首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
T cells from nude chimeras and radiation chimeras were tested for ability to cooperate with B cells of the thymus epithelium strain and B cells of the T-stem-cell strain in nude mice of appropriate strain backgrounds and also in irradiated F1's together with bone marrow cells of the two relevant strains (i.e., A-nu ← B or A → A × B chimera T cells were tested in A-nu and B-nu and in irradiated A × B F1 with A bone marrow cells or B bone marrow cells). Whether the donor chimeras were antigen primed or not, all cells, when tested in nudes, provided help for the T-stem-cell type only. In contrast, in most cases, chimera T cells, tested in irradiated F1'S, provided help for bone marrow cells of both thymus and T-stem-cell strains. These data indicate the involvement of two helper cell populations and an hypothesis to explain their interaction is presented.  相似文献   

2.
Thymectomized, lethally irradiated mice reconstituted with syngeneic bone marrow cells are tolerant to xenogeneic Yoshida ascites sarcoma (YAS). The tolerance was abolished by an injection of syngeneic normal spleen, thymus, or lymph node cells given simultaneously with YAS. Allogeneic and semiallogeneic spleen cells were ineffective. The YAS-rejecting mice produced specific anti-tumor antibodies. The serum of these mice transferred to tolerant T-cell-deficient mice protected the latter from inoculated YAS cells. These serum-protected mice were not able to resist the reinoculum of the tumor cells as the mice restored with lymphoid cells did. The latter mice rejected the YAS at the time when donor cells were practically absent in their lymphoid tissue. The low effective ratio of injected syngeneic lymphoid to tumor cells, efficiency of injected thymus cells, and other data led to the conclusion that transferred lymphoid cells did not act directly on tumor cells but through cooperation with host lymphoid cells. The cooperation of donor T- and host B-lymphocytes enabled the activation of the latter, and YAS cells were rejected.  相似文献   

3.
Lewis rats were rendered hematopoietic and lymphoid cell chimeras by injection of (LBN)F1 hybrid cells at birth or following treatment with cyclophosphamide in adult life. The establishment of transplantation tolerance was indicated by acceptance of (LBN)F1 skin grafts and specific unresponsiveness in graft vs. host reaction (GvHR) and mixed lymphocyte interaction (MLI) in vitro. Tolerance was abolished by adoptively transferred Lewis lymphocytes, and the loss of chimerism and recovery of specific reactivity by blood lymphocytes were monitored independently by mixed lymphocyte cultures. Recovery of competence to initiate GvHR by splenic and lymph node cells was monitored by the local renal graft vs. host technique. Both techniques measure essentially the proliferative response of certain lymphocytes to foreign cellular AgB antigens, and both detected a prolonged, but gradually weakening, state of partial tolerance to the AgB factors to which tolerance had originally been induced. During this phase of partial tolerance the former chimera rejects skin and lymph node cell grafts from (LBN)F1 donors with alacrity, but in some cases accepts (LBN)F1 kidney grafts. Cytotoxic antibodies appear in the serum soon after allogeneic chimerism is terminated. These results are interpreted to indicate that a state of partial tolerance exists among the cells which proliferate in response to certain AgB antigens in GvHR and MLI in the formerly tolerant chimera, and that a state of transplantation immunity (possibly to other determinants) coexists with this partial tolerance.  相似文献   

4.
Lethally irradiated C3Hf mice reconstituted with a relatively low dose (2 × 106) of B6C3F1 bone marrow cells (B6C3F1 → C3Hf chimeras) frequently manifest immunohematologic deficiencies during the first month following injection of bone marrow cells. They show slow recovery of antibody-forming potential to sheep red blood cells (SRBC) as compared to that observed in syngeneic (C3Hf → C3Hf or B6C3F1 → B6C3F1) chimeras. They also show a deficiency of B-cell activity as assessed by antibody response to SRBC following further reconstitution with B6C3F1-derived thymus cells 1 week after injection of bone marrow cells. A significant fraction of B6C3F1 → C3Hf chimeras was shown to manifest a sudden loss of cellularity of spleens during the second week following injection of bone marrow cells even though cellularity was restored to the normal level within 1 week. The splenic mononuclear cells recovered from such chimeras almost invariably showed strong cytotoxicity against target cells expressing donor-type specific H-2 antigens (H-2b) when assessed by 51Cr-release assay in vitro. The effector cells responsible for the observed anti-donor specific cytotoxicity were shown to be residual host-derived T cells. These results indicate strongly that residual host T cells could develop anti-donor specific cytotoxicity even after exposure to a supralethal dose (1050 R) of radiation and that the immunohematologic disturbances observed in short-term F1 to parent bone marrow chimeras (B6C3F1 → C3Hf) were due to host-versus-graft reaction (HVGR) initiated by residual host T cells. The implication of these findings on the radiobiological nature of the residual T cells and the persistence of potentially anti-donor reactive T-cell clones in long-surviving allogeneic bone marrow chimeras was discussed.  相似文献   

5.
The origin and nature of the cells accumulating in the popliteal lymph node graft versus host reaction (GVHR) of mice and rats were studied by karyotypic analysis, immunofluorescence, and radioautography after [3H]thymidine incorporation. At all times explored, the proliferating cells represented at most 10% of the cells, and among them the frequency of mitoses of donor origin was about 50, 15, and 4% on the third, seventh, and fifteenth days, respectively. Using alloantisera, no significant numbers of donor T cells could be detected among the resting lymphocytes. On the seventh day, the enlarged nodes contained at most 2% of donor cells and about two-thirds of T and one-third of B lymphocytes, i.e., a cell composition comparable to that of normal lymph nodes, except for an increased proportion of lymphoblasts and plasmablasts. Some plasmablasts secreted antibodies against sheep red blood cells, probably reflecting polyclonal activation of B cells. Popliteal GVHRs in T-depleted F1 mice were of comparable intensity, with no increase in the proportion of donor cells, and the enlarged nodes contained a high proportion of B lymphocytes and plasmablasts of host origin.  相似文献   

6.
Mice, rendered tolerant to rabbit gamma globulin (RGG), were immunized with RGG or with dinitrophenylated RGG (DNP40-RGG), incorporated in adjuvant. The resulting response was evaluated in terms of the half-life of trace labeled RGG (131I-RGG). An antibody response against the tolerance inducing macromolecule could be elicited with DNP40-RGG, but not with RGG. Reconstitution experiments revealed that thymus derived (T) cells from tolerant donors could cooperate with bone marrow cells from normal donors in the response elicited by DNP40-RGG, but could not effectively cooperate with bone marrow derived (B) cells from tolerant donors. Such B cells could cooperate with T cells from normal donors. The relative difference between native and chemically modified proteins played an important role in this tolerance circumvention, since analogous experiments with human instead of rabbit gamma globulin did not result in an effective response to determinants of the tolerance-inducing proteins. It was suggested that the number of effectively immunogenic determinants on DNP40-RGG was low in B and in T cells of animals tolerant to RGG and that the probability of effective cooperation was consequently extremely low. If one of the two cell types came from a normal animal and thus could respond to a large number of determinants, the probability of effective cooperation increased so as to reveal the responsiveness of the “tolerant” cell population. There was no indication that the responsiveness of the tolerant T cell population was directed against tolerance-inducing determinants.  相似文献   

7.
The specificity of an antiserum directed againstI region associated (Ia) antigens is described. The serum was raised in (DBA/1×B10.D2)F1 mice against lymphocytes of AQR mice, differing from the responder for theI region only. The serum reacts with Ia antigens expressed on B cells (Iab) as well as with Ia antigens expressed on T cells (Iat). Absorption studies indicate that B cells possess at least two Ia antigens, and one of these is shared by T cells. However, this shared antigen is not present on the surface of lymphocytes of thymectomized mice. Analysis of the strain distribution of Iab and Iat antigens revealed that the Iab antigens are present on lymphocytes of mice carrying theIA k subregion and that the Iat antigens are present on lymphocytes of mice carryingI region genes of theH-2 k haplotype located between theIA andIB subregions. This conclusion is based on the analysis of the antiserum's reactivity with T and B cells of the strains B10.A(2R), B10.A(4R) and B10.HTT: the serum reacts with B and T cells of B10.A(2R) but only with B cells of B10.A(4R) mice and only weakly with T cells of B10.HTT mice.Abbreviations ALG antimouse lymphocyte globulin from rabbits - B cells bone marrow derived lymphocytes - B10 C57BL/10Sn mice - D1D2F1 (DBA/1×B10.D2)F1 hybrid mice - GVHR graft-vs-host reaction - Ia I region associated antigen - Iab on B cells - Iat on T cells - MLR mixed lymphocyte reaction - T cells thymus-derived lymphocytes - Thy-1 thymus antigen 1, formerly called theta - Tx-Lyc lymphocytes of thymectomized, ALG treated, lethally irradiated and anti-Thy-1 treated bone marrow reconstituted mice - 2R B10.A(2R)/SgSn mice - 4R B10.A(4R) mice  相似文献   

8.
Carrier-specific helper T cells were generated in F1 hybrid mice by either conventional immunization procedures or by repeated immunizations with antigen-bearing macrophages derived from either F1 or parental donors. The F1 helper T cells generated in these various ways were then analyzed for their capacities to help hapten-primed B lymphocytes derived from each of the two parental strains as well as from F1 donors in the development of secondary anti-hapten antibody responses. These analyses were conducted using two different types of in vivo assay systems as well as a totally in vitro system. Under all circumstances, helper T cells from F1 mice, primed either in conventional fashion or with antigen bearing parental or F1 macrophages, were capable of interacting effectively with B lymphocytes of each parent and of F1 origin. Moreover, in the case of F1 helper cells primed with antigen-bearing parental macrophages, there was no evidence of preferential helper activity for parental B lymphocytes corresponding to the type of macrophage used for sensitization; this was true irrespective of whether in vivo or in vitro assay systems were employed. The relevance of these findings and others which are either similar to, or discordant with, them to the general question of genetic restrictions in macrophage-T lymphocyte interactions is discussed.  相似文献   

9.
We previously established a model to study CD8+ T cell (TCD8)-based adoptive immunotherapy of cancer using line SV11 mice that develop choroid plexus tumors in the brain due to transgenic expression of Simian Virus 40 large T antigen (Tag). These mice are tolerant to the three dominant TCD8-recognized Tag epitopes I, II/III and IV. However, adoptive transfer of spleen cells from naïve C57BL/6 (B6) mice prolongs SV11 survival following TCD8 priming against the endogenous Tag epitope IV. In addition, survival of SV11 mice is dramatically increased following transfer of lymphocytes from Tag-immune B6 mice. In the current study, we compared the kinetics and magnitude of Tag-specific TCD8 accumulation at the tumor site following adoptive transfer with a high dose of either Tag-immune or naïve donor cells or decreasing doses of Tag-immune lymphocytes. Following adoptive transfer of Tag-immune cells, epitope I- and IV-specific TCD8 accumulated to high levels in the brain of SV11 mice, peaking at 5–7 days, while epitope IV-specific TCD8 derived from naïve donors required three weeks to achieve peak levels. A similar delay in the peak of epitope IV-specific TCD8 accumulation was observed when tenfold fewer Tag-immune donor cells were administered, reducing control of tumor progression. These results suggest that efficient and prolonged control of established autochthonous tumors is associated with high-level early accumulation of adoptively transferred T cells. We also provide evidence that although multiple specificities are represented in the Tag immune donor lymphocytes, epitope IV-specific donor TCD8 play a predominant role in control of tumor growth.  相似文献   

10.
Recirculation of “B” Lymphocytes in Immunized Rats   总被引:2,自引:0,他引:2  
THYMUS-derived, T lymphocytes and bursa-equivalent B lymphocytes cooperate in the initiation of the humoral antibody response of mammals to a variety of antigens1–5. The B cells are antibody-forming-cell precursors (AFCP) and the T cells are helper cells which serve to augment the antibody response produced by the precursor cells6. Mitchison and his colleagues4,5,7 have shown that the interaction between carrier and hapten-primed cells in the adoptive secondary antibody response to hapten-protein conjugates is an example of cooperation between T and B lymphocytes respectively.  相似文献   

11.
The induction of tuberculin-type delayed hypersensitivity, as measured by skin test, can be specifically inhibited by administration of antibody during sensitization. The cellular mechanisms involved in this tolerance were investigated in CAP1 mice, using chicken conalbumin as antigen. Tolerance was prevented when mice were treated with Cyclophosphamide 2 days before sensitization and suppression. However, it was not affected by splenectomy 7 or 21 days before sensitization. This tolerance could be transferred to normal CAF1 mice with spleen cells, but not with thymocytes, when taken from donor mice 21 to 28 days after sensitization and tolerance induction. Production of these cells in the donors required both antibody and antigen. The cells responsible for the transfer were B cells, as shown by their sensitivity to rabbit anti-mouse-immunoglobulin serum and complement. In addition to B cells, serum from tolerant mice also could transfer suppression at 21 to 28 days. We conclude that sensitizing mice, and treating them with specific immunosuppressive antiserum, induces the recipients to make suppressor B cells and suppressive humoral factors, which are involved in arresting the induction of tuberculin-type delayed hypersensitivity.  相似文献   

12.
Murine bone marrow cells (strain A) have been allowed to differentiate in vivo in syngeneic (A) or semiallogeneic hosts (A × B) to produce mature splenic T lymphocytes. After stimulation of these cells with irradiated allogeneic (C) spleen cells in tissue cultures, the cytotoxic T-cell blasts (CTL) were purified by velocity sedimentation and used to immunize (A × C) F1 hybrid mice, to produce antisera recognizing the receptor structure (for C) on the relevant A cytotoxic cells (and their precursors). Using these sera we have been able to show that the T-cell receptor for alloantigen C on strain A cytotoxic precursor lymphocytes (CTLp) seems to differ according to the host environment in which those T cells differentiate from immature bone marrow precursors.  相似文献   

13.
Semiallogeneic chimeras were produced by injecting 3 X 10(7) spleen cells of mice CBA (H--2k, Mlsd) to lethally irradiated mice (CBA X C57BL/6)F1. Two days later recipients were given cyclophosphamide (CP), 2 mg per mouse, to prevent death of graft versus host reaction (GVHR). For 1.5--2 months after the creation of chimerism in 23 of 26 mice under study all cells producing antibodies to SRBC were represented by donor cells of H-2 phenotype; 3 mice were partial chimeras. Spontaneous blast transformation in the cultures of chimera spleen did not exceed the control level, and in the mixed lymphocyte culture chimera cells failed to proliferate on addition of irradiated lymphocytes (CBA X C57BL/6) F1. At the same time chimera gave intensive blast transformation to the irradiated lymphocytes of the third line of mice DBA/2 (H--2d, Mlsa). Among the chimera spleen cells no killers capable of destroying target cells of donor or recipient origin were revealed. Similar results were obtained in vivo: chimera cells gave no positive local GVHR after administration to mice (CBA X C57BL/6) F1. Prolonged chimerism was accompanied by a reactivity of donor T-lymphocytes to the recipient transplantation antigens. A blocking factor was revealed in the blood serum of chimeras. The substitution of donor lymphocytes for the recipient cells begins after 3 to 5 months. At the same period donor T-cell population reconstitutes partially the responsiveness to the recipient antigens and the blocking factor disappears from chimeras blood.  相似文献   

14.
T cell upregulation of B7 molecules CD80 and CD86 limits T cell expansion in immunodeficient hosts; however, the relative roles of CD80 separate from CD86 on CD4 versus CD8 T cells in a normal immune system are not clear. To address this question, we used the parent-into-F1 (P→F1) murine model of graft-versus-host disease and transferred optimal and suboptimal doses of CD80 and/or CD86 knockout (KO) T cells into normal F1 hosts. Enhanced elimination of host B cells by KO T cells was observed only at suboptimal donor cell doses and was greatest for CD80 KO→F1 mice. Wild-type donor cells exhibited peak CD80 upregulation at day 10; CD80 KO donor cells exhibited greater peak (day 10) donor T cell proliferation and CD8 T cell effector CTL numbers versus wild-type→F1 mice. Fas or programmed cell death-1 upregulation was normal as was homeostatic contraction of CD80 KO donor cells from days 12-14. Mixing studies demonstrated that maximal host cell elimination was seen when both CD4 and CD8 T cells were CD80 deficient. These results indicate an important role for CD80 upregulation on Ag-activated CD4 and CD8 T cells in limiting expansion of CD8 CTL effectors as part of a normal immune response. Our results support further studies of therapeutic targeting of CD80 in conditions characterized by suboptimal CD8 effector responses.  相似文献   

15.
Tolerance to the DNP haptenic determinant was induced with a single i.v. injection of trinitrophenylated syngeneic red blood cells. The tolerant state lasted 1 month and was stable on transfer to irradiated thymectomized syngeneic recipients. Suppressor activity was found soon after injection of tolerogen but was lost before the termination of tolerance. The unresponsive state could be reversed by adding normal thymus cells to tolerant spleen cells but not by normal bone marrow cells. LPS when given with immunogen restored the normal immune response in tolerant mice. Thus the injection of TNP-MRBC induced partial immune unresponsiveness which was characterized by the induction of T cell suppressor activity and by a hapten-specific helper T cells tolerance. Finally, these studies suggest a cooperative interaction between DNP-specific T lymphocytes and DNP-specific B lymphocytes in the immune response to DNP-BGG.  相似文献   

16.
Cyclophosphamide (CY) treatment of F1 hybrid mice increases their susceptibility to attack by parental-strain lymphoid cells. The donor cells may contribute to this increased susceptibility either by a more vigorous response to the host antigens, or by an increase in their colonization of the host's tissues. We have assessed the responsiveness of the donor cells in the CY-treated host through the use of a local graft-versus-host (GVH) assay. This assay is not influenced by changes in the capacity of donor cells to colonize host tissues, and thus colonization has been eliminated as a variable. In this assay donor lymph node tissue is grafted onto the cut surface of host kidney, and a local GVH reaction is indicated by enlargement of the donor tissue. We show that treatment of F1 hosts with CY (100 mg/kg) 24 hr prior to grafting leads to increased responsiveness of the donor cells as measured by enlargement of the donor tissue.  相似文献   

17.
Experiments were conducted to answer the questions related to (a) the role played by the antigen-presenting cells (APCs) present within the thymus and (b) the effect of radiation dose to the recipients on the H-2 restriction profile of TNP-specific cytotoxic T lymphocyte precursors (CTLP) recovered from spleens and/or thymuses of H-2 incompatible radiation bone marrow chimeras (BMC). The H-2 restriction profile of intrathymically differentiating TNP-specific CTLPs was also analyzed in order to test an argument that donor-H-2 restricted CTLP detected in spleens of H-2 incompatible BMC were due to the extrathymically differentiated T cells under the influence of donor-derived lymphoreticular cells. The results indicated the following: (i) splenic T cells from B10(H-2b)→ (B10(H-2b) → B10.BR(H-2k)) chimeras, which were constructed by irradiating primary BIO → B10.BR chimeras with 1100 R and reconstituting them with donor-type (B10) bone marrow cells as long as 8 months after their construction, manifested restriction specificities for both donor- and host-type H-2, (ii) splenic T cells from two types of (B10 × B10.BR)F1→ B10 chimeras which were reconstituted after exposure of the recipients with either 900 or 1100 R with donor-type bone marrow cells generated both donor- and host-H-2 restricted TNP-specific cytotoxic T cells, and (iii) the TNP-specific CTLPs present in the regenerating thymuses of B10.BR → B10 and (B10 × B10.BR)F1→ B10 chimeras 4 weeks after their construction were also shown to manifest both donor- and host-H-2 restriction specificities. The significance of these findings on the H-2 restriction profile of CTLP generated in BMCs is discussed.  相似文献   

18.
Spleen cells from long-term mouse allogeneic radiation chimeras were tested for their ability to modulate the graft-versus-host (GVH) or plaque-forming cell (PFC) response of normal lymphocytes transplanted in lethally X-irradiated recipients. In vivo GVH proliferation of normal lymphocytes (syngeneic to donor cells of the chimera) against antigens of host-type in which the chimeric state had been established was reduced by chimera cells. Inhibition varied, some chimeras suppressing GVH more than others and a few not suppressing at all. The suppressive effect was abrogated if the chimera cells were treated with anti-θ; treatment with anti-IgM did not eliminate this activity. When mixtures of normal donor lymphocytes and chimera cells were given to irradiated recipients genetically different from host or donor, reduction of donor cell GVH also occurred. Further, chimera cells reduced the GVH activity of normal host cells in irradiated recipients differing from the host at one H-2 locus and from the donor at minor histocompatibility loci. The modulating effect of spleen cells from chimeras on the PFC response by normal lymphocytes also varied. Six chimeras induced a 25 to 90% suppression, two enhanced the response, and one showed no effect. Where suppression occurred, treatment of chimera cells with anti-θ most often, but not always, restored PFC production. Our results show that the suppressive action of splenic lymphoid cells by chimeras is highly nonspecific and variable in expression. We suggest that tolerance in chimeras may be mediated by nonspecific suppressor elements leading to unresponsiveness to a variety of antigens including SRBC.  相似文献   

19.
T cell homeostasis is a physiological function of the immune system that maintains a balance in the numbers and ratios of T cells at the periphery. A self-MHC/self-peptide ligand can induce weak (covert) signals via the TCR, thus providing an extended lifespan for naive T cells. A similar mechanism is responsible for the restoration of immune homeostasis in severe lymphopenic conditions such as those following irradiation or chemotherapy, or upon transfer of lymphocytes to nu/nu or SCID mice. To date, the genetic backgrounds of donor and recipient SCID mice were unmatched in all autoimmune arthritis transfer experiments, and the recovery of lymphoid cells in the host has not been followed. In this study, we present the adoptive transfer of proteoglycan (PG)-induced arthritis using unseparated and T or B cell-depleted lymphocytes from arthritic BALB/c donors to genetically matched syngeneic SCID recipient mice. We demonstrate that selectively recovered lymphoid subsets determine the clinical and immunological status of the recipient. We found that when T cells were depleted (>98% depleted), B cells did not produce PG-specific anti-mouse (auto) Abs unless SCID mice received a second Ag (PG) injection, which promoted the recovery of Ag-specific CD4(+) Th1 cells. Reciprocally, as a result of B cell recovery, high levels of serum anti-PG Abs were found in SCID mice that received B cell-depleted (>99% depleted) T lymphocytes. Our results indicate a selective and highly effective cooperation between CD4(+) T cells and B lymphocytes that is required for the restoration of pathological homeostasis and development of autoimmune arthritis in SCID mice.  相似文献   

20.
Thymectomized, lethally irradiated mice reconstituted with normal bone marrow cells succumbed when challenged ip with rat Yoshida ascites sarcoma (YAS) cells 40 days after irradiation and reconstitution. In contrast, thymectomized irradiated mice reconstituted with bone marrow cells from YAS-immune donors rejected the subsequent tumor challenge. Pretreatment of the bone marrow cells from immune donors with anti-Thy 1.2 antiserum and complement completely abolished the transfer of anti-YAS resistance.Bone marrow cells from donors thymectomized 2 months before immunization enabled almost all recipients to reject YAS, but bone marrow cells from donors thymectomized 8 months before immunization protected only 50% of the recipients. Further analysis showed that mice thymectomized 8 months before immunization failed to generate anti-YAS antibody response, whereas the antibody response of mice thymectomized 2 months before immunization did not differ from that of non-thymectomized age-matched control mice. The data suggest that the immune reaction of mice against xenogeneic YAS requires long-lived T2 lymphocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号