共查询到20条相似文献,搜索用时 0 毫秒
1.
Shen Tian Jinxin Zang Yaping Pan Jikai Liu Zhenhong Yuan Yongjie Yan Xiushan Yang 《Frontiers of Biology in China》2008,3(2):165-169
Candida shehatae gene xyl1 and Pichia stipitis gene xyl2, encoding xylose reductase (XR) and xylitol dehydrogenase (XD) respectively, were amplified by PCR. The genes xyl1 and xyl2 were placed under the control of promoter GAL in vector pYES2 to construct the recombinant expression vector pYES2-P12. Subsequently the vector pYES2-P12 was transformed
into S. cerevisiae YS58 by LiAc to produce the recombinant yeast YS58-12. The alcoholic ferment indicated that the recombinant yeast YS58-12
could convert xylose to ethanol with the xylose consumption rate of 81.3%.
__________
Translated from Microbiology, 2006, 33(3): 104–108 [译自:微生物学通报] 相似文献
2.
Simultaneous isomerisation and fermentation (SIF) of xylose and simultaneous isomerisation and cofermentation (SICF) of glucose-xylose
mixture was carried out by the yeastSaccharomyces cerevisiae in the presence of a compatible xylose isomerase. The enzyme converted xylose to xylulose andS. cerevisiae fermented xylulose, along with glucose, to ethanol at pH 5.0 and 30°C. This compatible xylose isomerase fromCandida boidinii, having an optimum pH and temperature range of 4.5–5.0 and 30–50°C respectively, was partially purified and immobilized on
an inexpensive, inert and easily available support, hen egg shell. An immobilized xylose isomerase loading of 4.5 IU/(g initial
xylose) was optimum for SIF of xylose as well as SICF of glucose-xylose mixture to ethanol byS. cerevisiae. The SICF of 30 g/L glucose and 70 g xylose/L gave an ethanol concentration of 22.3 g/L with yield of 0.36 g/(g sugar consumed)
and xylose conversion efficiency of 42.8%. 相似文献
3.
Abdelghani El Asli Eckhard Boles Cornelis P. Hollenberg Mohamed Errami 《Biotechnology letters》2002,24(13):1101-1105
A xylose-fermenting bacterium of the family Enterobacteriaceae was isolated from olive mill wastewater. It converted xylose to ethanol with a yield of 0.19 g ethanol g–1 xylose. Although phenolic compounds normally inhibit pentose-utilizing microorganisms, this isolate was tolerant to phenol. Both the yield and the productivity of xylose fermentation decreased by 30% when phenol was added at a final concentration of 0.8 g phenol l–1. Xylose (23 g l–1) was totally fermented to ethanol (4.3 g l–1) within 48 h in the absence of phenol; however, in the presence of 0.8 g phenol l–1, only 3.3 g ethanol l–1 was obtained from the same starting concentration of xylose after 70 h. 相似文献
4.
为了使酿酒酵母较好地利用木糖产生乙醇,将来自Thermus thermophilus的木糖异构酶基因XYLA和酿酒酵母自身的木酮糖激酶基因XKS1,构建到酵母表达载体pESC-LEU中,导入酿酒酵母YPH499中,同时成功表达了两种酶基因。该菌以木糖为唯一碳源进行限氧发酵,木糖的利用率为9.64%,为宿主菌的4.17倍,产生2.22 mmol.L-1的乙醇。同时初步探讨了两种酶基因的表达量对酿酒酵母发酵木糖生成乙醇的影响。木糖异构酶对木糖的利用起关键性的作用,木酮糖激酶的过量表达不利于乙醇生成。 相似文献
5.
6.
木糖是木质纤维素原料水解液中的第二大组分,木糖和葡萄糖的充分利用是有经济性地生产纤维素乙醇的关键。通过基因克隆手段构建了一株可以高效利用木糖产乙醇的重组运动发酵单胞菌Zymomonas mobilis TSH01,并进行了利用单糖溶液、混合糖溶液及玉米秸秆水解液发酵产乙醇效率的研究。结果表明,利用单一葡萄糖或单一木糖溶液发酵时,当糖浓度为8%、发酵72 h后,糖利用率分别为100%和98.9%,乙醇代谢收率分别为87.8%和78.3%;利用8%葡萄糖和8%木糖的混合溶液发酵时,72 h后,葡萄糖和木糖的利用率分别为98.5%和97.4%,乙醇代谢收率为94.9%。利用含3.2%葡萄糖和3.5%木糖的玉米秸秆水解液发酵72 h后,葡萄糖和木糖的利用率分别为100%和92.3%,乙醇代谢收率为91.5%。此外,磷酸二氢钾对发酵过程中木糖利用率以及乙醇收率的提高有明显促进作用。 相似文献
7.
Gárdonyi M Jeppsson M Lidén G Gorwa-Grauslund MF Hahn-Hägerdal B 《Biotechnology and bioengineering》2003,82(7):818-824
Saccharomyces cerevisiae TMB3001 has previously been engineered to utilize xylose by integrating the genes coding for xylose reductase (XR) and xylitol dehydrogenase (XDH) and overexpressing the native xylulokinase (XK) gene. The resulting strain is able to metabolize xylose, but its xylose utilization rate is low compared to that of natural xylose utilizing yeasts, like Pichia stipitis or Candida shehatae. One difference between S. cerevisiae and the latter species is that these possess specific xylose transporters, while S. cerevisiae takes up xylose via the high-affinity hexose transporters. For this reason, in part, it has been suggested that xylose transport in S. cerevisiae may limit the xylose utilization.We investigated the control exercised by the transport over the specific xylose utilization rate in two recombinant S. cerevisiae strains, one with low XR activity, TMB3001, and one with high XR activity, TMB3260. The strains were grown in aerobic sugar-limited chemostat and the specific xylose uptake rate was modulated by changing the xylose concentration in the feed, which allowed determination of the flux response coefficients. Separate measurements of xylose transport kinetics allowed determination of the elasticity coefficients of transport with respect to extracellular xylose concentration. The flux control coefficient, C(J) (transp), for the xylose transport was calculated from the response and elasticity coefficients. The value of C(J) (transp) for both strains was found to be < 0.1 at extracellular xylose concentrations > 7.5 g L(-1). However, for strain TMB3260 the flux control coefficient was higher than 0.5 at xylose concentrations < 0.6 g L(-1), while C(J) (transp) stayed below 0.2 for strain TMB3001 irrespective of xylose concentration. 相似文献
8.
Mathematical modelling of ethanol production from glucose/xylose mixtures by recombinant Zymomonas mobilis 总被引:1,自引:0,他引:1
A model has been developed for the fermentation of mixtures of glucose and xylose by recombinant Zymomonas mobilis strain ZM4(pZB5), containing additional genes for xylose assimilation and metabolism. A two-substrate model based on substrate limitation, substrate inhibition, and product (ethanol) inhibition was evaluated, and experimental data was compared with model simulations using a Microsoft EXCEL based program and methods of statistical analysis for error minimization. From the results it was established that the model provides good predictions of experimental batch culture data for 25/25, 50/50, and 65/65 g l–1 glucose/xylose media. 相似文献
9.
以树干毕赤酵母和酿酒酵母为发酵菌株,酸性蒸汽爆破玉米秸秆预水解液和纯糖模拟液为C源,采用固定化酵母细胞的方法,研究了酸爆玉米秸秆预水解液初始pH、N源种类及其浓度、3种发酵模式对树干毕赤酵母戊糖发酵的影响。结果表明:玉米秸秆预水解液适合发酵的初始pH范围为6.0~7.0;1.0 g/L的(NH4)2SO4作为N源,在40 g/L葡萄糖和25 g/L木糖培养基中发酵24 h,糖利用率达到99.47%,乙醇质量浓度为24.72 g/L,优于尿素和蛋白胨作为N源;3种模式的发酵体系中,以游离树干毕赤酵母和固定化酿酒酵母发酵性能最好,糖利用率和乙醇得率分别为99.43%和96.39%。 相似文献
10.
Candida shehatae ATCC 22984, a xylose-fermenting yeast, showed an ability to produce ethanol in both glucose and xylose medium. Maximum ethanol produced by the yeast was 48.8?g/L in xylose and 52.6?g/L in glucose medium with ethanol yields that varied between 0.3 and 0.4?g/g depended on initial sugar concentrations. Xylitol was a coproduct of ethanol production using xylose as substrate, and glycerol was detected in both glucose and xylose media. Kinetic model equations indicated that growth, substrate consumption, and product formation of C. shehatae were governed by substrate limitation and inhibition by ethanol. The model suggested that cell growth was totally inhibited at 40?g/L of ethanol and ethanol production capacity of the yeast was 52?g/L, which were in good agreement with experimental results. The developed model could be used to explain C. shehatae fermentation in glucose and xylose media from 20 to 170?g/L sugar concentrations. 相似文献
11.
The conversion of xylose to ethanol by recombinant Escherichia coli has been investigated in pH-controlled batch fermentations. Chemical and environmental parameters were varied to determine tolerance and to define optimal conditions. Relatively high concentrations of ethanol (56 g/L) were produced from xylose with excellent efficiencies. Volumetric productivities of up to 1.4 g ethanol/L h were obtained. Productivities, yields, and final ethanol concentrations achieved from xylose with recombinant E. coli exceeded the reported values with other organisms. In addition to xylose, all other sugar constituents of biomass (glucose, mannose, arabinose, and galactose) were efficiently converted to ethanol by recombinant E. coli. Unusually low inocula equivalent to 0.033 mg of dry cell weight/L were adequate for batch fermentations. The addition of small amounts of calcium, magnesium, and ferrous ions stimulated fermentation. The inhibitory effects of toxic compounds (salts, furfural, and acetate) which are present in hemicellulose hydrolysates were also examined. 相似文献
12.
13.
Yulin Lu Ryan Warner Miroslav Sedlak Nancy Ho Nathan S. Mosier 《Biotechnology progress》2009,25(2):349-356
The inhibitory effects of furfural and acetic acid on the fermentation of xylose and glucose to ethanol in YEPDX medium by a recombinant Saccharomyces cerevisiae strain (LNH‐ST 424A) were investigated. Initial furfural concentrations below 5 g/L caused negligible inhibition to glucose and xylose consumption rates in batch fermentations with high inoculum (4.5–6.0 g/L). At higher initial furfural concentrations (10–15 g/L) the inhibition became significant with xylose consumption rates especially affected. Interactive inhibition between acetic acid and pH were observed and quantified, and the results suggested the importance of conditioning the pH of hydrolysates for optimal fermentation performance. Poplar biomass pretreated by various CAFI processes (dilute acid, AFEX, ARP, SO2‐catalyzed steam explosion, and controlled‐pH) under respective optimal conditions was enzymatically hydrolyzed, and the mixed sugar streams in the hydrolysates were fermented. The 5‐hydroxymethyl furfural (HMF) and furfural concentrations were low in all hydrolysates and did not pose negative effects on fermentation. Maximum ethanol productivity showed that 0–6.2 g/L initial acetic acid does not substantially affect the ethanol fermentation with proper pH adjustment, confirming the results from rich media fermentations with reagent grade sugars. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 相似文献
14.
15.
研究纤维素酸水解产生的4种副产物乙酸、甲酸、糠醛、5-羟甲基糠醛及发酵产物乙醇对Kluyveromyces marxianus 1727共发酵葡萄糖和木糖的影响。结果表明:5.0 g/L乙酸和1.0 g/L甲酸对葡萄糖和木糖共发酵具有明显的抑制作用;1.0 g/L糠醛和5-羟甲基糠醛基本不影响K.marxianus 1727发酵葡萄糖,且能够被K.marxianus1727转化为毒性相对较低的物质。由于5-羟甲基糠醛的转化速率慢,对K.marxianus 1727发酵木糖的抑制程度大于糠醛。乙醇对K.marxianus 1727发酵木糖具有抑制作用,当乙醇质量浓度大于20 g/L时,生物量及木糖利用率约是对照的44%和70%。 相似文献
16.
Young Jae Jeon Charles J. Svenson Eva L. Joachimsthal Peter L. Rogers 《Biotechnology letters》2002,24(10):819-824
Zymomonas mobilis ZM4/AcR (pZB5), a mutant recombinant strain with increased acetate resistance, has been isolated following electroporation of Z. mobilis ZM4/AcR. This mutant strain showed enhanced kinetic characteristics in the presence of 12 g sodium acetate l–1 at pH 5 in batch culture on 40 g glucose, 40 g xylose l–1 medium when compared to ZM4 (pZB5). In continuous culture, there was evidence of increased maintenance energy requirements/uncoupling of metabolism for ZM4/AcR (pZB5) in the presence of sodium acetate; a result confirmed by analysis of the effect of acetate on other strains of Z. mobilis.
Nomenclature
m
Cell maintenance energy coefficient (g g–1 h–1)Maximum overall specific growth rate (1 h–1)Maximum specific ethanol production rate (g g–1 h–1)Maximum specific total sugar utilization rate (g g–1 h–1)Biomass yield per mole of ATP (g mole–1
Ethanol yield on total sugars (g g–1)Biomass yield on total sugars (g g–1)True biomass yield on total sugars (g g–1) 相似文献
17.
Enhanced direct ethanol production by cofactor optimization of cell surface‐displayed xylose isomerase in yeast 下载免费PDF全文
Yusuke Sasaki Toshiyuki Takagi Keisuke Motone Kouichi Kuroda Mitsuyoshi Ueda 《Biotechnology progress》2017,33(4):1068-1076
Xylose isomerase (XylC) from Clostridium cellulovorans can simultaneously perform isomerization and fermentation of d ‐xylose, the main component of lignocellulosic biomass, and is an attractive candidate enzyme. In this study, we optimized a specified metal cation in a previously established Saccharomyces cerevisiae strain displaying XylC. We investigated the effect of each metal cation on the catalytic function of the XylC‐displaying S. cerevisiae. Results showed that the divalent cobalt cations (Co2+) especially enhanced the activity by 46‐fold. Co2+ also contributed to d ‐xylose fermentation, which resulted in improving ethanol yields and xylose consumption rates by 6.0‐ and 2.7‐fold, respectively. Utility of the extracellular xylose isomerization system was exhibited in the presence of mixed sugar. XylC‐displaying yeast showed the faster d ‐xylose uptake than the yeast producing XI intracellularly. Furthermore, direct xylan saccharification and fermentation was performed by unique yeast co‐culture system. A xylan‐degrading yeast strain was established by displaying two kinds of xylanases; endo‐1,4‐β‐xylanase (Xyn11B) from Saccharophagus degradans, and β‐xylosidase (XlnD) from Aspergillus niger. The yeast co‐culture system enabled fine‐tuning of the initial ratios of the displayed enzymes (Xyn11B:XlnD:XylC) by adjusting the inoculation ratios of Xylanases (Xyn11B and XlnD)‐displaying yeast and XylC‐displaying yeast. When the enzymes were inoculated at the ratio of 1:1:2 (1.39 × 1013: 1.39 × 1013: 2.78 × 1013 molecules), 6.0 g/L ethanol was produced from xylan. Thus, the cofactor optimization and the yeast co‐culture system developed in this study could expand the prospect of biofuels production from lignocellulosic biomass. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1068–1076, 2017 相似文献
18.
19.
Jurascík M Guimarães P Klein J Domingues L Teixeira J Markos J 《Biotechnology and bioengineering》2006,94(6):1147-1154
This work presents a multi-route, non-structural kinetic model for interpretation of ethanol fermentation of lactose using a recombinant flocculent Saccharomyces cerevisiae strain expressing both the LAC4 (coding for beta-galactosidase) and LAC12 (coding for lactose permease) genes of Kluyveromyces lactis. In this model, the values of different metabolic pathways are calculated applying a modified Monod equation rate in which the growth rate is proportional to the concentration of a key enzyme controlling the single metabolic pathway. In this study, three main metabolic routes for S. cerevisiae are considered: oxidation of lactose, reduction of lactose (producing ethanol), and oxidation of ethanol. The main bioprocess variables determined experimentally were lactose, ethanol, biomass, and dissolved oxygen concentrations. Parameters of the proposed kinetic model were established by fitting the experimental data obtained in a small lab-scale fermentor with the initial lactose concentrations ranging from 5 g/dm3 to 50 g/dm3. A very good agreement between experimental data and simulated profiles of the main variables (lactose, ethanol, biomass, and dissolved oxygen concentrations) was achieved. 相似文献
20.
Isolation and preliminary characterization of a Zymomonas mobilis mutant with an altered preference for xylose and glucose utilization 总被引:1,自引:0,他引:1
Shane G. Supple Eva L. Joachimsthal Noel W. Dunn Peter L. Rogers 《Biotechnology letters》2000,22(2):157-164
The narrow substrate range of Zymomonas mobilis CP4 has been extended previously to include metabolism of the pentose sugar, xylose, by Zhang et al. (Science
267: 240–243). The strain CP4(pZB5) co-ferments both glucose and xylose in mixed sugar fermentations, however glucose is utilized preferentially. The present work reports the isolation of a new mutant from CP4(pZB5) which displays an altered carbon substrate preference. The mutant, CP4(pZB5) M1-2, metabolizes xylose more rapidly than glucose in mixed glucose/xylose media. Sequence data analysis revealed mutations in both the glucose facilitator (glf) and glucokinase (glk) genes. 相似文献