hoechst 33342. Nucleolin was visible as dots in nucleoli in the control cells; however, it was not detected in the cells undergoing apoptosis. The dual-exposure view of Hoechst 33342 and anti-nucleolin staining cells confirmed that nucleolin had disappeared from the apoptotic nuclei of Saos-2.  相似文献   

17.
The multiple specialized cell types of the hematopoietic system originate from differentiation of hematopoietic stem cells and progenitors (HSPC), which can generate both lymphoid and myeloid lineages. The myeloid lineage is preferentially maintained during ageing, but the mechanisms that contribute to this process are incompletely understood. Here, we studied the roles of Wnt5a and Wnt5b, ligands that have previously been linked to hematopoietic stem cell ageing and that are abundantly expressed by both hematopoietic progenitors and bone-marrow derived niche cells. Whereas Wnt5a had no major effects on primitive cell differentiation, Wnt5b had profound and divergent effects on cytokine-induced myeloid differentiation. Remarkably, while IL-3-mediated myeloid differentiation was largely repressed by Wnt5b, GM-CSF-induced myeloid differentiation was augmented. Furthermore, in the presence of IL-3, Wnt5b enhanced HSPC self-renewal, whereas in the presence of GM-CSF, Wnt5b accelerated differentiation, leading to progenitor cell exhaustion. Our results highlight discrepancies between IL-3 and GM-CSF, and reveal novel effects of Wnt5b on the hematopoietic system.  相似文献   

18.
We previously found that IL-2 rapidly induced protein phosphorylation of a 67-kDa (pp67) and four 63-kDa (pp63s) cellular proteins in various T cells. Here, we show that the IL-2-stimulated phosphorylation is mediated by the IL-2R beta-chain composed of the high affinity IL-2R, and induced by activation of Ca2+/phospholipid-dependent protein kinase C (PKC). The IL-2-stimulated phosphorylation was always observed in various T cell lines bearing high affinity IL-2R, but never observed in cells which express only low affinity IL-2R consisted of alpha-chain alone. When the expression of high affinity IL-2R was modified by anti-IL-2R mAb for reducing the affinity to 8- to 10-fold lower without affecting the sites of IL-2R, the effective dose of IL-2 on phosphorylation of pp67 increased 8 to 10 times. When cells were treated with pronase, approximately 95% sites of low affinity IL-2R were selectively decreased, but the IL-2 dose dependency for pp67 phosphorylation was little affected. These data exactly suggest that protein phosphorylation in response to IL-2 such as pp67 and pp63s, is mediated by high affinity but not low affinity IL-2R. Furthermore, the IL-2-stimulated phosphorylation of these proteins was also observed in MLA 144 cells which express only low affinity IL-2R consisting of beta-chain alone. In addition, various phorbol esters and tumor promoters, which activate PKC, were also demonstrated to induce the phosphorylation of a pp67 and pp63s in these T cell lines. Therefore, the present study suggests that IL-2/IL-2R beta-chain interaction triggers the phosphorylation of pp67 and pp63s, where the PKC may have an important role.  相似文献   

19.
BACKGROUND: Procaspase 3 is a constitutive proenzyme that is activated by cleavage during apoptosis. The resulting enzyme is able to cleave several target proteins after the second aspartate of a DEVD sequence common to all the substrates of caspases 3 and 7 (DEVDase). Because active caspase 3 is a common effector in several apoptotic pathways, it may be a good marker to detect (pre-)apoptotic cells by flow cytometry (FCM). Materials and Methods Apoptosis was induced in U937 or bone marrow mononuclear cells by daunorubicin (DNR), idarubicin (IDA), or camptothecin (CAM). Viable and apoptotic cells were sorted by FCM on the basis of either fluorescein isothiocyante (FITC)-annexin V binding or DiOC6(3) accumulation. DEVDase activity was measured in sorted populations by spectrofluorometry. Cleaved caspase 3 was labeled in situ with phycoerythrin (PE)-conjugated anti-activated caspase 3 antibodies and analyzed by FCM. RESULTS: DEVDase activity was detected in sorted viable CAM- and DNR-treated U937 cells, demonstrating that a partial caspase activation occurred earlier than phosphatidyl-serine exposure and mitochondrial membrane potential dissipation. The presence of a low amount of active caspase 3 in the treated viable cells was confirmed in situ with PE-conjugated anti-active caspase 3 antibodies. The same antibody was used in combination with FITC-annexin V and CD45-PC5 to study caspase 3 activation in acute leukemia blast cells after in vitro DNR and IDA treatment. Both anthracyclines induced a caspase 3-dependent apoptosis that was more efficient in blast cells than in contaminating lymphocytes. CONCLUSIONS: These results demonstrate that anti-active caspase 3 labeling can be an alternative to fluorogenic substrates to efficiently detect early apoptosis by FCM in heterogeneous samples. They also confirm that anthracyclines induce blast cell apoptosis by a caspase 3-dependent pathway.  相似文献   

20.
Previous short-term studies have correlated an increase in the phosphorylation of the 20-kDa light chain of myosin II (MLC20) with blebbing in apoptotic cells. We have found that this increase in MLC20 phosphorylation is rapidly followed by MLC20 dephosphorylation when cells are stimulated with various apoptotic agents. MLC20 dephosphorylation is not a consequence of apoptosis because MLC20 dephosphorylation precedes caspase activation when cells are stimulated with a proapoptotic agent or when myosin light chain kinase (MLCK) is inhibited pharmacologically or by microinjecting an inhibitory antibody to MLCK. Moreover, blocking caspase activation increased cell survival when MLCK is inhibited or when cells are treated with tumor necrosis factor alpha. Depolymerizing actin filaments or detaching cells, processes that destabilize the cytoskeleton, or inhibiting myosin ATPase activity also resulted in MLC20 dephosphorylation and cell death. In vivo experiments showed that inhibiting MLCK increased the number of apoptotic cells and retarded the growth of mammary cancer cells in mice. Thus, MLC20 dephosphorylation occurs during physiological cell death and prolonged MLC20 dephosphorylation can trigger apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号