首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The effect of adrenalectomy on CNS myelin accumulation was investigated to determine whether glucocorticoids play a role in regulating myelination. When 14-day-old rats were adrenalectomized and sacrificed 7-8 days later, the amount of bulk-isolated myelin in whole brain, as expressed per gram wet weight of brain or per milligram DNA-phosphate, was reduced to about 75% that of sham-operated controls. Both brain weight and DNA content were unchanged by adrenalectomy. Examination of individual brain regions also revealed decreased amounts of myelin in adrenalectomized animals. Brain glycerol 3-phosphate dehydrogenase specific activity was reduced in adrenalectomized animals to 40-60% that of controls, and serum corticosterone levels were less than 0.6% of control levels. The amount of cerebral myelin in animals adrenalectomized on day 21 and sacrificed 9 days later was not significantly reduced. This suggests a possible role of glucocorticoids during the early period of rapid myelination.  相似文献   

2.
Effects of neonatal hypothyroidism on rat brain gene expression.   总被引:15,自引:0,他引:15  
To define at the molecular biological level the effects of thyroid hormone on brain development we have examined cDNA clones of brain mRNAs and identified several whose expression is altered in hypothyroid animals during the neonatal period. Clones were identified with probes prepared by subtractive or differential hybridization, and those corresponding to mRNAs altered in hypothyroidism were further studied by Northern blot analysis. Using RNA prepared from whole brains, no effect of hypothyroidism was found on the expression of the astroglial gene coding for glial fibrillary acidic protein. Among genes of neuronal expression, no significant alterations were found in the steady state levels of mRNAs coding for neuron-specific enolase, microtubule-associated protein-2, Tau, or nerve growth factor. N-CAM mRNA increased slightly in hypothyroid brains. In contrast a 2- to 3-fold decrease was found in the mRNA coding for a novel neuronal gene, RC3. This is the first neuronal gene known to be significantly altered at the mRNA level by thyroid hormone deprivation. The abundance of the mRNAs for the major myelin proteins proteolipid protein, myelin basic protein, and myelin-associated glycoprotein, expressed by oligodendrocytes, were also decreased in hypothyroid brains. Developmental studies on RC3 and myelin-associated glycoprotein expression indicated that the corresponding mRNAs accumulate in the brain of normal rats during the first 15-20 days of neonatal life. A similar accumulation occurred in hypothyroid brains, but at much reduced levels. The results demonstrate that thyroid hormone controls the steady state levels of particular mRNAs during brain development.  相似文献   

3.
The effect of defined lead burdens on myelination of the central and peripheral nervous systems was studied in neonatal Long-Evans rats. Pups were exposed to inorganic lead (100 or 400 mg Pb as lead acetate/kg body wt/day by gastric intubation) from day 2 following birth to 30 days of age. Accumulation of myelin in forebrain was not affected by the 100-mg dosage, but at the 400 mg/kg dosage level, myelin accumulation was reduced by approximately 42% on a per gram forebrain basis relative to vehicle-intubated animals. The deficit was over 50% on a per forebrain basis, since there was also a slight reduction in brain weight. This lead effect was observed at both 15 and 30 days of age. Accumulation of myelin in optic nerve (determined on the basis of proteolipid protein concentration) was also reduced by 30% relative to controls by this dosage level. However, myelination in sciatic nerve (determined on the basis of P0 protein concentration) was not affected by this exposure regimen. Myelin deficits were greater than could be accounted for by undernutrition arising secondary to lead exposure and were not due to a developmental delay in the onset of myelination.  相似文献   

4.
The phospholipid composition of isolated oligodendroglial cell perikarya was studied in normal rats during development and in 18 day old malnourished and hyperthyroid rats. Phosphatidyl choline and phosphatidyl ethanolamine were found to be the major phospholipid constituents of oligodendroglial cells. Phospholipid content increased during development, mainly due to an increase of the above mentioned phospholipids. The major changes were observed in sphingomyelin, phosphatidyl serine, phosphatidyl inositol and phosphatidyl ethanolamine between 18 and 30 days of age. The phospholipid and protein content per cell was significantly decreased in the oligodendroglial cells isolated from malnourished rats as compared to controls. When data were expressed as a function of total proteins, the composition was similar to that of normal animals. In the hyperthyroid rats on the other hand, there were no changes in the amount of phospholipids per cell, while phospholipids per milligram of total oligodendroglial cell protein were markedly decreased. The changes in myelin composition produced by hyperthyroidism that we have previously described, do not follow closely those produced by this experimental condition in oligodendroglial cells, suggesting that the metabolism of myelin might be to a certain extent, independent of that in the parent cell.  相似文献   

5.
The incorporation of radioactive glycine into the major myelin proteolipid protein isolated from whole brain and from purified myelin of Quaking mice and normal littermates was compared. In a typical experiment, four Quaking mice and four littermate controls were injected intracranially with 250 μCi [2-3H]glycine and 25 μCi [U-14C]glycine respectively. Three hours later, the eight mice were killed and their brains combined. Equivalent portions were taken for (1) chloroform-methanol (2:1) extraction followed by ether precipitation of proteolipid from the brain and (2) myelin preparation. The 3H/14C ratios for the microsomes:, the major myelin proteolipid as well as the other non-myelin proteolipids extracted from whole brain was approx 3.0. while the 3H/14C ratio for proteolipid protein in myelin was near 0.4. These findings were consistent for ages studied between 18 and 90 days. The results indicate that the synthesis of the major myelin proteolipid protein in the whole brain of Quaking mouse, as seen previously in our studies on basic protein, proceeds at a normal rate relative to microsomes but its incorporation into myelin is depressed. A working hypothesis of myelin membrane assembly is presented to account for the defect in the incorporation of these proteins into Quaking myelin.  相似文献   

6.
CHANGES IN THE PROTEIN COMPOSITION OF MOUSE BRAIN MYELIN DURING DEVELOPMENT   总被引:24,自引:13,他引:11  
Abstract— Myelin was isolated from the brains of mice at various ages by a procedure involving a final purification on a continuous CsCl gradient. Myelin protein accumulated throughout development, increasing from 0.25 mg of protein/brain at 8 days of postnatal age to 3.5 mg of protein/brain at 300 days, although the rate of accumulation was greatest at about 21 days of age. Quantitative studies of the protein composition of these samples were carried out, utilizing discontinuous polyacrylamide gel electrophoresis in buffers containing sodium lauryl sulphate. Mouse brain myelin, contained (in order of increasing molecular weight) two basic proteins, an uncharacterized doublet, proteolipid protein, and a group of high molecular weight proteins. There were marked changes in the quantitative distribution of these proteins with increasing postnatal age. The basic protein fraction of total myelin protein increased from about 18 per cent at 8 days to 30 per cent at 300 days of age. Proteolipid protein increased even more dramatically, from 7 to 27 per cent in the same time interval. These chemical studies were correlated with ultrastructural investigations, both of the developing myelin sheath in situ and the isolated myelin obtained from mice of various ages. A hypothesis, relating the observed changes in protein composition of myelin during development to its mode of formation, is developed. Another subcellular fraction, separated from myelin, by virtue of its greater density in a CsCl gradient, was also studied. It was a vesicular, membranous fraction present at a level of 0.35 mg of protein/brain at all ages and was related to myelin in terms of protein composition.  相似文献   

7.
The central nervous system of the shiverer mouse is known to be severely deficient in myelin. Animals heterozygous for this autosomal-recessive mutation were crossed, and the myelin proteins were examined in the brains and spinal cords of shiverers and unaffected littermates among the offspring. In the brains and spinal cords of nine of the 14 unaffected littermates examined, the quantities of the myelin basic and proteolipid proteins were lower than normal. Furthermore, in the brains of heterozygotes 33 to ~ 150 days old, the myelin basic and proteolipid proteins were reduced in amount, compared to wild-type controls; the myelin basic protein was also present in subnormal amounts in the spinal cords from heterozygous animals at the ages of 17 to 150 days. More severe reductions in the quantities of the myelin proteins were observed in central nervous system tissue from homozygous shiverer mice, and the quantity of the myelin proteolipid protein in the central nervous system of the shiverer mouse, expressed as a ratio to the control value at each age, underwent a developmental decline. In heterozygotes, as well as shiverers, the peripheral nerves were also deficient in the P1 and Pr proteins, which are the same as the basic proteins in rodent central nervous system myelin. The findings regarding heterozygotes suggest that the defective primary gene product in the shiverer mouse could be the myelin basic protein itself or a protein required for a rate-limiting step in the processing of the myelin basic protein.  相似文献   

8.
Mice ranging in age from 16 to 44 days were injected intracerebrally with 3H-leucine, and incorporation into total brain proteolipids and the myelin proteolipid protein was measured. All proteolipids were isolated from whole brain by ether precipitation and separated into their individual components by SDS polyacrylamide gel electrophoresis. Two major proteolipids with apparent molecular weights of 20,700 and 25,400 were observed in these preparations, and their proportion increased over the developmental period examined. A Ferguson plot analysis comparing these proteins with those of isolated myelin showed that the 25,400-dalton proteolipid component from whole brain was the myelin proteolipid protein. Rates of incorporation of 3H-leucine into total brain proteolipids peaked at 22 days of age. Synthesis of the myelin proteolipid protein increased rapidly to a maximum value at 22 days and decreased rather slowly until at 44 days it was about 83% of its maximum rate of synthesis. The data indicate that the developmental pattern of synthesis of the myelin proteolipid protein is unlike that of the myelin basic proteins. Synthesis of the major myelin proteins is developmentally asynchronous in that peak synthesis of the myelin proteolipid appears to occur several days later than the basic proteins. In addition, it maintains its maximum rate of synthesis over a longer period of time than do the basic proteins.  相似文献   

9.
Abstract: Our previous work showed an early development of behavioral reflexes in rats whose mothers had been fed, during pregnancy and lactation, a lipid fraction extracted from yeast grown on n -alkanes (which contain 50% odd-chain fatty acids) in comparison with controls fed a margarine diet. To clarify whether the observed changes might be linked to an early myelination, we have investigated mRNAs involved in myelin synthesis in the brains of offspring at 5 days of age by northern blot and in situ hybridization. Northern blot analysis showed that proteolipid protein (PLP) and myelin oligodendrocyte glycoprotein (MOG) mRNAs were higher in animals on the lipid diet compared with controls. In situ hybridization with probes specific for PLP, myelin basic protein, and MOG mRNA showed significantly higher numbers of positive cells in test animals compared with controls in all brain regions. This study shows an acceleration of myelinogenesis induced by dietary lipids. These data can give a new insight in the therapeutical approaches involved to promote repair in demyelinating diseases.  相似文献   

10.
Effect of Triethyl Tin on Myelination in the Developing Rat   总被引:3,自引:2,他引:1  
Myelinogenesis in developing rats was studied following chronic dosing with triethyl tin (TET), at a level of 1.0 mg TET/kg body wt/day. Experiments included starved controls with body weights depressed by 17 to 40% to equal those of the TET-treated groups. Rats at ages of 16, 21, and 30 days showed decreases relative to well-nourished controls in body weight, forebrain weight, myelin yield, cerebroside level, and specific activity of brain 2',3'-cyclic nucleotide-3'-phosphohydrolase when dosed with TET. At 30 days, myelin and cerebroside yields were reduced by approximately 55%, while CNP activity was reduced by less than 20%. No differences in the forebrain myelin protein composition between control, starved, and TET animals were noted. The rate of myelin protein synthesis relative to brain total protein (assayed by incorporation of intracranially injected [3H]glycine into brain homogenate and myelin proteins) was decreased in the TET rats in proportion to the decreased yield of myelin, but no particular myelin protein was preferentially affected. Matching starved controls exhibited similar body weight decreases, less pronounced forebrain weight decreases, and little or no decrease in myelin concentration. There was a relative increase in the myelin protein synthesis rate in the starved rats, indicating preferential utilization of limited protein precursors for myelin protein synthesis. Spinal cord myelin was also decreased in the TET rats, but less severely than in the forebrain. At all ages optic, but not sciatic, nerves showed decreases in myelin concentration with TET treatment. We conclude that TET inhibits forebrain growth and CNS myelination more severely than can be accounted for by a general metabolic insult.  相似文献   

11.
Abstract— Concentrations in whole rat brains of lipids (total lipids, phospholipids, galactolipids, cholesterol, plasmalogens) and of proteolipid protein were not altered after feeding for 2 and 6 weeks of diets containing 5 per cent excess l -phenylalanine. After 2 weeks of diet with 7 per cent excess l -phenylalanine there was a slight reduction (5–10 per cent) in the concentrations in whole brain of cholesterol and galactolipids. No significant effects were noted in cerebral hemispheres after 3 weeks of diets with 7 per cent excess l -phenylalanine. In the 5 and 7 per cent supplemented groups of animals, the total amounts of the various lipids were initially reduced to levels which were within 10 per cent of those in diet-matched controls. The results for rats indicate that after 3 weeks of age only very moderate effects on accumulation of cerebral lipids can be produced by excess dietary l -phenylalanine fed at the most toxic levels of supplementation, while lower levels of dietary supplementation are without effect. The results suggest further that the more mature brain is resistant to alteration of deposition of myelin lipids by high levels of phenylalanine.  相似文献   

12.
The present study has examined the effects of maternal protein and protein-calorie deficiency during lactation on the development of CNS myelin subfractions in rat offspring. The offspring of both the protein and protein-calorie deficient rats had decreased brain and body weights, as well as delayed CNS myelination. Delayed active CNS myelination was demonstrated by the fact that 53-day-old nutritionally stressed pups incorporated significantly more [3H]leucine and [14C]glucose into all myelin subfractions than age-matched controls. Delayed myelination was also supported by the tremendous accretion of myelin proteins in the nutritionally deprived pups between 25 and 53 days of age. Despite the delayed active synthesis of myelin, the myelin deficit persisted in the offspring of protein deficient rats. These offspring had a deficiency of light + medium myelin throughout the study. At 17 days, both groups of nutritionally stressed rats had an excess of the high molecular weight proteins in heavy myelin. Heavy myelin from 17 day offspring of protein-calorie deficient rats had a deficiency of basic proteins, while that from the offspring of protein deficient rats had a deficiency of proteolipid protein. The protein composition of all myelin subfractions was normal at 53 days.  相似文献   

13.
The accumulation and distribution of proteolipid proteins in rat brain and selected brain regions (cerebellum, cerebral cortex, basal ganglia, and hippocampus) were studied during early postnatal development. In whole brain an eightfold increase of proteolipid was observed between ten and 33 days after birth. This was reflected in the separate regions examined where the proteolipid protein content increased six- to ten-fold during the same period. The basal ganglia and cerebral cortex contributed the greatest amount to the total proteolipid present. However, at 28–33 days the greatest concentration (mg/g tissue) was observed in the basal ganglia and hippocampus. When the proteolipid protein preparations were examined by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis, distinctive, heterogeneous patterns for each brain region were obtained. Proteolipid from basal ganglia (the region richest in white matter) consisted primarily of two major protein bands with apparent molecular weights of approximately 21,500 and 26,000. Both of these bands dramatically increased in quantity during myelination, and the larger protein coelectrophoresed with isolated myelin proteolipid protein. Both bands were also found present in proteolipid preparations from the other brain regions but in varying amounts relative to the total. The data suggest that the increase in proteolipid observed during this developmental period was due in large measure to the accumulation of myelin-specific proteolipids, but also that a significant proportion of the increase was due to the accumulation of nonmyelin components.  相似文献   

14.
D Gripois  C Fernandez 《Enzyme》1977,22(6):378-384
The evolution of monoamine oxidase (MAO) activity towards tryptamine has been studied from birth to 20 days post-natal in the brain and heart of male rats. Hyperthyroidism was induced by thyroxine injections and hypothyroidism by PTU administration. The results are expressed per unit of fresh weight and per unit of protein weight. Cardiac MAO is higher in the hyperthyroid animals than in controls as soon as 5 days following birth; the difference between the 2 groups increases until 20 days. The deficiency in thyroid hormones, on the other hand, was followed by a slight decrease in the cardiac enzyme, this decrease reflecting the general deficit in protein synthesis. Brain MAO is not affected by hyperthyroidism, but a clear deficit follows PTU administration. This deficit is significant beginning at 10 days and the difference between the 2 groups increases up to 20 days. The effects of PTU-induced hypothyroidism can be corrected by thyroxine injections. Except for the decrease in the level of cardiac enzyme in hypothyroid animals, all the effects on MAO activity are independent of the total protein content of both organs.  相似文献   

15.
The levels of myelin basic protein, proteolipid protein, and 2',3'-cyclic nucleotide 3'-phosphohydrolase (EC 3.1.4.37) in cerebral hemispheres of wild-type, heterozygous jp/+, and hemizygous jp/Y mice of different ages were determined by radioimmunoassay and immunoblotting. In jp/Y brain the level of myelin basic protein was 8% that of wild-type at all ages. All forms of the protein were reduced although the 21.5K Mr form was relatively spared at early ages compared to the 18.5K, 17K, and 14K Mr forms. The level of 2',3'-cyclic nucleotide 3'-phosphohydrolase was 8% that of wild-type at all ages, and proteolipid protein was undetectable at any age. These results are consistent with the hypothesis that the jimpy mutation blocks myelin morphogenesis subsequent to incorporation of 21.5K Mr myelin basic protein but prior to incorporation of proteolipid protein. In jp/+ brain the levels of the three proteins were reduced commensurately to 60-70% those of wild-type. The deficit was apparent as early as 10 days after birth and remained proportionately constant throughout development. These results suggest that in jp/+ mice, X-chromosome inactivation produces a mosaic population of functionally wild-type and functionally jimpy oligodendrocytes. The former elaborate normal amounts of myelin but do not completely compensate for the myelin deficit due to the latter.  相似文献   

16.
—Incubation of slices of rat central nervous system in Krebs-Ringer bicarbonate buffer produced a lipoprotein fraction which floated on 10·5% sucrose after homogenization of the slices and centrifugation. This fraction was not found after homogenization and centrifugation of fresh tissue and appeared to depend upon incubation. The amount of the light fraction increased in the following order per 100-mg slice: cerebrum < thalamic area < cerebellum < brain stem < spinal cord. The lipid composition of this fraction was similar to that of myelin, but contained a lower protein content compared to myelin of the corresponding area. This fraction was termed ‘dissociated myelin’. Upon incubation of slices a portion of the basic protein was lost from myelin subsequently isolated, and the dissociated fraction was slightly enriched in basic protein. The distribution of myelin protein among the characteristic three groups (basic, proteolipid and high mol. wt.) was quite different in myelin from spinal cord compared to that from other CNS area. Spinal cord myelin contained about 17% protein compared to about 23% in cerebrum, with brain stem myelin intermediate (19%), and the difference appeared to be due to lesser amounts of proteolipid in the caudal areas. The amount of dissociation after incubation was about 3–5 per cent of the total myelin in the cerebral cortex, 10 per cent in the thalamic area, 20 per cent in cerebellum, 35 per cent in the brain stem, and around 45 per cent in spinal cord. The smaller amount of proteolipid protein in spinal cord myelin may result in a deficiency of cohesive forces holding lipids and proteins together, thus causing greater instability and dissociation. Myelin dissociation increased with time of incubation up to 3 h, was augmented by Ca2+, and was substantial at pH 11, reaching a peak at pH 7, then decreased in the acid range. A similar fraction has been isolated previously from fresh CNS tissue made edematous by chronic treatment of rats with triethyl tin. The possible relationship of swelling in the disease process and myelin dissociation are discussed.  相似文献   

17.
—A developmental study of the lipid and protein composition of human CNS myelin was undertaken. The relative concentrations of the major lipid classes, cholesterol, glycolipids and phospholipids exhibited little change except for a modest decrease in the concentration of the phospholipids. In contrast to the total phospholipids, marked variations in the relative concentrations of individual phospholipids were found. Sphingomyelin increased over two-fold, and phosphatidyl choline decreased to almost half its original concentration. While the concentration of total myelin protein remained constant during maturation, variations in the concentrations of individual proteins were observed. Basic protein constituted 8·5 per cent of the total myelin proteins in the newborn brain and increased to about 30 per cent of the protein in the older ages. The concentrations of proteolipid protein and DM-20 seemed to increase with age, while the relative amounts of high molecular weight proteins decreased. The presence of myelin basic protein in newborn human brain was confirmed by electrophoretic studies involving several different polyacrylamide gel systems and by immunodiffusion experiments which showed a reaction of identity between a constituent present in the fraction containing the presumptive myelin basic protein and authentic myelin basic protein isolated from adult human brain.  相似文献   

18.
Electron microscopic immunocytochemical studies were carried out to localize myelin basic protein and myelin proteolipid protein during the active period of myelination in the developing rat brain using antisera to purified rat brain myelin proteolipid protein and large basic protein. The anti-large basic protein serum was shown by the immunoblot technique to cross-react with all five forms of basic protein present in the myelin of 8-day-old rat brain. Basic protein was localized diffusely in oligodendrocytes and their processes at very early stages in myelination. The immunostaining for basic protein was not specifically associated with any subcellular structures or organelles. The ultrastructural localization of basic protein suggests that it may be involved in fusion of the cytoplasmic faces of the oligodendrocyte processes during compaction of myelin. Immunoreactivity in the oligodendrocyte and myelin due to proteolipid protein appeared at a later stage of myelination than did that due to basic protein. Staining for proteolipid protein in the oligodendrocyte was restricted to the membranes of the rough endoplasmic reticulum, the Golgi apparatus, and apparent Golgi vesicles. The early, uncompacted periaxonal wrappings of oligodendrocyte processes were well stained with antiserum to large basic protein whereas staining for proteolipid protein was visible only after the compaction of myelin sheaths had begun. Our evidence indicates that basic protein and proteolipid protein are processed differently by the oligodendrocytes with regard to their subcellular localization and their time of appearance in the developing myelin sheath.  相似文献   

19.
We examined developmental changes of myelin-associated glycoprotein (MAG), basic protein (BP), abd proteolipid protein (PLP) in central nervous system myelin isolated from experimental hyperphenylalaninemic rats (PKU rats) and controls. Higher amounts of MAG, including high-molecular-weight MAG in myelin, were found in 12- to 21-day-old control rats than in adult rats. MAG in developing myelin was at a maximum in 18-day-old rats and began to decrease in 21-day-old rats, while PLP and BP in developing myelin increased at these developmental stages. The level of high-molecular-weight MAG decreased in myelin prepared from 21-day-old rats. These results suggest that the decreasing high-molecular-weight MAG is important for compaction of myelin in the early stage of myelination. In myelin from 12- to 18-day-old PKU rats, the ratio of each protein such as MAG, PLP, or BP to that of control was about 0.5 at 12 days, and increased to almost 1.0 at 18 days. The myelination seems to be initially delayed but to be close to that of controls in PKU rats about 18 days old.  相似文献   

20.
Recovery of Proteolipid Protein in Mice Heterozygous for the Jimpy Gene   总被引:1,自引:1,他引:0  
We have measured levels and synthesis of proteolipid protein (PLP) and its transport into myelin in female mice heterozygous for the jimpy gene and in their normal female littermates. In both cord and cerebrum, jimpy carriers show deficits in PLP during development followed by compensation in adulthood. Recovery of PLP occurs earlier in cord than in brain. At 13 days levels of PLP in carriers compared to controls are reduced to 0.60 and 0.44, respectively, in cord and cerebrum. By 100 days, normal levels of PLP are attained in cord (1.13) whereas levels of PLP in cerebrum are only 0.78 of control. By 200 days full recovery occurs in cerebrum, with a ratio of 1.21, suggesting a possible over-compensation. The yield of myelin from cerebrum was reduced to 0.78 in carriers compared to controls at 17 days. In brain slices, incorporation of [3H]leucine into homogenate PLP from carriers is the same as in controls, whereas [3H]leucine incorporation into myelin PLP is reduced to 0.68 of control. These results indicate that synthesis of PLP in the carriers is normal at 17 days, but transport of PLP into myelin is reduced. Similarly, acylation of homogenate PLP is normal, whereas acylation of myelin PLP is reduced, as measured by incorporation of [3H]palmitic acid. Transport of PLP into myelin was compared to transport of MBP; transport of both proteins was equally decreased as indicated by the similar ratio of labeled PLP to MBP in myelin from carriers compared to noncarriers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号