首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
A novel label-free voltammetric immunosensor for sensitive detection of β-lactoglobulin using graphene modified screen printed electrodes has been developed. The derivatization of the graphene electrode surface was achieved by electrochemical reduction of in situ generated 4-nitrophenyl diazonium cations in aqueous acidic solution, followed by electrochemical reduction of the terminal nitro groups to amines. The electrochemical modification protocol was optimized in order to generate monolayer of nitrophenyl groups on the graphene surface without complete passivation of the electrode. Unlike the reported method for graphene functionalization, we demonstrated here the ability of the electrografting of aryl diazonium salt to attach an organic film to the graphene surface in a controlled manner by choosing the suitable grafting protocol. Next, the amine groups on the graphene surface were activated using glutaraldehyde and used for the covalent immobilization of β-lactoglobulin antibodies. Cyclic and differential pulse voltammetry carried out in an aqueous solution containing [Fe(CN)(6)](3-/4-) redox pair have been used for the immunosensor characterization. The results demonstrated that the DPV reduction peak current of [Fe(CN)(6)](3-/4-) decreased linearly with increasing the concentration of β-lactoglobulin due to the formation of antibody-antigen complex on the modified electrode surface. The immunosensor obtained using this novel approach enabled a detection limit of 0.85pgmL(-1) and a dynamic range from 1pgmL(-1) to 100ngmL(-1) of β-lactoglobulin in PBS buffer. In addition, the immunosensor evaluated in different samples including cake, cheese snacks, a sweet biscuit, showing excellent correlation with the results obtained from commercially enzyme-linked immunosorbent assay (ELISA) method.  相似文献   

2.
Monosuccinyl β-cyclodextrin (succinyl-β-CD) was synthesized and the selectivity to quercetin and rutin of the succinyl-β-CD-modified, multi-wall carbon nanotube (MWNT)-coated, glassy carbon electrode [(succinyl-β-CD + MWNT)/GCE] was investigated. 1H NMR and MALDI-MS data confirmed molecular structure of the synthesized succinyl-β-CD. As a dopant in carboxylated MWNT-modified electrode, succinyl-β-CD clearly separated the peak potential (Ep) of quercetin from that of rutin. The measured peak potential separation (ΔEp) was 110 mV. More favorable complexation between succinyl-β-CD and quercetin may enhance relative selectivity to quercetin of the (succinyl-β-CD + MWNT)/GCE in quercetin-rutin mixture as compared to the β-CD-modified GCE.  相似文献   

3.
Fu Y  Chen Q  Zhou J  Han Q  Wang Y 《Analytical biochemistry》2012,421(1):103-107
A new chiral biosensor has been fabricated by immobilizing γ-globulin on gold nanoparticles modified glassy carbon electrodes, which could recognize and detect mandelic acid (MA) enantiomers. Differential pulse voltammetry, quartz crystal microbalance, ultraviolet-visible spectroscopy, and atomic force microscopy were used to characterize the enantioselectivity. The results exhibited that γ-globulin modified electrode could enantioselectively recognize MA enantiomers, and larger response signals were obtained from R-MA. The factors influencing the performance of the resulting biosensor were investigated. The enantiomeric composition of R- and S-MA enantiomer mixtures could be determined by measuring the current responses of the sample. The developed electrodes have the advantages of simple preparation, good stability, and rapid detection.  相似文献   

4.
Dopamine, the most important neurotransmitter in the human brain, controls various functions. Dopamine deficiency causes fatal neurological disorders such as Parkinson’s disease. Even though various types of electrochemical sensors have been studied to measure dopamine levels, they often have poor selectivity for dopamine due to co-existence of interfering substances (e.g. ascorbic acid). Herein, we aimed to develop a highly sensitive dopamine detection method in the co-existence of ascorbic acid, a major interfering substance in real sample by designing an electrochemically pretreated and activated carbon/tyrosinase/Nafion®-modified GCE as an amperometric dopamine biosensor. To maximize the biosensor performance, pH, volume of Nafion®, and scan rate were optimized. This electrochemically pretreated and activated carbon/tyrosinase/ Nafion®-modified GCE could detect as low as 50 μM of dopamine with a wide linear range (50 ~ 1,000 μM) within a few seconds. In addition, it had a sensitivity of 103mAM/cm2, which was higher than all previously reported tyrosinasebased dopamine biosensors. In addition, interference effect caused by 4 mM of ascorbic acid was negligible in the co-existence of 1 mM of dopamine. Consequently, this electrochemically pretreated and activated carbon/tyrosinase/ Nafion®-modified GCE might be applicable as amperometric biosensor for selective detection of dopamine in real samples with interfering substances.  相似文献   

5.
In this work, a multiwalled carbon nanotube (MWCNT)–Nafion–cysteamine (CA) modified tyrosinase biosensor brings a new and original perspective to biosensor technology intended for the development of dopamine determination. Dopamine measurements were done at 0.2 V with the amperometric method by the developed biosensor system. In addition, in this study dopamine determination was carried out by using the differential pulse voltammetry method between potentials of 0.4 and −0.15 V. In the optimization studies of the biosensor, some parameters such as optimal pH, optimal temperature, optimal enzyme amount, and effect of MWCNT concentration were investigated. Afterward, in the characterization studies, some parameters such as linearity and reproducibility were determined. In the reproducibility experiment, an average value of 1.026 μM, a standard deviation of ±0.03975, and a coefficient of variation of 3.8% were determined for a 1-μM dopamine concentration (n = 15). Determination of dopamine was carried out in drug samples by the developed biosensor.  相似文献   

6.
This paper described an ingenious approach for the fabrication of a promising biosensor, hemoglobin (Hb)/chitosan (Chit)–ionic liquid (IL)–ferrocene (Fc)/graphene (Gr)/glassy carbon electrode (GCE), that exploited the synergistic beneficial characteristics of Fc, Gr and IL for Hb. The proposed biosensor showed a strong electrocatalytic activity toward the reduction of H2O2, which could be attributed to the favored orientation of Hb in the well-confined surface as well as the high electrical conductivity of the resulting Chit–IL–Fc/Gr inorganic hybrid composite. The developed biosensor exhibited a fast amperometric response (2 s), a good linear response toward H2O2 over a wide range of concentration from 50 μM to 1200 μM, and a low detection limit of 3.8 μM. The apparent Michaelis–Menten constant (Km) of Hb on the composite medium was 0.16 mM, showing high bioelectrocatalytic activity of immobilized protein toward H2O2 reduction. High sensitivity and stability, technically simple and possibility of preparation at short period of time are of great advantages of the developed biosensors.  相似文献   

7.
1. The existing procedures for extraction of oxidized and reduced nicotinamide coenzymes were adapted to spermatozoa to overcome the coenzyme-degrading activity of seminal plasma. 2. The content of total NAD(+) and NADH was determined in the spermatozoa of ram, bull, boar, stallion and cock. NADP(+) and NADPH were not detected in ram spermatozoa. 3. The oxidation state of sperm NAD depended on the seminal plasma, the removal of which produced a change in the percentage oxidation state of the coenzyme, 100x[NAD(+)/(NAD(+)+NADH)], without altering the total content of NAD(+)+NADH. 4. In suspensions of washed ram spermatozoa, incubated anaerobically at 25 degrees C, the percentage oxidation state of NAD declined with increasing spermatozoa concentration. 5. When ram or boar spermatozoa that had been previously washed and resuspended in Ringer phosphate medium, were incubated anaerobically at 25 degrees C with various substances, pronounced effects on the percentage oxidation state of NAD could be observed with l-lactate, pyruvate, oxaloacetate, dihydroxyacetone, formaldehyde and glyceraldehyde; sorbitol and acetoacetate acted only on ram spermatozoa; fructose, glucose, mannose and acetaldehyde acted predominantly on boar spermatozoa. Formaldehyde lowered the (NAD(+)+NADH) content of ram spermatozoa, but none of the other substances had a comparable effect. 6. The percentage oxidation state of sperm NAD was not influenced by exogenous cysteine, cystine, ergothioneine or ascorbate. 7. A highly active sorbitol dehydrogenase could be prepared from ram, but not from boar, spermatozoa. 8. Sorbitol, acetoacetate and 3-hydroxybutyrate effectively supported the respiration of ram, but not boar, spermatozoa. 9. ;Cold shock', resulting from sudden cooling of spermatozoa, abolished motility completely and irreversibly but produced only a slow and partial decrease in the total NAD content. Slight over-heating, sufficient to produce loss of motility, had no adverse effect on the total NAD content. 10. Storage of ram sperm at 14 degrees C produced only a small decrease of NAD after 2 days, but subsequently the loss became greater.  相似文献   

8.
Novel zinc oxide (ZnO) nanosheets and copper oxide (CuxO, CuO, and Cu2O) decorated polypyrrole (PPy) nanofibers (ZnO–CuxO–PPy) have been successfully fabricated for the simultaneous determination of ascorbic acid (AA), dopamine (DA), and uric acid (UA). The morphology and structure of ZnO–CuxO–PPy nanocomposites were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Raman spectroscopy. Compared with the bare glassy carbon electrode (GCE), PPy/GCE, CuxO–PPy/GCE, and ZnO–PPy/GCE, ZnO–CuxO–PPy/GCE exhibits much higher electrocatalytic activities toward the oxidation of AA, DA, and UA with increasing peak currents and decreasing oxidation overpotentials. Cyclic voltammetry (CV) results show that AA, DA, and UA could be detected selectively and sensitively at ZnO–CuxO–PPy/GCE with peak-to-peak separation of 150 and 154 mV for AA–DA and DA–UA, respectively. The calibration curves for AA, DA, and UA were obtained in the ranges of 0.2 to 1.0 mM, 0.1 to 130.0 μM, and 0.5 to 70.0 μM, respectively. The lowest detection limits (signal/noise = 3) were 25.0, 0.04, and 0.2 μM for AA, DA, and UA, respectively. With good selectivity and sensitivity, the current method was applied to the determination of DA in injectable medicine and UA in urine samples.  相似文献   

9.
A new sensitive electrochemical sensor, a glassy carbon electrode modified with chemically cross-linked copper-complexed chitosan/multiwalled carbon nanotubes (Cu–CS/MWCNT/GCE), for rutin analysis was constructed. Experimental investigations of the influence of several parameters showed that the rutin can effectively accumulate on the surface of the Cu–CS/MWCNT/GCE, which accumulation caused a pair of well-defined redox peaks in the electrochemical signal when measurements were carried out in Britton–Robinson buffer solution (pH 3, 0.04 M). The surface of the Cu–CS/MWCNT/GCE was characterized by field-emission scanning electron microscopy, transmission electron microscopy, and X-ray diffractometry analysis. In a rutin concentration range of 0.05–100 μM and under optimized conditions, a linear relationship between the oxidation peak current of rutin and its concentration was obtained with a detection limit of 0.01 μM. The Cu–CS/MWCNT/GCE showed good selectivity, stability, and reproducibility. Moreover, the sensor was used to determine the presence of rutin in fruits with satisfactory results.  相似文献   

10.
Two open reading frames in the genome of Sulfolobus solfataricus (SSO2341 and SSO2424) were cloned and expressed in E. coli. The protein products were purified and their enzymatic activity characterized. Although SSO2341 was annotated as a gene (gpT-1) encoding a 6-oxopurine phosphoribosyltransferase (PRTase), the protein product turned out to be a PRTase highly specific for adenine and we suggest that the reading frame should be renamed apT. The other reading frame SSO2424 (gpT-2) proved to be a true 6-oxopurine PRTase active with hypoxanthine, xanthine and guanine as substrates, and we suggest that the gene should be renamed gpT. Both enzymes exhibited unusual profiles of activity versus pH. The adenine PRTase showed the highest activity at pH 7.5–8.5, but had a distinct peak of activity also at pH 4.5. The 6-oxo PRTase showed maximal activity with hypoxanthine and guanine around pH 4.5, while maximal activity with xanthine was observed at pH 7.5. We discuss likely reasons why SSO2341 in S. solfataricus and similar open reading frames in other Crenarchaeota could not be identified as genes encoding APRTase.  相似文献   

11.
When l-thyroxine activates the oxidation of NADH by peroxidase+H(2)O(2), little removal of phenolic-ring iodine atoms becomes apparent until most of the NADH has been oxidized, after which it increases markedly. This extensive deiodination is accompanied by loss of the ability of thyroxine to catalyse the oxidation of NADH by peroxidase+H(2)O(2). The slight deiodination observed before the appearance of extensive deiodination is somewhat higher when the effect of thyroxine on NADH oxidation is greater, and lower when thyroxine has exerted a slighter effect. ICN (but not I(2) or thyronine) catalyses NADH oxidation, in both the presence and the absence of peroxidase+H(2)O(2): thyroxine+peroxidase+H(2)O(2) are thus comparable with ICN alone in their effects on NADH oxidation. The obvious conclusion from the above observation, namely that the active moiety is the halogen liberated from thyroxine (or ICN) is, however, not directly supported by some of the results obtained by measuring the degree of deiodination of thyroxine in the system. In an attempt to reconcile some apparently contradictory conclusions, it is suggested that, when thyroxine activates oxidation of NADH by peroxidase+H(2)O(2), the diphenyl ether structure is undergoing cyclic deiodination and iodination. This would be accompanied by the maintenance in the reaction medium of an oxidized form of iodine, similar to that liberated by ICN, which would be the actual active moiety, until the NADH concentration becomes so low that the diphenyl ether structure is ruptured oxidatively. An alternative explanation is that thyroxine is oxidized to a form that either oxidizes NADH or loses iodine in competing reactions.  相似文献   

12.
Oxyhydroxy cobalt CoO(OH) nanoparticles (Co-NPs) were prepared in horse spleen apoferritin (HsAFr) cavity. Transmission electron microscopy revealed the particle size was 5.5-6 nm. Mineralization effect on HsAFr was investigated by fluorescence and far-UV circular dichroism (far-UV CD) spectroscopies. The far-UV CD experiments indicated an increase in the α-helical content after mineralization. Intrinsic fluorescence data showed that mineralization acts as a quencher of HsAFr. For the first time, direct electron transfer between Co(NPs)-HsAFr and a glassy carbon electrode in the thin film of dihexadecylphosphate (DHP) was investigated by cyclic voltammetry (CV) to design a biosensor. The anionic surfactant DHP was used to achieve direct electron-transfer between Co(NPs)-HsAFr molecules and the GC electrode surface. CV result showed clearly a pair of well-defined and quasi-reversible redox peaks arise from Co(NPs)-HsAFr embedded in DHP film. This novel biosensor can be used in medical and industrial fields to detect different analytes.  相似文献   

13.
A novel amperometric immunosensor based on chitosan–gold nanoparticles (Chit–GNPs) composite film and thionine (Thi) was prepared for the determination of α-1-fetoprotein (AFP). The immunosensor was prepared by electro-depositing a Chit–GNPs composite matrix on the surface of the glass carbon electrode, then Thi was immobilized onto the Chit–GNPs film using glutaraldehyde as a cross-linker. Furthermore, the GNPs were chemisorbed onto Thi film for immobilization of α-1-fetoprotein antibody. The procedure of the immunosensor was characterized by means of cyclic voltammograms. The performance and influencing factors of the resulting immunosensor were studied in details. Under optimal conditions, the immunosensor was highly sensitive to AFP and the linear range covered from 0.40 to 200.0 ng mL−1 with a detection limit of 0.24 ng mL−1 at three times background noise. Moreover, the simple and controllable electro-deposition method overcame the irreproducibility for preparing Chit-based immunosensor systems and the proposed immunosensor displayed a satisfactory reproducibility and stability.  相似文献   

14.
15.
Protein phosphatase 1 (PP1) is a dinuclear metalloenzyme that catalyzes the dephosphorylation of serine and threonine residues. In this work, the catalytic reaction mechanism of PP1 was theoretically investigated by hybrid density functional theory. Firstly, an initial model of the Mn(II)–Mn(II) active site of PP1 was constructed on the basis of the high-resolution crystal structure, and stationary points along the reaction pathway were optimized and analyzed. The calculations provide strong support for the mechanism of the dephosphorylation by PP1 and suggest that His125 plays the role of donating a proton to the leaving group. Furthermore, reaction models with the Mn–Mn centers at different oxidation states [Mn(III)–Mn(II) and Mn(III)–Mn(III) centers] were designed. Our calculations show that increasing the oxidation state of one or both Mn(II) can shorten the bond lengths between the metal ions and the ligands, and increase the energy barrier of the related reactions. We found it interesting that artificially adding a negatively charged hydroxy ligand into the Mn(III)–Mn(II) center can recover the shortened coordination bonds and lower the increased energy barrier. Our investigation suggests that the definite oxidation states of the metal centers should be significantly correlated to the negative charges of the ligands not only in phosphoprotein phosphatases, but also in purple acid phosphatases and Escherichia coli 5′-nucleotidase. This means that all the members of phosphoprotein phosphatases adopt homodivalent centers, and suggests the heterovalent active sites of purple acid phosphatases have evolved from homodivalent ones.  相似文献   

16.
1. The effect of pH on the co-operative activation of the NAD-specific isocitrate dehydrogenase from pea mitochondria by isocitrate is shown. 2. The interlinked effects of pH on the affinity of the NAD-specific isocitrate dehydrogenase for isocitrate and the dependence of the pH optimum on the substrate concentration are presented. 3. A consideration of the conditions of pH and substrate concentration under which citrate activates the NAD-specific isocitrate dehydrogenase demonstrates similarities between the binding of isocitrate and citrate. 4. A comparison of the effects of citrate and pH on the gross structure of the enzyme is investigated by density-gradient centrifugation. 5. The kinetic interpretations of these results are briefly considered. 6. The metabolic significance of these studies is discussed.  相似文献   

17.
The influence of the orientations and concentrations of the Stone–Wales (SW) defects on the thermal conductivity of zigzag and armchair graphene nanoribbons (GNRs) is explored using the reverse non-equilibrium molecular dynamics method. The results show that the thermal conductivity of GNRs with two different chirality cases reaches the minimum in the range of 0.1–0.7% defect concentration. Beyond a critical value of the SW defect concentration, the thermal conductivity increases with the increase in SW concentration for both zigzag and armchair GNRs. It is shown that at high concentrations of the SW defects, the thermal conductivity of zigzag GNRs with Type II defects is larger than the GNRs with Type I defects. Finally, the dependence of the SW defect concentration and orientation on the power spectra overlaps have also been explored.  相似文献   

18.
Symbiotic relationships between phytoplankton and N2-fixing microorganisms play a crucial role in marine ecosystems. The abundant and widespread unicellular cyanobacteria group A (UCYN-A) has recently been found to live symbiotically with a haptophyte. Here, we investigated the effect of nitrogen (N), phosphorus (P), iron (Fe) and Saharan dust additions on nitrogen (N2) fixation and primary production by the UCYN-A–haptophyte association in the subtropical eastern North Atlantic Ocean using nifH expression analysis and stable isotope incubations combined with single-cell measurements. N2 fixation by UCYN-A was stimulated by the addition of Fe and Saharan dust, although this was not reflected in the nifH expression. CO2 fixation by the haptophyte was stimulated by the addition of ammonium nitrate as well as Fe and Saharan dust. Intriguingly, the single-cell analysis using nanometer scale secondary ion mass spectrometry indicates that the increased CO2 fixation by the haptophyte in treatments without added fixed N is likely an indirect result of the positive effect of Fe and/or P on UCYN-A N2 fixation and the transfer of N2-derived N to the haptophyte. Our results reveal a direct linkage between the marine carbon and nitrogen cycles that is fuelled by the atmospheric deposition of dust. The comparison of single-cell rates suggests a tight coupling of nitrogen and carbon transfer that stays balanced even under changing nutrient regimes. However, it appears that the transfer of carbon from the haptophyte to UCYN-A requires a transfer of nitrogen from UCYN-A. This tight coupling indicates an obligate symbiosis of this globally important diazotrophic association.  相似文献   

19.
Fluxes of CO2 and o-P across the sediment-water interfacewere measured adding different amounts of sulfatein order to quantify the influence in these processes againsta control, and using chloramphenicol as an inhibitor ofbacterial activity. These experiments were performed underoxic and anoxic conditions. Results show that the additionof sulfate stimulated the fluxes of CO2 and o-P, whilethe use of chloramphenicol decreased these fluxes. Theratio of o-P release to Org-C release ranged from 1 to 5 underoxic conditions and from 18 to 42 under anoxicconditions.  相似文献   

20.
1. The mitochondrial NADH dehydrogenase (EC 1.6.99.3) of Candida utilis exhibited altered properties when the organism was grown under iron-limited conditions. No suitable acceptor was found for assay of this enzyme from iron-limited cells. 2. Mitochondrial membrane proteins from C. utilis were analysed by polyacrylamide-gel electrophoresis. Compared with glycerol-limited cells, iron limitation resulted in the loss of at least two polypeptides from the mitochondrial membrane. 3. Neither of the polypeptides affected by iron limitation was part of a cytochrome, although one of them was part of the mitochondrial NADH dehydrogenase. 4. Non-haem iron of mitochondrial membranes was released in the presence of sodium dodecyl sulphate, and electrophoresis in solutions of this detergent cannot be used directly to identify iron-sulphur proteins. Non-ionic detergents do not release non-haem iron but nor do they provide a satisfactory system for electrophoretic separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号