首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Schlag J 《Current biology : CB》2012,22(4):R132-R133
In single-units studies, neuronal signals are recorded to assess their significance and, hopefully, their role in controlling behavior. A new study of neuronal signals associated with eye position helps to explain not only how the system normally works, but also how it sometimes fails.  相似文献   

2.
3.
A computational fluid dynamics (CFD) model describing the flow, electric field and temperature distribution of a laboratory‐scale pulsed electric field (PEF) treatment chamber with co‐field electrode configuration was developed. The predicted temperature increase was validated by means of integral temperature studies using thermocouples at the outlet of each flow cell for grape juice and salt solutions. Simulations of PEF treatments revealed intensity peaks of the electric field and laminar flow conditions in the treatment chamber causing local temperature hot spots near the chamber walls. Furthermore, thermal inactivation kinetics of lactoperoxidase (LPO) dissolved in simulated milk ultrafiltrate were determined with a glass capillary method at temperatures ranging from 65 to 80°C. Temperature dependence of first order inactivation rate constants was accurately described by the Arrhenius equation yielding an activation energy of 597.1 kJ mol?1. The thermal impact of different PEF processes on LPO activity was estimated by coupling the derived Arrhenius model with the CFD model and the predicted enzyme inactivation was compared to experimental measurements. Results indicated that LPO inactivation during combined PEF/thermal treatments was largely due to thermal effects, but 5–12% enzyme inactivation may be related to other electro‐chemical effects occurring during PEF treatments. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

4.
5.
With the current interest in the role of emotion in advertising and advertising research, there has been an increasing interest in the use of various brain activity measures to access nonverbal emotional responses. One such approach relies on measuring the difference between left and right hemisphere prefrontal cortical activity to assess like and dislike. This approach is based on electroencephalography (EEG) and neuroimaging work, suggesting that the approach/withdrawal (frequently but not always associated with like/dislike) dimension of emotion is indicated by the balance of activity between the left and right prefrontal cortex. Much of this work was initiated by Richard Davidson in the early 1990s. An early study by Davidson et al. measured brain electrical activity to assess patterns of activation during the experience of happiness and disgust. The authors reported that disgust was found to be associated with increased right-sided activation in the frontal and anterior temporal regions compared with happiness. In contrast, happiness was found to be accompanied by left-sided activation in the anterior temporal region compared with disgust. Early reports suggested that frontal laterality indexes motivational valence with positive emotions (happy, like) associated with left greater than the right frontal activity and vice versa. Although these findings appear to be consistent with personality traits (e.g., optimism pessimism), state changes in frontal laterality appears to index approach withdraw rather than emotional valence. Interestingly, the behavioral and motivational correlates of prefrontal asymmetric activity are not restricted to humans or even primates but have been observed in numerous species such as birds and fish (see [4]). Henceforth, we use the term motivational valence (MV) rather than the more cumbersome term approach withdraw.  相似文献   

6.
Traditional split-field studies and patient research indicate a privileged role for the right hemisphere in emotional processing [1-7], but there has been little direct fMRI evidence for this, despite many studies on emotional-face processing [8-10](see Supplemental Background). With fMRI, we addressed differential hemispheric processing of fearful versus neutral faces by presenting subjects with faces bilaterally [11-13]and orthogonally manipulating whether each hemifield showed a fearful or neutral expression prior to presentation of a checkerboard target. Target discrimination in the left visual field was more accurate after a fearful face was presented there. Event-related fMRI showed right-lateralized brain activations for fearful minus neutral left-hemifield faces in right visual areas, as well as more activity in the right than in the left amygdala. These activations occurred regardless of the type of right-hemifield face shown concurrently, concordant with the behavioral effect. No analogous behavioral or fMRI effects were observed for fearful faces in the right visual field (left hemisphere). The amygdala showed enhanced functional coupling with right-middle and anterior-fusiform areas in the context of a left-hemifield fearful face. These data provide behavioral and fMRI evidence for right-lateralized emotional processing during bilateral stimulation involving enhanced coupling of the amygdala and right-hemispheric extrastriate cortex.  相似文献   

7.
A positron emission tomography (PET) method was used to study the human brain for involuntary processing of syntactically organized information. Eight healthy subjects counted a certain letter in a running line presented on a monitor screen. PET scanning was conducted during this task performance. In cases when the running line presented a syntactically coherent text (unlike the cases when the same task was performed during administration of a sequence of incoherent words, pseudowords, or pseudotext), PET scanning revealed activation in the temporal and temporoparietooccipital cortical areas of the left hemisphere and the right temporal pole. The inverse comparison demonstrated activation in the left occipital area probably connected with the purely visual strategy of the task performance. These results show that information presentation in the form of coherent text even without the instruction to read the text is associated with more profound involuntary linguistic stimuli processing than the presentation of incoherent words, pseudowords, or pseudotext. The activation of the polar anterior temporal areas is considered evidence for activation of the system of syntactic processing, which functioned, in this case, in the involuntary (automatic) mode.  相似文献   

8.
Many sigmoidal functions to describe a bacterial growth curve as an explicit function of time have been reported in the literature. Furthermore, several expressions have been proposed to model the influence of temperature on the main characteristics of this growth curve: maximum specific growth rate, lag time, and asymptotic level. However, as the predictive value of such explicit models is most often guaranteed only at a constant temperature within the temperature range of microbial growth, they are less appropriate in optimization studies of a whole production and distribution chain. In this paper a dynamic mathematical model--a first-order differential equation--has been derived, describing the bacterial population as a function of both time and temperature. Furthermore, the inactivation of the population at temperatures above the maximum temperature for growth has been incorporated. In the special case of a constant temperature, the solution coincides exactly with the corresponding Gompertz model, which has been validated in several recent reports. However, the main advantage of this dynamic model is its ability to deal with time-varying temperatures, over the whole temperature range of growth and inactivation. As such, it is an essential building block in (time-saving) simulation studies to design, e.g., optimal temperature-time profiles with respect to microbial safety of a production and distribution chain of chilled foods.  相似文献   

9.
Many sigmoidal functions to describe a bacterial growth curve as an explicit function of time have been reported in the literature. Furthermore, several expressions have been proposed to model the influence of temperature on the main characteristics of this growth curve: maximum specific growth rate, lag time, and asymptotic level. However, as the predictive value of such explicit models is most often guaranteed only at a constant temperature within the temperature range of microbial growth, they are less appropriate in optimization studies of a whole production and distribution chain. In this paper a dynamic mathematical model--a first-order differential equation--has been derived, describing the bacterial population as a function of both time and temperature. Furthermore, the inactivation of the population at temperatures above the maximum temperature for growth has been incorporated. In the special case of a constant temperature, the solution coincides exactly with the corresponding Gompertz model, which has been validated in several recent reports. However, the main advantage of this dynamic model is its ability to deal with time-varying temperatures, over the whole temperature range of growth and inactivation. As such, it is an essential building block in (time-saving) simulation studies to design, e.g., optimal temperature-time profiles with respect to microbial safety of a production and distribution chain of chilled foods.  相似文献   

10.
L-Propargylglycine, a naturally occurring gamma, delta-acetylenic alpha-amino acid, induces mechanism-based inactivation of two pyridoxal phosphate dependent enzymes of methionine metabolism: (1) cystathionine gamma-synthease, which catalyzes a gamma-replacement reaction in methionine biosynthesis, and (2) methionine gamma-lyase, which catalyzes a gamma-elimination reaction in methionine breakdown. Biphasic pseudo-first-order inactivation kinetics were observed for both enzymes. Complete inactivation is achieved with a minimum molar ratio ([propargylglycine]/[enzyme monomer]) of 4:1 for cystathionine gamma-synthase and of 8:1 for methionine gamma-lyase, consistent with a small number of turnovers per inactivation event. Partitioning ratios were determined directly from observed primary kinetic isotope effects. [alpha-2H]Propargylglycine displays kH/kD values of about 3 on inactivation half-times. [alpha-3H]-Propargylglycine gives release of tritium to solvent nominally stoichiometric with inactivation but, on correction for the calculated tritium isotope discrimination, partition ratios of four and six turnovers per monomer inactivated are indicated for cystathionine gamma-synthase and methionine gamma-lyase, respectively. The inactivation stoichiometry, using [alpha-14C]-propargylglycine, is four labels per tetramer of cystathionine gamma-synthase but usually only two labels per tetramer of methionine gamma-lyase (half-of-the-sites reactivity). Two-dimensional urea isoelectrofocusing/NaDodSO4 electrophoresis suggests (1) that both native enzymes are alpha 2 beta 2 tetramers where the subunits are distinguishable by charge but not by size and (2) that, while each subunit of a cystathionine gamma-synthase tetramer becomes modified by propargylglycine, only one alpha and one beta subunit may be labeled in an inactive alpha 2 beta 2 tetramer of methionine gamma-lyase. Steady-state spectroscopic analyses during inactivation indicated that modified cystathionine gamma-synthase may reprotonate C2 of the enzyme--inactivator adduct, so that the cofactor is still in the pyridoxaldimine oxidation state. Fully inactivated methionine gamma-lyase has lambda max values at 460 and 495 nm, which may represent conjugated pyridoximine paraquinoid that does not reprotonate at C2 of the bound adduct. Either species could arise from Michael-type addition of an enzymic nucleophile to an electrophilic 3,4-allenic paraquinoid intermediate, generated initially by propargylic rearrangement upon a 4,5-acetylenic pyridoximine structure, as originally proposed for propargylglycine inactivation of gamma-cystathionase [Abeles, R., & Walsh, C. (1973) J. Am. Chem. Soc. 95, 6124]. It is reasonable that cystathionine gamma-synthase is the major in vivo target for this natural acetylenic toxin, the growth-inhibitory effects of which are reversed by methionine.  相似文献   

11.
Moving objects change their position until signals from the photoreceptors arrive in the visual cortex. Nonetheless, motor responses to moving objects are accurate and do not lag behind the real-world position. The questions are how and where neural delays are compensated for. It was suggested that compensation is achieved within the visual system by extrapolating the position of moving objects. A visual illusion supports this idea: when a briefly flashed object is presented in the same position as a moving object, it appears to lag behind. However, moving objects do not appear ahead of their final or reversal points. We investigated a situation where participants localized the final position of a moving stimulus. Visual perception and short-term memory of the final target position were accurate, but reaching movements were directed toward future positions of the target beyond the vanishing point. Our results show that neuronal latencies are not compensated for at early stages of visual processing, but at a late stage when retinotopic information is transformed into egocentric space used for motor responses. The sensorimotor system extrapolates the position of moving targets to allow for precise localization of moving targets despite neuronal latencies.  相似文献   

12.
Z Annau 《Life sciences》1977,20(6):1043-1049
The effect of carbonic anhydrase inhibition on electrical self stimulation of the brain during hypoxia. Rats implanted with electrodes in the lateral hypothalamus were trained to self stimulate. Eighteen animals were injected with carbonic anhydrase inhibitor and eighteen with saline one hour prior to exposure to 8% oxygen for two hours. The performance of both groups declined in hypoxia. One hour following the onset of 8% oxygen, the animals that received the drug responded at a significantly higher rate than controls. Another group of 9 rats that had been prepared with arterial catheters was exposed to 8% oxygen before and after being treated with the drug. Arterial samples showed that the treated animals had a significantly lower pH than the controls both in air and hypoxia.  相似文献   

13.
14.
Spike trains of individual neurons in the sensorimotor cortex detected in simultaneous multiunit records from the left and right rabbit brain hemispheres were analyzed in the baseline state, during immobilization ("animal hypnosis"), and after the termination of this state. The crosscorrelation analysis of pulse series revealed a relationship between the moments of spike generation by neurons of the left and right hemispheres. A significant correlation between the spike trains was considered as an interaction between the neurons (i.e., mutual influence of the cells on each other). It was shown that the strength of the effects of left-hemispheric neurons on cells of the right hemisphere could significantly vary (as compared to baseline) at any stage of the experiment and in any of the time periods analyzed. The strength of the effects activity by neurons of the right-hemispheres on cells of the left-hemispheres significantly changed only after the termination of the immobilization state and in substantially lower time limits.  相似文献   

15.
Here we deal with the influence of heat-transport effects on a high-pressure-induced enzyme inactivation in packed substances. Special attention is given to the influence of the geometrical scale and to the heat-transfer characteristics of the packaging material. The investigation is based on mathematical modeling and numerical simulation. The method accounts both for compression phase and holding phase. The model includes convective and conductive heat transfer, fluid motion as well as an enzyme transport equation with a first-order kinetic source term accounting for the inactivation. Three configurations with a total volume of 0.8 L, 6.3 L, and 50.3 L are considered. The pressure medium is water. The enzyme solution is B. subtilis alpha-amylase dissolved in a TRIS-HCl-buffer. The packaging material is polypropylene. The heat-transfer coefficient for conduction through the packaging material is varied to simulate both changes in the material properties as well as modifications of the packaging material thickness. It is found that the efficiency of the inactivation increases with increasing chamber volume as long as the kinetic inactivation constant is increasing with temperature. In the considered case the activity retention obtained in a 0.8 L volume is about 2.4 times larger than the one obtained for the same process carried out in a 50.3 L volume. Furthermore, it was found that the properties of the packaging material could induce a significant degree of nonuniformity (worst case = 69%). An appropriate choice of the material can lead to maximum inactivation and maximum process uniformity since advantage is taken from the slow heat exchange after the compression phase.  相似文献   

16.
Sustained activity has been recorded in the prefrontal cortex during working memory tasks. First, we compare the anatomical distribution of this activity in humans and monkeys. Then, we show that it reflects many factors, maintenance of the items presented, preparation for the response, transformation of the items during the delay, task rules and task goals. Finally, we point out that sustained activity has also been recorded in other areas, such as the parietal cortex. We suggest that the key to prefrontal cortex lies not in the maintenance of sensory information but in the prospective use of that information for behaviour.  相似文献   

17.
In various aspects of linguistic analysis and human cognition, some forms of observed variation are ignored in the service of handling more abstract categories. In the absence of training, rhesus discriminate between different types of vocalizations based on the information conveyed as opposed to their acoustic morphologies. We hypothesized that neurons in the ventrolateral prefrontal cortex (vPFC), an area involved in auditory-object processing, might be involved in this spontaneous categorization. To test this hypothesis, we recorded vPFC activity while rhesus listened to vocalizations conveying information about food and non-food events. Results showed between, but not within category discrimination. That is, vPFC neurons discriminated between vocalizations associated with food versus non-food events but not within the class of food calls associated with differences in quality. These results indicate that the vPFC plays a significant role in spontaneously processing abstract categorical information.  相似文献   

18.
19.
Electrocorticograms (ECoG) were recorded using subdural grid electrodes in forearm sensorimotor cortex of six human subjects. The subjects performed three visuomotor tasks, tracking a moving visual target with a joystick-controlled cursor; threading pieces of tubing; and pinching the fingers sequentially against the thumb. Control conditions were resting and active wrist extension. ECoGs were recorded at 14 sites in hand- and arm-sensorimotor area, functionally identified with electrical stimulation. For each behavior we computed spectral power of ECoG in each site and coherence in all pair-wise sites. In three out of six subjects, gamma-oscillations were observed when the subjects started the tasks. All subjects showed widespread power decrease in the range of 11-20 Hz and power increase in the 31-60 Hz ranges during performance of the visuomotor tasks. The changes in gamma-range power were more vigorous during the tracking and threading tasks compared with the wrist extension. Coherence analysis also showed similar task-related changes in coherence estimates. In contrast to the power changes, coherence estimates increased not only in gamma-range but also at lower frequencies during the manipulative visuomotor tasks. Paired sites with significant increases in coherence estimates were located within and between sensory and motor areas. These results support the hypothesis that coherent cortical activity may play a role in sensorimotor integration or attention.  相似文献   

20.
Z X Wang  B Preiss  C L Tsou 《Biochemistry》1988,27(14):5095-5100
Kinetics of inactivation and modification of the reactive thiol groups of creatine kinase by 5,5'-dithiobis(2-nitrobenzoic acid) or iodoacetamide have been compared, the former by following the substrate reaction in presence of the inactivator [Wang, Z.-X., & Tsou, C.-L. (1987) J. Theor. Biol. 127, 253]. The microscopic constants for the reaction of the inactivators with the free enzyme and with the enzyme-substrate complexes were determined. From the results obtained it appears that with respect to ATP both inactivators are noncompetitive whereas for creatine iodoacetamide is competitive but DTNB is not. The formation of the ternary complex protects against the inactivation by both DTNB and iodoacetamide. The inactivation kinetics is monophasic with both inactivators, but under similar conditions, the modification reactions in the presence of the transition-state analogue of creatine-ADP-Mg2+-nitrate show biphasic kinetics as also reported by Price and Hunter [Price, N.C., & Hunter, M.G. (1976) Biochim. Biophys. Acta 445, 364]. If the reactive ternary complex and the enzyme complexed with the transition-state analogue react in the same way with these reagents, the modification of one fast-reacting thiol group for each enzyme molecule leads to complete inactivation, indicating that the enzyme has to be in the dimeric state to be active.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号