首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tannins are plant-derived polyphenols with antimicrobial effects. The mechanism of tannin toxicity towards Escherichia coli was determined by using an extract from Acacia mearnsii (Black wattle) as a source of condensed tannins (proanthocyanidins). E. coli growth was inhibited by tannins only when tannins were exposed to oxygen. Tannins auto-oxidize, and substantial hydrogen peroxide was generated when they were added to aerobic media. The addition of exogenous catalase permitted growth in tannin medium. E. coli mutants that lacked HPI, the major catalase, were especially sensitive to tannins, while oxyR mutants that constitutively overexpress antioxidant enzymes were resistant. A tannin-resistant mutant was isolated in which a promoter-region point mutation increased the level of HPI by 10-fold. Our results indicate that wattle condensed tannins are toxic to E. coli in aerobic medium primarily because they generate H2O2. The oxidative stress response helps E. coli strains to overcome their inhibitory effect.  相似文献   

2.
The production of viable meristem cultures of Medinilla magnifica has proved to be very difficult. This may be due, in part, to a pronounced ‘browning’ response of the tissues on cutting. For this reason the phenolic compounds and the hydrolysable-tannin polyphenol oxidase from Medinilla were studied. The distribution of the compounds was: simple phenols 19% , flavonoids 5% , hydrolysable tannins 69% , condensed tannins 7%. Amongst the simple phenols and phenolic acids, the following were identified: phloroglucinol, p-hydroxybenzoic acid, vanillic acid, protocatechuic acid, gallic acid (both in free and bound form the most abundant simple phenol), syringic acid, trans-p-coumaric acid, trans-ferulic acid and trans-caffeic acid. No kaempferol or quercetin or their derivatives were detected but condensed tannins are present. Methods for the extraction, fractionation and quantitative determination of phloroglucinol and the phenolic acids, as well as correction factors for losses during the extraction, alkali treatment and derivatization, are presented in a supplementary publication. With regard to the hydrolysable tannin polyphenol oxidase activity of Medinilla stems, the enzyme(s) is rather specific since at neither of its two pH optima (6 and 7) could a classical polyphenol oxidase activity be detected. The enzyme was strongly inhibited by 2-mercaptoethanol. Preliminary experiments have further shown that in addition to the hydrolysable tannins of the tissue, the ferrous ions of the medium, and oxygen together with the hydrolysable tannin polyphenol oxidase could play a role in the browning response. Ways to overcome this difficulty have been suggested.  相似文献   

3.
Little information is available on the effects of different sources of tannins on ruminant product quality. Nowadays several tannin-rich extracts, produced from different plants, are available and contain tannins belonging to different chemical groups, but most of these have not been used so far as feed supplements. The present study aimed at comparing the effects of feeding three tannin extracts (one containing condensed tannins and two containing hydrolysable tannins) to lambs on growth performances and meat oxidative stability. Comisana male lambs were divided into four groups (n=9 each) and were fed for 75 days: a concentrate-based diet (CON), or CON supplemented with 4% tannin extracts from either mimosa (MI; Acacia mearnsii, De Wild; condensed tannins), chestnut (CH; Castanea sativa, Mill; hydrolysable ellagitannins) or tara (TA; Cesalpinia spinosa, (Molina) Kuntze; hydrolysable gallotannins). Only CH reduced growth rate, final weight, carcass weight and feed intake (P<0.05). Tannins did not affect the concentration of the main fatty acid classes and the peroxidability of the intramuscular fat (P>0.05). The TA diet increased (P<0.001) the concentration of γ-tocopherol in muscle and tended to increase that of α-tocopherol (P=0.058). Oxidative stability of raw and cooked meat, or of meat homogenates incubated with pro-oxidants, was not affected by the extracts. These results, compared with those reported in the literature, highlight that some effects of tannins cannot be easily generalized, but may strictly depend on their specific characteristics and on conditions inherent to the basal diet and the metabolic status of the animals.  相似文献   

4.
Phytochemical coevolution theory posits that specialist herbivores will be less sensitive than generalists to the defensive compounds of their host. On the other hand, both types of herbivores should allegedly be similarly sensitive to ‘quantitative’ defences, such as tannin compounds. In this paper, we critically examine the biological effects of two types of tannins: vescalagin (a quantitatively dominant hydrolysable tannin of Quercus robur), and a mix of condensed tannins. In a phylogenetically controlled design, we compare the response of two specialist moth species (Dichonia aprilina and Catocala sponsa) and two generalist species (Acronicta psi and Amphipyra pyramidea) to four artificial diets: a control diet, a diet with 50 mg g?1 vescalagin, a diet with 15 mg/g condensed tannins, and a diet with both 50 mg g?1 vescalagin and 15 mg g?1 condensed tannins. Overall, we find drastic effects of vescalagin and pronounced differences in the responses of generalist and specialist herbivores, but no detectable effects of condensed tannins, and no interaction between the two types of compounds. More specifically, vescalagin reduced the growth of generalist species to one‐half of control levels over 72 h. The compound served as a strong feeding deterrent to generalists, reducing ingestion rates by two‐thirds. Vescalagin also reduced the metabolic and growth efficiency of generalist species to between 16% and 56% of control levels – effects which were lacking or even reversed in specialist species. These patterns suggest that vescalagin forms an important part of the oak's defence against herbivores, and that specialist species have adapted to deal with such substances. In terms of biological effects, condensed tannins seem much less important. Given a quantitative dominance of hydrolysable tannins over condensed tannins in oak leaves, and a seasonal decline in overall tannin levels, these findings contradict the previous notion that widespread spring feeding among oak herbivores could be attributed to tannins.  相似文献   

5.
Condensed tannins in plants are found free and attached to protein and fibre but it is not known whether these fractions influence rumen degradation and microbial colonisation. This study explored the rumen degradation of tropical tannin-rich plants and the relationship between the disappearance of free and bound condensed tannin fractions and microbial communities colonising plant particles using in situ and in vitro experiments. Leaves from Calliandra calothyrsus, Gliricidia sepium, and Leucaena leucocephala, pods from Acacia nilotica and the leaves of two agricultural by-products: Manihot esculenta and Musa spp. were incubated in situ in the rumen of three dairy cows to determine their degradability for up to 96 h. Tannin disappearance was determined at 24 h of incubation, and adherent microbial communities were examined at 3 and 12 h of incubation using a metataxonomic approach. An in vitro approach was also used to assess the effects of these plants on rumen fermentation parameters. All plants contained more than 100 g/kg of condensed tannins with a large proportion (32–61%) bound to proteins. Calliandra calothyrsus had the highest concentration of condensed tannins at 361 g/kg, whereas Acacia nilotica was particularly rich in hydrolysable tannins (350 g/kg). Free condensed tannins from all plants completely disappeared after 24-h incubation in the rumen. Disappearance of protein-bound condensed tannins was variable with values ranging from 93% for Gliricidia sepium to 21% for Acacia nilotica. In contrast, fibre-bound condensed tannin disappearance averaged ~ 82% and did not vary between plants. Disappearance of bound fractions of condensed tannins was not associated with the degradability of plant fractions. The presence of tannins interfered with the microbial colonisation of plants. Each plant had distinct bacterial and archaeal communities after 3 and 12 h of incubation in the rumen and distinct protozoal communities at 3 h. Adherent communities in tannin-rich plants had a lower relative abundance of fibrolytic microbes, notably Fibrobacter spp. whereas, archaea diversity was reduced in high-tannin-containing Calliandra calothyrsus and Acacia nilotica at 12 h of incubation. Concurrently, in vitro methane production was lower for Calliandra calothyrsus, Acacia nilotica and Leucaena leucocephala although for the latter total volatile fatty acids production was not affected and was similar to control. Here, we show that the total amount of hydrolysable and condensed tannins contained in a plant govern the interaction with rumen microbes affecting degradability and fermentation. The effect of protein- and fibre-bound condensed tannins on degradability is less important.  相似文献   

6.
Strategies are sought to reduce intestinal colonisation of food-producing animals by Campylobacter jejuni, a leading bacterial cause of human foodborne illness worldwide. Presently, we tested the antimicrobial activity of hydrolysable-rich blackberry, cranberry and chestnut tannin extracts and condensed tannin-rich mimosa, quebracho and sorghum tannins (each at 100 mg/mL) against C. jejuni via disc diffusion assay in the presence of supplemental casamino acids. We found that when compared to non-tannin-treated controls, all tested tannins inhibited the growth of C. jejuni and that inhibition by the condensed tannin-rich mimosa and quebracho extracts was mitigated in nutrient-limited medium supplemented with casamino acids. When tested in broth culture, both chestnut and mimosa extracts inhibited growth of C. jejuni and this inhibition was much greater in nutrient-limited than in full-strength medium. Consistent with observations from the disc diffusion assay, the inhibitory activity of the condensed tannin-rich mimosa extracts but not the hydrolysable tannin-rich chestnut extracts was mitigated by casamino acid supplementation to the nutrient-limited medium, likely because the added amino acids saturated the binding potential of the condensed tannins. These results demonstrate the antimicrobial activity of various hydrolysable and condensed tannin-rich extracts against C. jejuni and reveal that condensed tannins may be less efficient than hydrolysable tannins in controlling C. jejuni in gut environments containing high concentrations of amino acids and soluble proteins.  相似文献   

7.
S. Mole  P. G. Waterman 《Oecologia》1987,72(1):137-147
Summary A series of seventeen plant extracts rich in phenolic materials, including condensed and hydrolysable tannins, have been subjected to a series of chemical analyses in an attempt to gather ecologically significant information about their structure. Procedures investigated were (i) the Folin-Denis and Hagerman and Butler methods for quantifying total phenolics, (ii) the vanillin and proanthocyanidin methods for quantifying condensed tannins, (iii) the iodate and nitrous acid methods for hydrolysable tannins. It was found that the techniques for total phenolics correlated well, the Hagerman and Butler method giving higher estimates where solutions were particularly phenol rich. By contrast there was considerable discrepancy between the methods examined for condensed tannins. This is probably due primarily to the very different chemical reactions that form the basis of these procedures and also to the fact that the extract dependent products of the proanthocyanidin method vary in their A 1 1 values. During the study of condensed tannins methods for estimating their contribution to total phenolics and for measuring their average polymer length were examined. In both cases different procedures produced very variable results. Available methods for hydrolysable tannins were found not to be generally applicable across all extracts thought to contain this type of tannin on the basis of chromatographic analysis. An attempt to produce a quantitative spectrophotometric assay for hydrolysable tannins based on changes in reactivity to ferric chloride due to hydrolysis is described. This proved to be of limited sensitivity but may have some merit for estimating levels in hydrolysable tannins in phenol-rich plant extracts that also contain condensed tannins. It is concluded that whilst the overall level of phenolics in extracts can be estimated with some confidence the information imparted by more specific assays is very dependent on the procedures employed, particularly when dealing with extracts from taxonomically highly diverse sources.  相似文献   

8.
Variability of secondary metabolites in edible (peel and pulp) and inedible (seeds) parts of three pitanga varieties, red, red-orange and purple, was investigated during the maturation process. Hydrolysable tannins, anthocyanins, and flavonoids were quantified by HPLC/DAD and carotenoids by absorbance. Peel/pulp showed greater complexity of constituents (carotenoids, anthocyanins, flavonoids, and hydrolysable tannins), while only tannins were identified in seeds, but in quantities of 10 to 100 times greater. The red-orange variety showed the highest levels of phenolic compounds in seeds and peel/pulp, except anthocyanins. The analysis of the principal response curves showed that the pitanga biotype has greater influence on metabolite variation than ripening stages. During peel/pulp maturation, a reduction in the levels of flavonoids and tannins contrasted with an increase in carotenoids and cyanidin-3-O-glucoside in all varieties, whereas in the seeds oenothein B, the major tannin, increased up to 1.32 g/100 g fresh weight. Such marked differences between fruit parts demonstrate that the seeds in stages E3 and E4 are a source of hydrolysable tannins, compounds known for their antitumor activity, while peel/pulp of all varieties in the ripe stage provide natural antioxidants, such as carotenoids and flavonoids. Lastly, the purple biotype can be a rich source of the cyanidin-3-O-glucoside pigment a potent bioactive compound.  相似文献   

9.
Natural extracts are frequently adopted as a valuable alternative to antibiotics in intensive animal farming. Their diverse bioactive constituents such as phytosterols, glucosinolates, carotenoids and polyphenols have shown antioxidant, anti-inflammatory and antibacterial effects. Tannins are the largest class of polyphenol compounds of plant extracts, which can be classified into two hydrolysable or condensed subgroups. Poultry and swine nutrition are the most important sectors in which tannins have been used, firstly adopting tannin-rich feedstuffs and more recently, using tannin extracts from different plants. Several commercial products are available containing tannins extracted from the European chestnut tree (Castanea sativa Mill.) and the American quebracho (Schinopsis spp.). Tannins extracted from these plants have been applied on intensive swine farms due to their ability to improve animal performance and health. These positive and prominent effects are frequently associated with the antinutritional effects in reducing feed palatability, digestibility and protein utilization of feed. Some criticisms and contrasting results regarding pig performance and intestinal health have been reported. This paper provides an overview of the effects of chestnut and quebracho tannins on growth performance and intestinal health of pigs in order to clarify the appropriate dosage and response in the various physiological stages.  相似文献   

10.
Microbial degradation of tannins – A current perspective   总被引:26,自引:0,他引:26  
Tannins are water-soluble polyphenolic compounds having wide prevalence in plants. Hydrolysable and condensed tannins are the two major classes of tannins. These compounds have a range of effects on various organisms – from toxic effects on animals to growth inhibition of microorganisms. Some microbes are, however, resistant to tannins, and have developed various mechanisms and pathways for tannin degradation in their natural milieu. The microbial degradation of condensed tannins is, however, less than hydrolysable tannins in both aerobic and anaerobic environments. A number of microbes have also been isolated from the gastrointestinal tract of animals, which have the ability to break tannin-protein complexes and degrade tannins, especially hydrolysable tannins. Tannase, a key enzyme in the degradation of hydrolysable tannins, is present in a diverse group of microorganisms, including rumen bacteria. This enzyme is being increasingly used in a number of processes. Presently, there is a need for increased understanding of the biodegradation of condensed tannins, particularly in ruminants.  相似文献   

11.
M. A. S. Graça  J. M. Poquet 《Oecologia》2014,174(3):1021-1032
We tested the hypothesis that water stress and soil nutrient availability drive leaf-litter quality for decomposers and detritivores by relating chemical and physical leaf-litter properties and decomposability of Alnus glutinosa and Quercus robur, sampled together with edaphic parameters, across wide European climatic gradients. By regressing principal components analysis of leaf traits [N, P, condensed tannins, lignin, specific leaf area (SLA)] against environmental and soil parameters, we found that: (1) In Q. robur the condensed tannin and lignin contents increased and SLA decreased with precipitation, annual range of temperature, and soil N content, whereas leaf P increased with soil P and temperature; (2) In A. glutinosa leaves N, P, and SLA decreased and condensed tannins increased with temperature, annual range of temperature, and decreasing soil P. On the other hand, leaf P and condensed tannins increased and SLA decreased with minimum annual precipitation and towards sites with low temperature. We selected contrasting leaves in terms of quality to test decomposition and invertebrate consumption. There were intraspecific differences in microbial decomposition rates (field, Q. robur) and consumption by shredders (laboratory, A. glutinosa). We conclude that decomposition rates across ecosystems could be partially governed by climate and soil properties, affecting litter quality and therefore decomposers and detritivores. Under scenarios of global warming and increased nutrients, these results suggest we can expect species-specific changes in leaf-litter properties most likely resulting in slow decomposition with increased variance in temperatures and accelerated decomposition with P increase.  相似文献   

12.
The ability of foliar tannins to increase plant resistance to herbivores is potentially determined by the composition of the tannins; hydrolyzable tannins are much more active as prooxidants in the guts of caterpillars than are condensed tannins. By manipulating the tannin compositions of two contrasting tree species, this work examined: (1) whether increased levels of hydrolyzable tannins increase the resistance of red oak (Quercus rubra L.), a tree with low resistance that produces mainly condensed tannins, and (2) whether increased levels of condensed tannins decrease the resistance of sugar maple (Acer saccharum Marsh.), a tree with relatively high resistance that produces high levels of hydrolyzable tannins. As expected, when Lymantria dispar L. caterpillars ingested oak leaves coated with hydrolyzable tannins, levels of hydrolyzable tannin oxidation increased in their midgut contents. However, increased tannin oxidation had no significant impact on oxidative stress in the surrounding midgut tissues. Although growth efficiencies were decreased by hydrolyzable tannins, growth rates remained unchanged, suggesting that additional hydrolyzable tannins are not sufficient to increase the resistance of oak. In larvae on condensed tannin-coated maple, no antioxidant effects were observed in the midgut, and levels of tannin oxidation remained high. Consequently, neither oxidative stress in midgut tissues nor larval performance were significantly affected by high levels of condensed tannins. Post hoc comparisons of physiological mechanisms related to tree resistance revealed that maple produced not only higher levels of oxidative stress in the midgut lumen and midgut tissues of L. dispar, but also decreased protein utilization efficiency compared with oak. Our results suggest that high levels of hydrolyzable tannins are important for producing oxidative stress, but increased tree resistance to caterpillars may require additional factors, such as those that produce nutritional stress.  相似文献   

13.
Eleven fungal strains (4 Penicillium commune, 2 Aspergillus niger, 2 Aspergillus rugulosa, Aspergillus terricola, Aspergillus ornatus and Aspergillus fumigatus) were isolated, characterized morphologically and by their capacity to degrade tannins. Aspergillus niger Aa-20 was used as control strain. Several concentrations of hydrolysable tannin (tannic acid) were used as sole carbon source. All strains were able to degrade hydrolysable tannins. Aspergillus niger GH1 and PSH showed the highest tannin-degrading capacity (67 and 70%, respectively). Also, the fungal capacity to degrade condensed tannin (catechin) was tested. Aspergillus niger PSH and Penicillium commune EH2 degraded 79.33% and 76.35% of catechin. The results demonstrated the capacity of fungi to use hydrolysable and condensed tannins as carbon source.  相似文献   

14.
In winter seasons, wild sika deer (Cervus nippon yesoensis) inhabiting the Shiretoko Peninsula of Hokkaido Island, Japan, mainly graze woody materials (bark and twigs, etc.) as their feed source. Most of the tree species that they feed upon contain a high level of hydrolysable tannins within the inner bark. Tannins generally lead to low protein digestion and nutrient loss to these herbivorous mammals due to tannization of proteins. In winter months, it is speculated that wild sika deer develop a mechanism to degrade the tannins which are contained in their feed sources, but rumen fluid obtained from sika deer in winter months did not exhibit any ability to degrade tannins in liquid culture medium. However, constant degradation of hydrolysable tannin was observed when Ca-alginate gel beads were used for microbial immobilization and culturing. The gel beads that had been impregnated with 0.6×104 fold-diluted rumen fluid of sika deer in winter and pre-incubated for 24 h under anaerobic conditions supplemented with a 1.5 g/L sugar were reacted with 5 g/L tannic acid solution. Under these conditions, the immobilized rumen bacteria grown in the macrogel beads effectively hydrolyzed tannic acid to release gallic acid monomers. Major bacterial colonies emerging in the Ca-alginate gel beads were identified as Streptococcus macedonicus and this bacterium (EC-D140) was regarded as the most likely candidate as the tannin-degrading bacterium.  相似文献   

15.
Barleria argillicola Oberm. is a critically endangered species, endemic to a small area in the KwaZulu-Natal Province, South Africa. Animals are known to forage on this plant species, suggesting its therapeutic or nutraceutical potential. This study investigated the antibacterial, acetylcholinesterase inhibition, antioxidant and phytochemical properties of this species with a view to exploring its medicinal potential. The possibility of in vitro propagation as a conservation strategy was also examined. Dichloromethane extract showed a good antibacterial activity (with minimum inhibitory concentration less than 1 mg/ml) against all the tested micro-organisms. Methanol extract exhibited a stronger antibacterial activity against the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa than the Gram-positive bacterium Staphylococcus aureus. Extracts obtained from the aerial parts and roots demonstrated a dose-dependent acetylcholinesterase inhibition and antioxidant activities. Higher iridoid, flavonoid and condensed tannin contents were recorded in the aerial parts compared to the roots although the total phenolic content was higher in the roots. The highest in vitro shoot proliferation of 4.60 ± 0.51 and 4.0 ± 0.47 shoots per explant was achieved using shoot-tip and single nodal explants respectively, after four weeks of culture in Murashige and Skoog medium supplemented with 5 μM benzyladenine riboside (BAR). Further supplementation of the medium with naphthalene acetic acid (NAA) or indole butyric acid (IBA) concentrations did not significantly increase shoot proliferation.  相似文献   

16.
The development of new drugs from plants is an interesting alternative approach to overcoming microbial resistance. Passiflora cincinnata shows resistance to diseases and pests and a higher concentration of chemical components that may be useful in the pharmaceutical industry. We investigated the potential antimicrobial and antibiotic-modifying activity of hydroalcoholic extracts of leaves, stems, bark, pulp and seeds of P. cincinnata. The extracts were prepared by homogenization of material in 50% ethanol. Minimum inhibitory concentration (MIC) was determined by the broth dilution method, and the bacterial strains tested were Staphylococcus aureus and Escherichia coli. Antibiotic-modifying activity was evaluated against the strains S. aureus 03 and E. coli 08, using a subinhibitory concentration of extract. The antibiotics tested were: amikacin, gentamicin, ampicillin, potassium benzylpenicillin and oxacillin. The extracts did not show antimicrobial activity of clinical relevance, where the MIC was equal to or greater than 1024 μg/mL. S. aureus showed 13 events, while E. coli showed only 4 events. Among these events, 14 involved synergistic activity, potentiating the effect of the antibiotics, and only 3 events demonstrated antagonistic activity toward ampicillin. Hydroalcoholic extracts are potential antimicrobial agents when combined with conventional drugs little utilized in in vivo treatment.  相似文献   

17.
Despite the wide range of available antibiotics, food borne bacteria demonstrate a huge spectrum of resistance. The current study aims to use natural components such as essential oils (EOs), chitosan, and nano-chitosan that have very influential antibacterial properties with novel technologies like chitosan solution/film loaded with EOs against multi-drug resistant bacteria. Two strains of Escherichia coli O157:H7 and three strains of Listeria monocytogenes were used to estimate antibiotics resistance. Ten EOs and their mixture, chitosan, nano-chitosan, chitosan plus EO solutions, and biodegradable chitosan film enriched with EOs were tested as antibacterial agents against pathogenic bacterial strains. Results showed that E. coli O157:H7 51,659 and L. monocytogenes 19,116 relatively exhibited considerable resistance to more than one single antibiotic. Turmeric, cumin, pepper black, and marjoram did not show any inhibition zone against L. monocytogenes; Whereas, clove, thyme, cinnamon, and garlic EOs exhibited high antibacterial activity against L. monocytogenes with minimum inhibitory concentration (MIC) of 250–400 μl 100?1 ml and against E. coli O157:H7 with an MIC of 350–500 μl 100?1 ml, respectively. Among combinations, clove, and thyme EOs showed the highest antibacterial activity against E. coli O157:H7 with MIC of 170 μl 100?1 ml, and the combination of cinnamon and clove EOs showed the strongest antibacterial activity against L. monocytogenes with an MIC of 120 μl 100?1 ml. Both chitosan and nano-chitosan showed a promising potential as an antibacterial agent against pathogenic bacteria as their MICs were relatively lower against L. monocytogenes than for E. coli O157:H7. Chitosan combined with each of cinnamon, clove, and thyme oil have a more effective antibacterial activity against L. monocytogenes and E. coli O157:H7 than the mixture of oils alone. Furthermore, the use of either chitosan solution or biodegradable chitosan film loaded with a combination of clove and thyme EOs had the strongest antibacterial activity against L. monocytogenes and E. coli O157:H7. However, chitosan film without EOs did not exhibit an inhibition zone against the tested bacterial strains.  相似文献   

18.
We compared Quebracho with Sorghum tannin as standards for condensed tannin (CT) quantification in selected African savanna tree species in relation to the acid-butanol assay for CTs. Without exception, the use of Quebracho tannin as standard overestimated CTs, ranging from 0.7 to as much as 8.3 times. Sorghum tannin underestimated CTs by 0.26–0.79 times, except in one species where there was no difference in the CT concentration. Condensed tannins in African savanna trees showed qualitative and quantitative differences in chemical composition which may explain the variable reactivity in the acid-butanol assay. We propose the use of condensed tannins purified from the plant under investigation be used as standard since it will closely represent the CT structure and presumably chemical reactivity in the acid-butanol assay.  相似文献   

19.
Inhibition of the functional activity of Filamenting temperature-sensitive mutant Z (FtsZ) protein, an essential and highly conserved bacterial cytokinesis protein, is a promising approach for the development of a new class of antibacterial agents. Berberine, a benzylisoquinoline alkaloid widely used in traditional Chinese and native American medicines for its antimicrobial properties, has been recently reported to inhibit FtsZ. Using a combination of in silico structure-based design and in vitro biological assays, 9-phenoxyalkyl berberine derivatives were identified as potent FtsZ inhibitors. Compared to the parent compound berberine, the derivatives showed a significant enhancement of antibacterial activity against clinically relevant bacteria, and an improved potency against the GTPase activity and polymerization of FtsZ. The most potent compound 2 strongly inhibited the proliferation of Gram-positive bacteria, including methicillin-resistant S. aureus and vancomycin-resistant E. faecium, with MIC values between 2 and 4 µg/mL, and was active against the Gram-negative E. coli and K. pneumoniae, with MIC values of 32 and 64 µg/mL respectively. The compound perturbed the formation of cytokinetic Z-ring in E. coli. Also, the compound interfered with in vitro polymerization of S. aureus FtsZ. Taken together, the chemical modification of berberine with 9-phenoxyalkyl substituent groups greatly improved the antibacterial activity via targeting FtsZ.  相似文献   

20.
Ascaris suum is one of the most prevalent nematode parasites in pigs and causes significant economic losses, and also serves as a good model for A. lumbricoides, the large roundworm of humans that is ubiquitous in developing countries and causes malnutrition, stunted growth and compromises immunity to other pathogens. New treatment options for Ascaris infections are urgently needed, to reduce reliance on the limited number of synthetic anthelmintic drugs. In areas where Ascaris infections are common, ethno-pharmacological practices such as treatment with natural plant extracts are still widely employed. However, scientific validation of these practices and identification of the active compounds are lacking, although observed effects are often ascribed to plant secondary metabolites such as tannins. Here, we extracted, purified and characterised a wide range of condensed tannins from diverse plant sources and investigated anthelmintic effects against A. suum in vitro. We show that condensed tannins can have potent, direct anthelmintic effects against A. suum, as evidenced by reduced migratory ability of newly hatched third-stage larvae and reduced motility and survival of fourth-stage larvae recovered from pigs. Transmission electron microscopy showed that CT caused significant damage to the cuticle and digestive tissues of the larvae. Furthermore, we provide evidence that the strength of the anthelmintic effect is related to the polymer size of the tannin molecule. Moreover, the identity of the monomeric structural units of tannin polymers may also have an influence as gallocatechin and epigallocatechin monomers exerted significant anthelmintic activity whereas catechin and epicatechin monomers did not. Therefore, our results clearly document direct anthelmintic effects of condensed tannins against Ascaris and encourage further in vivo investigation to determine optimal strategies for the use of these plant compounds for the prevention and/or treatment of ascariosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号