首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Allen, Emma G. (Downstate Medical Center, Brooklyn, N.Y.). Use of tetrazolium salts for electron transport studies in meningopneumonitis. I. Reduced nicotinamide adenine dinucleotide system. J. Bacteriol. 90:1505-1512. 1965.-Purified preparations of meningopneumonitis virus (MP) prepared from allantoic fluids of infected chick embryo reduce several tetrazolium salts in the presence of reduced nicotinamide adenine dinucleotide under both aerobic and anaerobic conditions. The pattern of reduction by MP differs from that seen in normal allantoic membrane homogenates, and is inhibited by several cations but not by KCN, atabrine, amytal, antimycin A, or 2,3-dimercaptopropanol (BAL). The reduction of cytochrome c by purified preparations of MP differs from its reduction of tetrazolium salts in that the cytochrome reaction is completely inhibited by BAL and partially inhibited by amytal, atabrine, and antimycin A. The cytochrome reductase of normal allantoic membrane preparations is completely inhibited by each of these compounds.  相似文献   

2.
Methanobacterium ruminantium was shown to possess a formate dehydrogenase which is linked to factor 420 (F420) as the first low-molecular-weight or anionic electron transfer coenzyme. Reduced F420 obtained from the formate dehydrogenase can be further linked to the formation of hydrogen via the previously described F420-dependent hydrogenase reaction, thus constituting an apparently simple formate hydrogenlyase system, or to the reduction of nicotinamide adenine dinucleotide phosphate via F420:nicotinamide adenine dinucleotide phosphate oxidoreductase. The results indicate that hydrogen and formate, the only known energy sources for M. ruminantium and many other methanogenic bacteria, should be essentially equivalent as sources of electrons in the metabolism of this organism.  相似文献   

3.
Photoinhibition of Chloroplast Reactions. II. Multiple Effects   总被引:19,自引:13,他引:6       下载免费PDF全文
Jones LW  Kok B 《Plant physiology》1966,41(6):1044-1049
Ultraviolet light inhibits the photoreduction of 2,6-dichlorophenolindo-phenol or nicotinamide adenine dinucleotide phosphate with water as the electron donor (evolution of oxygen) but not the photoreduction of nicotinamide adenine dinucleotide phosphate with ascorbate as the electron donor. It inhibits photophosphorylation associated with either system. Experiments undertaken to test whether plastoquinone is the site of UV inhibition yielded inconclusive results.

Visible light (> 420 mμ) causes the loss of all chloroplast activities, photosystem I being more sensitive than system II. The data suggests 2 modes of action for visible light. The one sensitized by system II results in damage resembling that of UV light. The other, sensitized by system I, results in the destruction of the reaction center of this system.

  相似文献   

4.
Reduced nicotinamide adenine dinucleotide (NADH) has been characterized electrochemically by solid electrode voltammetry and controlled potential electrolysis. Photometric and enzymatic assay showed that enzymatically active nicotinamide adenine dinucleotide (NAD-+) could be regenerated electrolytically from its reduced form without the use of so-called electron mediators. Complete regeneration of enzymatically active NAD can be expected in pyrophosphate buffers and phosphate buffers during the electrolysis. Advantages of electrochemical regeneration of coenzymes are discussed, especially with regard to immobilization of enzymes.  相似文献   

5.
Nicotinamide adenine dinucleotide phosphate-specific isocitrate dehydrogenase was extracted from etiolated pea (Pisum sativum L.) seedlings and was purified 65-fold. The purified enzyme exhibits one predominant protein band by polyacrylamide gel electrophoresis, which corresponds to the dehydrogenase activity as measured by the nitro blue tetrazolium technique. The reaction is readily reversible, the pH optima for the forward (nicotinamide adenine dinucleotide phosphate reduction) and reverse reactions being 8.4 and 6.0, respectively. The enzyme has different cofactor and inhibitor characteristics in the two directions. Manganese ions can be used as a cofactor for the reaction in each direction but magnesium ions only act as a cofactor in the forward reaction. Zinc ions, and to a lesser extent calcium ions, inhibit the enzyme at low concentrations when magnesium but not manganese is the metal activator. It is suggested that there is a fundamental difference between magnesium and manganese in the activation of the enzyme. The enzyme shows normal kinetics and the Michaelis contant for each substrate was determined. The inhibition by nucleotides, nucleosides, reaction products, and related compounds was studied. The enzyme shows a linear response to the mole fraction of reduced nicotinamide adenine dinucleotide phosphate when total nicotinamide adenine dinucleotide phosphate (nicotinamide adenine dinucleotide phosphate plus reduced nicotinamide adenine dinucleotide phosphate) is kept constant. Isocitrate in the presence of divalent metal ions will protect the enzyme from inactivation by p-chloromercuribenzoate. Protection is also afforded by manganese ions alone but not by magnesium ions alone There is a concerted inhibition of the enzyme by oxalacetate and glyoxylate.  相似文献   

6.
The two species of 6-phosphogluconate dehydrogenase (EC 1.1.1.43) from Pseudomonas multivorans were resolved from extracts of gluconate-grown bacteria and purified to homogeneity. Each enzyme comprised between 0.1 and 0.2% of the total cellular protein. Separation of the two enzymes, one which is specific for nicotinamide adenine dinucleotide phosphate and the other which is active with nicotinamide adenine dinucleotide or nicotinamide adenine dinucleotide phosphate was facilitated by the marked difference in their respective isoelectric points, which were at pH 5.0 and 6.9. Comparison of the subunit compositions of the two enzymes indicated that they do not share common peptide chains. The enzyme active with nicotinamide adenine dinucleotide was composed of two subunits of about 40,000 molecular weight, and the nicotinamide adenine dinucleotide phosphate-specific enzyme was composed of two subunits of about 60,000 molecular weight. Immunological studies indicated that the two enzymes do not share common antigenic determinants. Reduced nicotinamide adenine dinucleotide phosphate strongly inhibited the 6-phosphogluconate dehydrogenase active with nicotinamide adenine dinucleotide by decreasing its affinity for 6-phosphogluconate. Guanosine-5'-triphosphate had a similar influence on the nicotinamide adenine dinucleotide phosphate-specific 6-phosphogluconate dehydrogenase. These results in conjunction with other data indicating that reduced nicotinamide adenine dinucleotide phosphate stimulates the conversion of 6-phosphogluconate to pyruvate by crude bacterial extracts suggest that in P. multivorans, the relative distribution of 6-phosphogluconate into the pentose phosphate and Entner-Doudoroff pathways might be determined by the intracellular concentrations of reduced nicotinamide adenine dinucleotide phosphate and purine nucleotides.  相似文献   

7.
The lipophilic chelator bathophenanthroline inhibits electron transport in membranes from Escherichia coli. The less lipophilic 1,10-phenanthroline, bathophenanthroline sulfonate, and alpha,alpha-dipyridyl have little effect. Reduced nicotinamide adenine dinucleotide oxidase is more sensitive to bathophenanthroline inhibition than lactate oxidase activity. Evidence for two sites of inhibition comes from the fact that both reduced nicotinamide adenine dinucleotide menadione reductase and duroquinol oxidase activities are inhibited. Addition of uncouplers of phosphorylation before bathophenanthroline protects against inhibition.  相似文献   

8.
Methanobacterium ruminantium was shown to possess a nicotinamide adenine dinucleotide phosphate (NADP)-linked factor 420 (F420)-dependent hydrogenase system. This system was also shown to be present in Methanobacterium strain MOH. The hydrogenase system of M. ruminantium also links directly to F420, flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN), methyl viologen, and Fe-3 plus. It has a pH optimum of about 8 and an apparent Km for F420 of about 5 x 10-6 M at pH 8 when NADP is the electron acceptor. The F420-NADP oxidoreductase activity is inactive toward nicotinamide adenine dinucleotide (nad) and no NADPH:NAD or FADH2(FMNH2):NAD transhydrogenase system was detected. Neither crude ferredoxin nor boiled crude extract of Clostridium pasteuranum could replace F420 in the NADP-linked hydrogenase reaction of M. ruminantium. Also, neitther F420 nor a curde "ferredoxin" fraction from M. ruminantium extracts could substitute for ferredoxin in the pyruvate-ferredoxin oxidoreductase reaction of C. pasteurianum.  相似文献   

9.
The Pseudomonas multivorans glucose-6-phosphate dehydrogenase (EC 1.1.1.49) active with nicotinamide adenine dinucleotide, which is inhibitable by adenosine-5'-triphosphate, was purified approximately 1,000-fold from extracts of glucose-grown bacteria, and characterized with respect to subunit composition, response to different inhibitory ligands, and certain other properties. The enzyme was found to be an oligomer composed of four subunits of about 60,000 molecular weight. Reduced nicotinamide adenine dinucleotide phosphate, but not reduced nicotinamide adenine dinucleotide, was found to be a potent inhibitor of its activity. The range of concentrations of reduced nicotinamide adenine dinucleotide phosphate over which inhibition occurred was about 100-fold lower than that for adenosine-5'-triphosphate. The data suggest that reduced nicotinamide adenine dinucleotide phosphate may play an important role in regulation of hexose phosphate metabolism in P. multivorans. Antisera prepared against the purified enzyme strongly inhibited its activity, but failed to inhibit the activity of the nicotinamide adenine dinucleotide phosphate-specific glucose-6-phosphate dehydrogenase which is also present in extracts of this bacterium. Immunodiffusion experiments confirmed the results of the enzyme inhibition studies, and failed to support the idea that the two glucose-6-phosphate dehydrogenase species from P. multivorans represent different oligomeric forms of the same protein.  相似文献   

10.
When Escherichia coli K-12 was grown on gamma-aminobutyrate, a second succinic semialdehyde dehydrogenase, dependent upon oxidized nicotinamide adenine dinucleotide or oxidized nicotinamide adenine dinucleotide phosphate and distinct from that induced by gamma-aminobutyrate, was gratuitously induced by succinic semialdehyde.  相似文献   

11.
A carbon paste electrode modified with the adsorbed products of the electrochemical oxidation of adenosine triphosphate is described. The electrode was applied to the amperometric electrocatalytic detection of the reduced form of both nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate. The catalytic oxidation current shows a linear dependence on the concentration of the reduced form of nicotinamide adenine dinucleotide up to 1x10(-4)M, with a detection limit of 5x10(-9)M. Modified carbon paste electrodes were coated with an electrogenerated film of nonconducting poly(o-phenylenediamine) to obtain a stable amperometric response for at least 150h. In addition to static measurements, determination of both reduced cofactors was carried out in a flow injection analysis system with a thin-layer amperometric detection cell. The electrocatalytic monitoring of reduced nicotinamide adenine dinucleotide phosphate was applied to flow injection measurement of isocitrate dehydrogenase activity in serum. The results were in good agreement with those for the standard spectrophotometric test kit. The proposed method consumed less time and reagents and provided better precision than the standard method.  相似文献   

12.
Reduced nicotinamide adenine dinucleotide (NADH) has been characterized electrochemically by solid electrode voltammetry and controlled potential electrolysis. Photometric and enzymatic assay showed that enzymatically active nicotinamide adenine dinucleotide (NAD+) could be regenerated electrolytically from its reduced form without the use of so-called electron mediators. Complete regeneration of enzymatically active NAD can be expected in pyrophosphate buffers and phosphate buffers during the electrolysis. Advantages of electrochemical regeneration of coenzymes are discussed, especially with regard to immobilization of enzymes.  相似文献   

13.
Isolated corn (Zea mays L.) mitochondria were found to oxidize reduced nicotinamide adenine dinucleotide phosphate in a KCl reaction medium. This oxidation was dependent on the presence of calcium or phosphate or both. Strontium and manganese substituted for calcium, but magnesium or barium did not. The oxidation of NADPH produced contraction of mitochondria swollen in KCl. Further evidence that the oxidation of NADPH was coupled was observed in respiratory control and adenosine diphosphate-oxygen ratios that were comparable to those reported for reduced nicotinamide adenine dinucleotide. The pathways of electron flow from NADH and NADPH were compared through the addition of electron transport inhibitors. The only difference between the two dinucleotides was that amytal was found to inhibit almost totally the state 3 oxidation of NADPH, but had little effect on the state 3 oxidation of NADH. The hypothetical pathways for electron flow from NADPH are discussed, as are the possible sites of calcium and phosphate stimulation.  相似文献   

14.
We investigated the effect of the gas environment on the enzymatic reactions of intact isolated cells of the agents of trachoma and of meningopneumonitis of the host-dependent genus Chlamydia. In comparison with the reactions taking place in a gas phase of air, O(2) depressed CO(2) production from pyruvate and glutamate by trachoma and from glutamate by meningopneumonitis. O(2) enhanced the degradation of pyruvate by meningopneumonitis, but this effect was due to increased H(2)O(2), and was reversed by added catalase. Both dehydrogenation of alpha-ketoglutarate and was reversed by added catalase. Dehydrogenation of alpha-ketoglutarate by both agents and production of CO(2) from C(1) of glucose-6-phosphate were stimulated by O(2) and depressed in N(2). The latter activity was stimulated in air, O(2), and N(2) by nicotinamide adenine dinucleotide phosphate (NADP) in relation to the amount added, and also in air or O(2), but not in N(2), by moderate amounts of NADP and an excess of oxidized glutathione with concomitant formation of H(2)O(2). A small but significant amount of O(2) was consumed during the course of these reactions. It is suggested that glutathione reductase activity can occur only when accompanied by an oxidative reaction, and that this close link between the two reactions represents a mechanism of electron transport which transfers hydrogen to molecular O(2).  相似文献   

15.
Submitochondrial particles from mung bean mitochondria (Phaseolus aureus) are able to catalyze an energy-linked reduced nicotinamide adenine dinucleotide-nicotinamide adenine dinucleotide phosphate transhydrogenase reaction supported by ATP or by aerobically generated high energy intermediates. The energy transfer pathway appears to differ from that utilized for oxidative phosphorylation.  相似文献   

16.
The pH dependence of the 13C chemical shifts for nicotinamide adenine dinucleotide (NAD+), thionicotinamide adenine dinucleotide (TNAD+), pyridine adenine dinucleotide (PyrAD+), N-methyl-nicotinamide adenine dinucleotide (N-Me-NAD+), acetylpyridine adenine dinucleotide (AcPyAD+), nicotinamide hypoxanthine dinucleotide (NHD+), and nicotinamide adenine dinucleotide phosphate (NADP+) are reported. In these analogs the 13C chemical shifts of the pyridinium moiety reflect the pKa of the opposing purine base, while the 13C chemical shift dependence on pD for the pyridinium carbons of nicotinamide mononucleotide (NMN+) and adenosine monophosphate (AMP), 1,4-dihydronicotinamide adenine dinucleotide (NADH), 1,4-dihydronicotinamide adenine dinucleotide phosphate (NADPH), and nicotinic acid adenine dinucleotide (N(a)AD+) are not influenced by the adenine ring in the pD range tested. Through the use of 13C-labeled NAD+, the source of the pH dependence of the 13C chemical shifts was shown to be intramolecular in origin. However, serious doubt is cast on the utility of employing the pD dependence of chemical shift data to determine the nature of solution conformers or their relative populations.  相似文献   

17.
We investigated the subcellular localization of nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) activity, a histo- and cyto-chemical marker of nitric oxide synthase, in human placental trophoblast obtained from women with normal term pregnancies. Tetrazolium salt BSPT was used as the capturing agent. Precipitates of BSPT-formazan indicative of NADPH-d reaction were observed on the membranes of endoplasmic reticulum and nuclear envelope of syncytiotrophoblasts. Our results indicate these two intracytoplasmic organellae are the sites of nitric oxide generation in the syncytiotrophoblasts of normal term human placenta.  相似文献   

18.
Experiments with crude extracts of Pseudomonas carboxydohydrogena revealed that a quinone is necessary for CO oxidation, and that cytochromes of the a, b, and c types and functional terminal oxidase(s) are found in cells grown on CO as the sole source of carbon and energy. CO dehydrogenase delivers electrons to the electron transport system at the level of quinone, and nicotinamide adenine dinucleotide (phosphate) is not involved in CO oxidation.  相似文献   

19.
The fluorescence of a fermentation culture was studied for its application as an estimator of biomass concentration. The measurement was obtained by irradiating the culture with ultraviolet light (366 nm) through a glass window and detecting fluorescent light at the window surface at 460 nm. It was estimated that over one-half of the fluorescent material was intercellular reduced nicotinamide adenine dinucleotide, with the remainder being reduced nicotinamide adenine dinucleotide phosphate and other unidentified intercellular and extracellular fluorophores. The culture fluorescence was found to be a function of biomass concentration, together with environmental factors, which presumably act at the cellular metabolic level to modify intercellular reduced nicotinamide adenine dinucleotide pools (e.g., dissolved oxygen tension, energy substrate concentration, and inhibitors). When these environmental conditions were controlled, a linear relationship was obtained between the log of the biomass concentration and the log of the fluorescence. Under these conditions, this relationship has considerable potential as a method to provide real-time biomass concentration estimates for process control and optimization since the fluorescence data is obtained on line. When environmental conditions are variable, the fluorescence data may be a sensitive index of overall culture activity because of its dependence on intercellular reduced nicotinamide adenine dinucleotide reserves and metabolic rates. This index may provide information about the period of maximum specific productivity for a specific microbial product.  相似文献   

20.
《BBA》2014,1837(2):251-263
Ferredoxin-nicotinamide–adenine dinucleotide phosphate (NADP+) reductase (FNR) catalyses the production of reduced nicotinamide–adenine dinucleotide phosphate (NADPH) in photosynthetic organisms, where its flavin adenine dinucleotide (FAD) cofactor takes two electrons from two reduced ferredoxin (Fd) molecules in two sequential steps, and transfers them to NADP+ in a single hydride transfer (HT) step. Despite the good knowledge of this catalytic machinery, additional roles can still be envisaged for already reported key residues, and new features are added to residues not previously identified as having a particular role in the mechanism. Here, we analyse for the first time the role of Ser59 in Anabaena FNR, a residue suggested by recent theoretical simulations as putatively involved in competent binding of the coenzyme in the active site by cooperating with Ser80. We show that Ser59 indirectly modulates the geometry of the active site, the interaction with substrates and the electronic properties of the isoalloxazine ring, and in consequence the electron transfer (ET) and HT processes. Additionally, we revise the role of Tyr79 and Ser80, previously investigated in homologous enzymes from plants. Our results probe that the active site of FNR is tuned by a H-bond network that involves the side-chains of these residues and that results to critical optimal substrate binding, exchange of electrons and, particularly, competent disposition of the C4n (hydride acceptor/donor) of the nicotinamide moiety of the coenzyme during the reversible HT event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号