首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The self-fertile hermaphrodites of C. elegans and C. briggsae evolved from female ancestors by acquiring limited spermatogenesis. Initiation of C. elegans hermaphrodite spermatogenesis requires germline translational repression of the female-promoting gene tra-2, which allows derepression of the three male-promoting fem genes. Cessation of hermaphrodite spermatogenesis requires fem-3 translational repression. We show that C. briggsae requires neither fem-2 nor fem-3 for hermaphrodite development, and that XO Cb-fem-2/3 animals are transformed into hermaphrodites, not females as in C. elegans. Exhaustive screens for Cb-tra-2 suppressors identified another 75 fem-like mutants, but all are self-fertile hermaphrodites rather than females. Control of hermaphrodite spermatogenesis therefore acts downstream of the fem genes in C. briggsae. The outwardly similar hermaphrodites of C. elegans and C. briggsae thus achieve self-fertility via intervention at different points in the core sex determination pathway. These findings are consistent with convergent evolution of hermaphroditism, which is marked by considerable developmental genetic flexibility.  相似文献   

3.
In Caenorhabditis elegans, fem-1, fem-2, and fem-3 play pivotal roles in sex determination. Recently, a mammalian homologue of the C. elegans sex-determining protein FEM-1, F1Aalpha, has been described. Although there is little evidence to link F1Aalpha to sex determination, F1Aalpha and FEM-1 both promote apoptosis in mammalian cells. Here we report the identification and characterization of a human homologue of the C. elegans sex-determining protein FEM-2, hFEM-2. Similar to FEM-2, hFEM-2 exhibited PP2C phosphatase activity and associated with FEM-3. hFEM-2 shows striking similarity (79% amino acid identity) to rat Ca(2+)/calmodulin (CaM)-dependent protein kinase phosphatase (rCaMKPase). hFEM-2 and FEM-2, but not PP2Calpha, were demonstrated to dephosphorylate CaM kinase II efficiently in vitro, suggesting that hFEM-2 and FEM-2 are specific phosphatases for CaM kinase. Furthermore, hFEM-2 and FEM-2 associated with F1Aalpha and FEM-1 respectively. Overexpression of hFEM-2, FEM-2, or rCaMKPase all mediated apoptosis in mammalian cells. The catalytically active, but not the inactive, forms of hFEM-2 induced caspase-dependent apoptosis, which was blocked by Bcl-XL or a dominant negative mutant of caspase-9. Taken together, our data suggest that hFEM-2 and rCaMKPase are mammalian homologues of FEM-2 and they are evolutionarily conserved CaM kinase phosphatases that may have a role in apoptosis signaling.  相似文献   

4.
To investigate the causes and functional significance of rapid sex-determining protein evolution we compared three Caenorhabditis elegans genes encoding members of the protein phosphatase 2C (PP2C) family with their orthologs from another Caenorhabditis species (strain CB5161). One of the genes encodes FEM-2, a sex-determining protein, while the others have no known sex-determining role. FEM-2's PP2C domain was found to be more diverged than the other PP2C domains, supporting the notion that sex-determining proteins are subjected to selective pressures that allow for or cause rapid divergence. Comparison of the positions of amino acid substitutions in FEM-2 with a solved three-dimensional structure suggests that the catalytic face of the protein is highly conserved among C. elegans, CB5161, and another closely related species C. briggsae. However, the non-conserved regions of FEM-2 cannot be said to lack functional importance, since fem-2 transgenes from the other species were unable to rescue the germ-line defect caused by a C. elegans fem-2 mutation. To test whether fem-2 functions as a sex-determining gene in the other Caenorhabditis species we used RNA-mediated interference (RNAi). fem-2 (RNAi) in C. elegans and C. briggsae caused germ-line feminization, but had no noticeable effect in CB5161. Thus the function of fem-2 in CB5161 remains uncertain. Received: 11 April 2001 / Accepted: 6 August 2001  相似文献   

5.
为进一步探究鱼类性别决定的相关机理, 增加对鱼类性控基因表达和功能的认识, 克隆斑马鱼fem-1c 基因并对其进行表达分析。研究采用RACE-PCR方法从斑马鱼卵巢组织cDNA中克隆了fem-1c的cDNA全长序列, 其大小为2701 bp, 编码618个氨基酸。生物信息学分析显示, 斑马鱼FEM-1C蛋白包含9个ANK结构域、2个TPR结构域和2个低复杂性区域, 与其他脊椎动物的FEM-1C蛋白序列保守性较高。脊椎动物的fem-1c与tmed7、trim36等邻近的45个基因具有保守的同线性关系。半定量RT-PCR实验结果显示斑马鱼fem-1c在受精后17d开始表达, 并特异地表达于成体卵巢组织中。RNA原位杂交结果显示, fem-1c基因mRNA定位于卵巢组织的Ⅰ期和Ⅱ期卵母细胞胞质中。fem-1c的时空表达特征暗示其在斑马鱼卵巢分化中具有重要作用。    相似文献   

6.
7.
In the nematode Caenorhabditis elegans, fem-1, fem-2, and fem-3 play crucial roles in male sexual development. Among these three genes, fem-2 encodes a PP2C (serine/threonine phosphatase type 2C)-like protein, whose activity promotes the development of masculinity. Different from the canonical PP2Cs, FEM-2 consists of an additional N-terminal domain (NTD) apart from its C-terminal catalytic domain. Interestingly, genetic studies have indicated indispensable roles for both of these two domains of FEM-2 in promoting male development, but the underlying mechanism remains unknown. In the present study, we solved the crystal structure of full-length FEM-2, which revealed a novel structural fold formed by its NTD. Structural and functional analyses demonstrated that the NTD did not directly regulate the in vitro dephosphorylation activity of FEM-2, but instead functioned as a scaffold domain in the assembly of the FEM-1/2/3 complex, the executioner in the final step of the sex determination pathway. Biochemical studies further identified the regions in the NTD involved in FEM-1 and FEM-3 interactions. Our results not only identified a novel fold formed by the extra domain of a noncanonical PP2C enzyme, but also provided important insights into the molecular mechanism of how the NTD works in mediating the sex-determining role of FEM-1/2/3 complex.  相似文献   

8.
The ubiquitin-binding RPN-10 protein serves as a ubiquitin receptor that delivers client proteins to the 26S proteasome. Although ubiquitin recognition is an essential step for proteasomal destruction, deletion of the rpn-10 gene in yeast does not influence viability, indicating redundancy of the substrate delivery pathway. However, their specificity and biological relevance in higher eukaryotes is still enigmatic. We report herein that knockdown of the rpn-10 gene, but not any other proteasome subunit genes, sexually transforms hermaphrodites to females by eliminating hermaphrodite spermatogenesis in Caenorhabditis elegans. The feminization phenotype induced by deletion of the rpn-10 gene was rescued by knockdown of tra-2, one of sexual fate decision genes promoting female development, and its downstream target tra-1, indicating that the TRA-2-mediated sex determination pathway is crucial for the Delta rpn-10-induced sterile phenotype. Intriguingly, we found that co-knockdown of rpn-10 and functionally related ubiquitin ligase ufd-2 overcomes the germline-musculinizing effect of fem-3(gf). Furthermore, TRA-2 proteins accumulated in rpn-10-defective worms. Our results show that the RPN-10-mediated ubiquitin pathway is indispensable for control of the TRA-2-mediated sex-determining pathway.  相似文献   

9.
The C. elegans male sex-determining protein, FEM-1, has been identified as a substrate recognition subunit of a Cullin-2 ubiquitin ligase complex. This complex controls the level of TRA-1A, a Ci/Gli homolog and master regulator of sex determination, by ubiquitin-mediated proteolysis.  相似文献   

10.
11.
12.
13.
14.
15.
The PAR proteins have an essential and conserved function in establishing polarity in many cell types and organisms. However, their key upstream regulators remain to be identified. In C. elegans, regulators of the PAR proteins can be identified by their ability to suppress the lethality of par-2 mutant embryos. Here we show that a nos-3 loss of function mutant suppresses the lethality of par-2 mutants by regulating PAR-6 protein levels. The suppression requires the activity of the sex determination genes fem-1/2/3 and of the cullin cul-2. FEM-1 is a substrate-specific adaptor for a CUL-2-based ubiquitin ligase (CBCFEM-1). Interestingly, we find that CUL-2 is required for the regulation of PAR-6 levels and that PAR-6 physically interacts with FEM-1. Our data strongly suggest that PAR-6 levels are regulated by the CBCFEM-1 ubiquitin ligase thereby uncovering a novel role for the FEM proteins and cullin-dependent degradation in regulating PAR proteins and polarity processes.  相似文献   

16.
The nematodes Caenorhabditis elegans and C. briggsae independently evolved self-fertile hermaphroditism from gonochoristic ancestors. C. briggsae has variably divergent orthologs of nearly all genes in the C. elegans sex determination pathway. Their functional characterization has generally relied on reverse genetic approaches, such as RNA interference and cross-species transgene rescue and more recently on deletion mutations. We have taken an unbiased forward mutagenesis approach to isolating zygotic mutations that masculinize all tissues of C. briggsae hermaphrodites. The screens identified loss-of-function mutations in the C. briggsae orthologs of tra-1, tra-2, and tra-3. The somatic and germline phenotypes of these mutations are largely identical to those of their C. elegans homologs, including the poorly understood germline feminization of tra-1(lf) males. This overall conservation of Cb-tra phenotypes is in contrast to the fem genes, with which they directly interact and which are significantly divergent in germline function. In addition, we show that in both C. briggsae and C. elegans large C-terminal truncations of TRA-1 that retain the DNA-binding domain affect sex determination more strongly than somatic gonad development. Beyond these immediate results, this collection of mutations provides an essential foundation for further comparative genetic analysis of the Caenorhabditis sex determination pathway.  相似文献   

17.
Sex-determination gene and pathway evolution in nematodes   总被引:11,自引:0,他引:11  
The pathway that controls sexual fate in the nematode Caenorhabditis elegans has been well characterized at the molecular level. By identifying differences between the sex-determination mechanisms in C. elegans and other nematode species, it should be possible to understand how complex sex-determining pathways evolve. Towards this goal, orthologues of many of the C. elegans sex regulators have been isolated from other members of the genus Caenorhabditis. Rapid sequence evolution is observed in every case, but several of the orthologues appear to have conserved sex-determining roles. Thus extensive sequence divergence does not necessarily coincide with changes in pathway structure, although the same forces may contribute to both. This review summarizes recent findings and, with reference to results from other animals, offers explanations for why sex-determining genes and pathways appear to be evolving rapidly. Experimental strategies that hold promise for illuminating pathway differences between nematodes are also discussed.  相似文献   

18.
19.
Sex-specific elimination of cells by apoptosis plays a role in sex determination in Caenorhabditis elegans. Recently, a mammalian pro-apoptotic protein named F1Aalpha has been identified. F1Aalpha shares extensive homology throughout the entire protein with the C. elegans protein, FEM-1, which is essential for achieving all aspects of the male phenotype in the nematode. In this report, the role of FEM-1 in apoptosis was investigated. Overexpression of FEM-1 induces caspase-dependent apoptosis in mammalian cells. FEM-1 is cleaved in vitro by the C. elegans caspase, CED-3, generating an N-terminal cleavage product that corresponds to the minimal effector domain for apoptosis. Furthermore, CED-4 associates with FEM-1 in vitro and in vivo in mammalian cells and potentiates FEM-1-mediated apoptosis. Similarly, Apaf-1, the mammalian homologue of CED-4 was found to associate with F1Aalpha. These data suggest that FEM-1 and F1Aalpha may mediate apoptosis by communicating directly with the core machinery of apoptosis.  相似文献   

20.
A new study showing that neither FEM-2 nor FEM-3 is required for spermatogenesis in Caenorhabditis briggsae, unlike in Caenorhabditis elegans, implies that the sex-determination pathway in these species is evolving rapidly, and supports the proposal that they evolved hermaphroditism independently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号