首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methocarbamol enantiomers in rat and human plasma were quantified using a stereospecific high-performance liquid chromatographic method. Racemic methocarbamol and internal standard, (R)-(−)-flecainide, were isolated from plasma by a single-step extraction with ethyl acetate. After derivatization with the enantiomerically pure reagent (S)-(+)-1-(1-naphthyl)ethyl isocyanate, methocarbamol diastereomers and the (R)-flecainide derivative were separated on a normal-phase silica column with a mobile phase consisting of hexane—isopropanol (95:5, v/v) at a flow-rate of 1.6 ml/min. Ultraviolet detection was carried out at a wavelength of 280 nm. The resolution factor between the diastereomers was 2.1 (α = 1.24). An excellent linearity was observed between the methocarbamol diastereomers/internal standard derivative peak-area ratios and plasma concentrations, and the intra- and inter-day coefficients of variation were always <9.8%. The lowest quantifiable concentration was 0.5 μg/ml for each enantiomer (coefficients of variation of 9.8 and 8.8% for (S)- and (R)-methocarbamol, respectively), while the limit of detection (signal-to-noise ratio 3:1) was approximately 10 ng/ml. The assay was used to study the pharmacokinetics of methocarbamol enantiomers in a rat following intravenous administration of a 120 mg/kg dose of racemic methocarbamol and to evaluate plasma and urine concentrations in a human volunteer after oral administration of a 1000-mg dose of the racemate. The method is suitable for stereoselective pharmacokinetic studies in humans as well as in animal models.  相似文献   

2.
Racemic sulfonylated 2,5-diaryltetrahydrofuran [L-668,750, (±)-trans-2-[3-methoxy-5-(2-hydroxy)ethylsulfonyl-4-n-propoxy]-phenyl-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran, I] is a potent, specific and orally active platelet-activating factor (PAF) receptor antagonist. Its (—)-(2S,5S) enantiomer [L-680,573, (S)-I] exhibited higher PAF antagonistic potency than the (+)-(2R,5R) enantiomer [L-680,574, (R)-I] in vitro and in animal models. For assay of drug concentrations in plasma of rats dosed intravenously or orally with tritium-labeled I, we have developed a high-performance liquid chromatographic (HPLC) method which directly resolved the two enantiomers. The column contained α1-acid glycoprotein as the chiral stationary phase and was eluted with phosphate buffer, methanol and ethanol at neutral pH. The concentration of each enantiomer in the plasma was then determined by reverse isotope dilution assay. Results showed that the plasma clearance rate of the more potent (S)-I enantiomer was more than ten-fold faster than that of the (R)-I enantiomer; the enantioselective clearance resulted in nearly ten-fold higher concentrations of the latter in plasma at all time points regardless of the dosing route. This paper describes the HPLC chiral resolution method and its application in plasma analysis.  相似文献   

3.
To characterise the pharmacokinetic properties of each enantiomer of ibuprofen in broiler chickens, a stereospecific HPLC method based on a α1-acid glycoprotein bonded chiral stationary phase has been validated. S-(+)-naproxen was used as internal standard. Enantiomers of ibuprofen and S-(+)-naproxen were baseline separated using a mobile phase consisting of 0.1 M phosphate buffer pH=7 and 0.4% 2-propanol. The method is precise, specific, accurate and reproducible. Recoveries were higher than 80% and the limits of quantification for R-(−)- and S-(+)-ibuprofen were 1.16 and 1.37 μg ml−1, respectively. The method seemed suitable for the pharmacokinetic studies of ibuprofen in chickens.  相似文献   

4.
Summary 1. Our aim was to test the hypothesis that selectivity for D3 dopamine (DA) receptors may contribute to limbic anti-DA selectivity ofS-(+)-aporphine DA partial agonists.2. Affinity was tested with3H-emonapride, using human D3 receptors in mouse fibroblasts and D2 receptors in rat striatal tissue.3. D3 receptors showed a picomolar affinity for3H-emonapride, Na+ dependence, and reversible saturability, as well as stereoselectivity. Confirmatory or novel D3/D2 pharmacologic selectivity was found with several benzamides, thioxanthenes, buspirone, GBR-12909, and DA agonists including hydroxyaminotetralins [ADTN, (+)-7-OH-DPAT, (–)-PPHT and its fluorescein derivative], (–)-N-propylnorapomorphine, (–)-3-PPP, (–)-quinpirole, and SDZ-205-502, but neither aminoergoline nor (+)-aporphine partial agonists.4. The results extend pharmacologic characterization of D3-transfected cell membranes but fail to account for the high limbic anti-DA selectivity ofS-(+)-aporphines.  相似文献   

5.
A sensitive and stereospecific HPLC method was developed for the analysis of (−)- and (+)-pentazocine in human serum. The assay involves the use of a phenyl solid-phase extraction column for serum sample clean-up prior to HPLC analysis. Chromatographic resolution of the pentazocine enantiomers was performed on a octadecylsilane column with sulfated-β-cyclodextrin (S-β-CD) as the chiral mobile phase additive. The composition of the mobile phase was aqueous 10 mM potassium dihydrogenphosphate buffer pH 5.8 (adjusted with phosphoric acid)–absolute ethanol (80:20, v/v) containing 10 mM S-β-CD at a flow-rate of 0.7 ml/min. Recoveries of (−)- and (+)-pentazocine were in the range of 91–93%. Linear calibration curves were obtained in the 20–400 ng/ml range for each enantiomer in serum. The detection limit based on S/N=3 was 15 ng/ml for each pentazocine enantiomer in serum with UV detection at 220 nm. The limit of quantitation for each enantiomer was 20 ng/ml. Precision calculated as R.S.D. and accuracy calculated as error were in the range 0.9–7.0% and 1.2–6.2%, respectively, for the (−)-enantiomer and 0.8– 7.6% and 1.2–4.6%, respectively, for the (+)-enantiomer (n=3).  相似文献   

6.
The direct resolution and quantitation of (R)- and (S)-disopyramide, isolated from human plasma, was accomplished using a chiral α1-acid glycoprotein column. A LiChrosorb RP-2 column (50 × 3.0 mm I.D.) was used as a precolumn. Phosphate buffer, pH 6.20, containing 2-propanol and N,N-dimethyloctylamine was used as mobile phase, expressed as the relative standard deviation, was 1.8% and 3.3% for (R)- and (S)-disopyramide, respectively, at a drug level of 0.5 μg/ml. In two subjects who received a single capsule of racemic disopyramide (150 mg), the plasma levels of the (R) isomer were about half those of the (S) isomer. The half-lives of (R)- and (S)-disopyramide were similar.  相似文献   

7.
Myocardial and pulmonary β-adrenoceptors can be imaged with 2-(S)-(−)-(9H-carbazol-4-yl-oxy)-3-[1-(fluoromethyl)ethyl]amino-2- propanol (S-1′-[18F]fluorocarazolol, I). Quantification of unmodified fluorocarazolol in plasma is necessary for analysis of PET images in terms of receptor densities. We have determined I and its radioactive metabolites in rat, sheep and human plasma, using (1) solid-phase extraction (C18) followed by reversed-phase HPLC and (2) direct injection of untreated plasma samples on an internal-surface reversed-phase (ISRP) column. The two methods were in good agreement. Unmodified I decreased from over 99% initially to less than 5%, 5–10% and 20% at 60 min post-injection in rats, sheep and human volunteers, respectively. Protein binding in sheep and human plasma was determined by ultrafiltration. The fraction of total plasma radioactivity bound to protein and the fraction representing unmodified radioligand were linearly correlated, suggesting that fluorocarazolol was more than 70% protein-bound, whereas its metabolites showed negligible protein binding. Direct injection of plasma on an ISRP column seems a convenient method for quantification of lipophilic radioligands such as fluorocarazolol.  相似文献   

8.
An enantioselective assay for l- and d-fenfluramine in rat liver microsomal incubates was developed. The method involves extraction of fenfluramine from the microsomal incubates, and formation of fenfluramine diastereomeric derivatives with the chiral reagent S-(−)-N-trifluoroacetyl prolyl chloride. Separation and quantitation of the diastereomeric fenfluramine derivatives are carried out by a capillary gas chromatographic system with flame ionization detection. The assay is linear from 1 to 50 μg/ml for each enantiomer. The analytical method affords average recoveries of 92.28 and 96.44% for l- and d-fenfluramine, respectively. The limits of detection and quantitation for the method are 0.1 and 1.0 μg/ml for the l- and d-fenfluramine isomers, respectively. The reproducibility of the assay was <10% (RSD). The method allowed study of the depletion of l- and d-fenfluramine in rat liver microsomal incubates. The stereoselectivity of fenfluramine phase I metabolism was observed.  相似文献   

9.
A high-performance liquid chromatographic (HPLC) technique is described for quantification of R(+)- and S(−)-propranolol from 100-μl rat blood samples. The procedure involves chiral derivatization with tert.-butoxycarbonyl- -leucine anhydride to form diastereomeric propranolol- -leucine derivatives which are separated on a reversed-phase HPLC column. The method as previously reported has been modified for assaying serial blood microsamples obtained from the rat for pharmacokinetic studies. An internal standard, cyclopentyldesisopropylpropranolol, has been incorporated into the assay and several derivatization parameters have been altered. Standard curves for both enantiomers were linear over a 60-fold concentration range in 100-μl samples of whole rat blood (12.5–750 ng/ml; r=0.9992 for each enantiomer). Inter- and intra-assay variability was less than 12% for each enantiomer at 25 ng/ml. No enantiomeric interference or racemization was observed as a result of the derivatization. No analytical interference was noted from endogenous components in rat blood samples. Preliminary data from two male Sprague-Dawley rats given a 2.0 mg/kg intravenous dose of racemic propranolol revealed differential disposition of the two enantiomers. R(+)-Propranolol achieved higher initial concentration but was eliminated more rapidly than S(−)-propranolol. Terminal half-lives of R(+)- and S(−)-propranolol were 19.23 and 51.95 min, respectively, in one rat, and 14.50 and 52.07 min, respectively, in the other.  相似文献   

10.
Molecular combinations of two antioxidants (i.e., ascorbic acid and the pharmacophore of α-tocopherol), namely the 2,3-dihydroxy-2,3-enono-1,4-lactone and the chromane residues, have been designed and tested for their radical scavenging activities. When evaluated for their capability to inhibit malondialdehyde (MDA) production in rat liver microsomal membranes, the 3,4-dihydroxy-5R-2(R,S)-(6-hydroxy-2,5,7,8-tetramethylchroman-2(R,S)yl-methyl)-1,3]dioxolan-4S-yl]-5H-furan-2-one (11ad), exhibited an interesting activity. In particular the 5R,2R,2R,4S and 5R,2R,2S,4S isomers (11c,d) displayed a potent antioxidant effect compared to the respective synthetic α-tocopherol analogue (5) and natural α-tocopherol or ascorbic acid, used alone or in combination. Moreover, the mixture of stereoisomers 11ad also proved to be effective in preventing damage induced by reperfusion on isolated rabbit heart, in particular at the higher concentration of 300 μM. In view of these results our study represents a new approach to potential therapeutic agents for applications in pathological events in which a free radical damage is involved. Design, synthesis and preliminary biological activity are discussed.  相似文献   

11.
A new soil isolate, tentatively identified as Rhodococcus equi TG328, was found to be effective in the production of S-(+)-2-phenylpropionic acid from (R,S)-2-phenylpropionitrile. The conversion is catalysed by two enzymes. First, a nitrile hydratase converts the (R,S)-nitrile to (R,S)-2-phenylpropionamide. Second, a stereoselective amidase converts the S-(+)-amide to S-(+)-2-phenylpropionic acid. Conditions for optimal enzyme production and accumulation of S-(+)-2-phenylpropionic acid by resting cells were studied. The reaction of resting cells for 30 h at 10° C with (R,S)-2-phenylpropionitrile resulted in the production of 100 g of S-(+)-2-phenylpropionic acid per litre of reaction mixture. The enantiometric excess of the purified S-(+)-2-phenylpropionic acid was 99.4%. The amount of S-(+)-2-phenylpropionic acid accumulated was enhanced by lower reaction temperatures. In addition, unreacted R-(–)-2-phenylpropionamide with 99.0% enantiometric excess was isolated. Correspondence to: T. Nagasawa  相似文献   

12.
New analogues of 3β-hydroxy-5α-cholest-8(14)-en-15-one (15-ketosterol) with modified 17-chains [(22S,23S,24S)- and (22R,23R,24S)-3β-hydroxy-24-methyl-22,23-oxido-5α -cholest-8(14)-en-15- ones and (22RS,23ξ,24S)-24-methyl-5α-cholesta-8(14)-ene-3β, 22,23-triol-15-one] were synthesized from (22E,24S)-3β-acetoxy-24-methyl-5α-cholesta-8(14), 22-dien-15-one. The chiralities of their 22 and 23 centers were determined by NMR spectroscopy. The isomeric 22,23-epoxides effectively inhibited cholesterol biosynthesis in hepatoma Hep G2 cells (IC50 0.9±0.2 and 0.7±0.2 μM, respectively), and their activities significantly exceeded those of 15-ketosterol (IC50 4.0±0.5 μM), (22E,24S)-3β-hydroxy-24-methyl-5α-cholesta-8(14),22- dien-15-one (IC50 3.1±0.4 μM), and the 3β,22,23-triol synthesized (IC50 6.0±1.0 μM).__________Translated from Bioorganicheskaya Khimiya, Vol. 31, No. 3, 2005, pp. 312–319.Original Russian Text Copyright © 2005 by Flegentov, Piir, Medvedeva, Tkachev, Timofeev, Misharin.  相似文献   

13.
Cysteine conjugate β-lyases convert S-substituted cysteine conjugates to pyruvate, ammonia, and thiols. A simple assay for cysteine conjugate β-lyase activity was developed with S-(2-benzothiazolyl)cysteine as the substrate. The production of 2-mercaptobenzothiazole was measured by its intense absorbance at 321 nm in trichloroacetic acid-quenched reaction mixtures. The formation of 2-mercaptobenzothiazole was directly proportional to protein concentrations of 0.17 to 1.2 mg/ml with rat liver cytosol as the source of β-lyase activity. Production of 2-mercaptobenzothiazole was stoichiometric with pyruvate and was increased by addition of pyridoxal phosphate only at reaction times of 5 min or longer. The simplicity, sensitivity, and specificity of this procedure offer significant advantages over other methods for the assay of cysteine conjugate β-lyase activity.  相似文献   

14.
Natural ( + )-(1R,2S,3S)-methyl cucurbate (1b) and the ( – )-δ-lactone of 3-epi-cucurbic acid (16) were synthesized from (+)-(1R,6S,7R)-bicyclo [4.3.0] non-3-en-7-ol (5). Asymmetric hydrolysis of the acetate (8) of ( ± )-5 with pancreatin gave optically pure the ( + )-(7R)-alcohol (5) and (–)-(7S)-acetate (8). An ozonolysis product of ( + )-5 was transformed to ( – )-16 and ( + )-(3S)-1b with inversion of the (7R)-hydroxyl group. Similarly, unnatural (–)-1b and (+)-16 were prepared from optically pure ( — )-5. The growth inhibitory activities of these synthesized chiral compounds toward lettuce seedlings were examined.  相似文献   

15.
A method enabling quantification of R-(−)- and S-(+)-mepivacaine in human plasma in the low nanogram per milliliter range is described. The procedure involves extraction from plasma with diethyl ether, centrifugation, back-extraction into an acidified aqueous solution, washing with a mixture of pentane and isoamylalcohol, alkalinisation, followed by extraction with a mixture of n-pentane and isoamylalcohol. After evaporation of the organic phase, the residue is redissolved in the mobile phase used for the HPLC analysis, which consists of a 6.8:93.2 (v/v) isopropanol-sodium hydrogenphosphate buffer solution with the pH adjusted to 6.8 using phosphoric acid. The HPLC method has been described previously. Separation of the enantiomers is achieved with an α1-AGP column and the UV detection wavelength is 210 nm. The minimal detectable concentration is ca. 3 ng/ml and the lower limit of quantification is 5 ng/ml for each enantiomer. For both enantiomers r is >0.9995 over the plasma enantiomeric concentration range of 10.5–1054 ng/ml.  相似文献   

16.
(S)-[18F]Fluorocarazolol is a radiopharmaceutical developed to quantitatively assess β-adrenergic receptors in vivo via positron emission tomography imaging. Since radioactive metabolites of (S)-[18F]fluorocarazolol rapidly appear in the plasma, methods for conveniently and reliably evaluating plasma for (S)-[18F]fluorocarazolol content are required. Here we present methods and validation of an approach using commercial extraction cartridges that is faster and more convenient than an approach using internal-surface reverse-phase chromatography but yields comparable results.  相似文献   

17.
A valid, sensitive high-performance liquid chromatographic technique is reported for the separation of the two enantiomers of metoprolol in human plasma. The procedure involves pre-column derivatization with the homochiral reagent S-(+)-1-(1-naphthyl)-ethyl isocyanate. Once formed, the diastereomers are separated using normal-phase high-performance liquid chromatography. Fluorescence detection (220 nm excitation; no emission filter) was utilized, resulting in baseline resolution (Rs > 1.5). The peaks corresponding to metoprolol enantiomers were free from interference throughout the examined range of 5–500 ng/ml; accuracy and precision were within approximately 10%. Analysis of a plasma sample collected from a healthy volunteer demonstrated that the assay is applicable to clinical studies.  相似文献   

18.
19.
20.
Cultivated oyster mushrooms (genus Pleurotus) are interesting as a source of biologically active glucans. Partially, β-glucan from Pleurotus sp. (pleuran) has been used as food supplements due to its immunosuppressive activity. Like other dietary fibre components, oyster mushroom polysaccharides can stimulate the growth of colon microorganisms (probiotics), i.e. act as prebiotics. Specific glucans were isolated from stems of Pleurotus ostreatus and Pleurotus eryngii by subsequent boiling water and alkali extraction. Obtained water soluble (L1), alkali soluble (L2) and insoluble (S) fractions were characterised by various analytical methods. Spectroscopic analysis detected glucans in all the fractions: branched 1,3-1,6-β-d-glucan predominated in L1 and S, while linear 1,3-α-d-glucan in L2. Fractions L1 also contained marked amount of proteins partially in complex with glucans; protein content in L2 was insignificant. Effective deproteinisation of L1 and separation of α- and β-glucans in L2 was achieved by the treatment with phenolic reagent. Small amount of chitin was found in S as a component of cell wall chitin–glucan complex. Potential prebiotic activity of extracts L1 and L2 was testing using nine probiotic strains of Lactobacillus, Bifidobacterium and Enterococcus. These probiotics showed different growth characteristics dependently on used extract and strain specificity due to the presence of structurally diverse compounds. The extracts L1 and L2 can be applied to synbiotic construction only for carefully selected probiotic strains. This exploitation of fruit body extracts extends the use of mushrooms P. ostreatus and P. eryngii for human health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号